1*> \brief <b> SSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
2*
3*  @generated from dsyevr_2stage.f, fortran d -> s, Sat Nov  5 23:50:10 2016
4*
5*  =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8*            http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download SSYEVR_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20*  Definition:
21*  ===========
22*
23*       SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
24*                          IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK,
25*                          LWORK, IWORK, LIWORK, INFO )
26*
27*       IMPLICIT NONE
28*
29*       .. Scalar Arguments ..
30*       CHARACTER          JOBZ, RANGE, UPLO
31*       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
32*       REAL               ABSTOL, VL, VU
33*       ..
34*       .. Array Arguments ..
35*       INTEGER            ISUPPZ( * ), IWORK( * )
36*       REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
37*       ..
38*
39*
40*> \par Purpose:
41*  =============
42*>
43*> \verbatim
44*>
45*> SSYEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors
46*> of a real symmetric matrix A using the 2stage technique for
47*> the reduction to tridiagonal.  Eigenvalues and eigenvectors can be
48*> selected by specifying either a range of values or a range of
49*> indices for the desired eigenvalues.
50*>
51*> SSYEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call
52*> to SSYTRD.  Then, whenever possible, SSYEVR_2STAGE calls SSTEMR to compute
53*> the eigenspectrum using Relatively Robust Representations.  SSTEMR
54*> computes eigenvalues by the dqds algorithm, while orthogonal
55*> eigenvectors are computed from various "good" L D L^T representations
56*> (also known as Relatively Robust Representations). Gram-Schmidt
57*> orthogonalization is avoided as far as possible. More specifically,
58*> the various steps of the algorithm are as follows.
59*>
60*> For each unreduced block (submatrix) of T,
61*>    (a) Compute T - sigma I  = L D L^T, so that L and D
62*>        define all the wanted eigenvalues to high relative accuracy.
63*>        This means that small relative changes in the entries of D and L
64*>        cause only small relative changes in the eigenvalues and
65*>        eigenvectors. The standard (unfactored) representation of the
66*>        tridiagonal matrix T does not have this property in general.
67*>    (b) Compute the eigenvalues to suitable accuracy.
68*>        If the eigenvectors are desired, the algorithm attains full
69*>        accuracy of the computed eigenvalues only right before
70*>        the corresponding vectors have to be computed, see steps c) and d).
71*>    (c) For each cluster of close eigenvalues, select a new
72*>        shift close to the cluster, find a new factorization, and refine
73*>        the shifted eigenvalues to suitable accuracy.
74*>    (d) For each eigenvalue with a large enough relative separation compute
75*>        the corresponding eigenvector by forming a rank revealing twisted
76*>        factorization. Go back to (c) for any clusters that remain.
77*>
78*> The desired accuracy of the output can be specified by the input
79*> parameter ABSTOL.
80*>
81*> For more details, see SSTEMR's documentation and:
82*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
83*>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
84*>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
85*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
86*>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
87*>   2004.  Also LAPACK Working Note 154.
88*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
89*>   tridiagonal eigenvalue/eigenvector problem",
90*>   Computer Science Division Technical Report No. UCB/CSD-97-971,
91*>   UC Berkeley, May 1997.
92*>
93*>
94*> Note 1 : SSYEVR_2STAGE calls SSTEMR when the full spectrum is requested
95*> on machines which conform to the ieee-754 floating point standard.
96*> SSYEVR_2STAGE calls SSTEBZ and SSTEIN on non-ieee machines and
97*> when partial spectrum requests are made.
98*>
99*> Normal execution of SSTEMR may create NaNs and infinities and
100*> hence may abort due to a floating point exception in environments
101*> which do not handle NaNs and infinities in the ieee standard default
102*> manner.
103*> \endverbatim
104*
105*  Arguments:
106*  ==========
107*
108*> \param[in] JOBZ
109*> \verbatim
110*>          JOBZ is CHARACTER*1
111*>          = 'N':  Compute eigenvalues only;
112*>          = 'V':  Compute eigenvalues and eigenvectors.
113*>                  Not available in this release.
114*> \endverbatim
115*>
116*> \param[in] RANGE
117*> \verbatim
118*>          RANGE is CHARACTER*1
119*>          = 'A': all eigenvalues will be found.
120*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
121*>                 will be found.
122*>          = 'I': the IL-th through IU-th eigenvalues will be found.
123*>          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
124*>          SSTEIN are called
125*> \endverbatim
126*>
127*> \param[in] UPLO
128*> \verbatim
129*>          UPLO is CHARACTER*1
130*>          = 'U':  Upper triangle of A is stored;
131*>          = 'L':  Lower triangle of A is stored.
132*> \endverbatim
133*>
134*> \param[in] N
135*> \verbatim
136*>          N is INTEGER
137*>          The order of the matrix A.  N >= 0.
138*> \endverbatim
139*>
140*> \param[in,out] A
141*> \verbatim
142*>          A is REAL array, dimension (LDA, N)
143*>          On entry, the symmetric matrix A.  If UPLO = 'U', the
144*>          leading N-by-N upper triangular part of A contains the
145*>          upper triangular part of the matrix A.  If UPLO = 'L',
146*>          the leading N-by-N lower triangular part of A contains
147*>          the lower triangular part of the matrix A.
148*>          On exit, the lower triangle (if UPLO='L') or the upper
149*>          triangle (if UPLO='U') of A, including the diagonal, is
150*>          destroyed.
151*> \endverbatim
152*>
153*> \param[in] LDA
154*> \verbatim
155*>          LDA is INTEGER
156*>          The leading dimension of the array A.  LDA >= max(1,N).
157*> \endverbatim
158*>
159*> \param[in] VL
160*> \verbatim
161*>          VL is REAL
162*>          If RANGE='V', the lower bound of the interval to
163*>          be searched for eigenvalues. VL < VU.
164*>          Not referenced if RANGE = 'A' or 'I'.
165*> \endverbatim
166*>
167*> \param[in] VU
168*> \verbatim
169*>          VU is REAL
170*>          If RANGE='V', the upper bound of the interval to
171*>          be searched for eigenvalues. VL < VU.
172*>          Not referenced if RANGE = 'A' or 'I'.
173*> \endverbatim
174*>
175*> \param[in] IL
176*> \verbatim
177*>          IL is INTEGER
178*>          If RANGE='I', the index of the
179*>          smallest eigenvalue to be returned.
180*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
181*>          Not referenced if RANGE = 'A' or 'V'.
182*> \endverbatim
183*>
184*> \param[in] IU
185*> \verbatim
186*>          IU is INTEGER
187*>          If RANGE='I', the index of the
188*>          largest eigenvalue to be returned.
189*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
190*>          Not referenced if RANGE = 'A' or 'V'.
191*> \endverbatim
192*>
193*> \param[in] ABSTOL
194*> \verbatim
195*>          ABSTOL is REAL
196*>          The absolute error tolerance for the eigenvalues.
197*>          An approximate eigenvalue is accepted as converged
198*>          when it is determined to lie in an interval [a,b]
199*>          of width less than or equal to
200*>
201*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
202*>
203*>          where EPS is the machine precision.  If ABSTOL is less than
204*>          or equal to zero, then  EPS*|T|  will be used in its place,
205*>          where |T| is the 1-norm of the tridiagonal matrix obtained
206*>          by reducing A to tridiagonal form.
207*>
208*>          See "Computing Small Singular Values of Bidiagonal Matrices
209*>          with Guaranteed High Relative Accuracy," by Demmel and
210*>          Kahan, LAPACK Working Note #3.
211*>
212*>          If high relative accuracy is important, set ABSTOL to
213*>          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
214*>          eigenvalues are computed to high relative accuracy when
215*>          possible in future releases.  The current code does not
216*>          make any guarantees about high relative accuracy, but
217*>          future releases will. See J. Barlow and J. Demmel,
218*>          "Computing Accurate Eigensystems of Scaled Diagonally
219*>          Dominant Matrices", LAPACK Working Note #7, for a discussion
220*>          of which matrices define their eigenvalues to high relative
221*>          accuracy.
222*> \endverbatim
223*>
224*> \param[out] M
225*> \verbatim
226*>          M is INTEGER
227*>          The total number of eigenvalues found.  0 <= M <= N.
228*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
229*> \endverbatim
230*>
231*> \param[out] W
232*> \verbatim
233*>          W is REAL array, dimension (N)
234*>          The first M elements contain the selected eigenvalues in
235*>          ascending order.
236*> \endverbatim
237*>
238*> \param[out] Z
239*> \verbatim
240*>          Z is REAL array, dimension (LDZ, max(1,M))
241*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
242*>          contain the orthonormal eigenvectors of the matrix A
243*>          corresponding to the selected eigenvalues, with the i-th
244*>          column of Z holding the eigenvector associated with W(i).
245*>          If JOBZ = 'N', then Z is not referenced.
246*>          Note: the user must ensure that at least max(1,M) columns are
247*>          supplied in the array Z; if RANGE = 'V', the exact value of M
248*>          is not known in advance and an upper bound must be used.
249*>          Supplying N columns is always safe.
250*> \endverbatim
251*>
252*> \param[in] LDZ
253*> \verbatim
254*>          LDZ is INTEGER
255*>          The leading dimension of the array Z.  LDZ >= 1, and if
256*>          JOBZ = 'V', LDZ >= max(1,N).
257*> \endverbatim
258*>
259*> \param[out] ISUPPZ
260*> \verbatim
261*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
262*>          The support of the eigenvectors in Z, i.e., the indices
263*>          indicating the nonzero elements in Z. The i-th eigenvector
264*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
265*>          ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal
266*>          matrix). The support of the eigenvectors of A is typically
267*>          1:N because of the orthogonal transformations applied by SORMTR.
268*>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
269*> \endverbatim
270*>
271*> \param[out] WORK
272*> \verbatim
273*>          WORK is REAL array, dimension (MAX(1,LWORK))
274*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
275*> \endverbatim
276*>
277*> \param[in] LWORK
278*> \verbatim
279*>          LWORK is INTEGER
280*>          The dimension of the array WORK.
281*>          If JOBZ = 'N' and N > 1, LWORK must be queried.
282*>                                   LWORK = MAX(1, 26*N, dimension) where
283*>                                   dimension = max(stage1,stage2) + (KD+1)*N + 5*N
284*>                                             = N*KD + N*max(KD+1,FACTOPTNB)
285*>                                               + max(2*KD*KD, KD*NTHREADS)
286*>                                               + (KD+1)*N + 5*N
287*>                                   where KD is the blocking size of the reduction,
288*>                                   FACTOPTNB is the blocking used by the QR or LQ
289*>                                   algorithm, usually FACTOPTNB=128 is a good choice
290*>                                   NTHREADS is the number of threads used when
291*>                                   openMP compilation is enabled, otherwise =1.
292*>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
293*>
294*>          If LWORK = -1, then a workspace query is assumed; the routine
295*>          only calculates the optimal size of the WORK array, returns
296*>          this value as the first entry of the WORK array, and no error
297*>          message related to LWORK is issued by XERBLA.
298*> \endverbatim
299*>
300*> \param[out] IWORK
301*> \verbatim
302*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
303*>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
304*> \endverbatim
305*>
306*> \param[in] LIWORK
307*> \verbatim
308*>          LIWORK is INTEGER
309*>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
310*>
311*>          If LIWORK = -1, then a workspace query is assumed; the
312*>          routine only calculates the optimal size of the IWORK array,
313*>          returns this value as the first entry of the IWORK array, and
314*>          no error message related to LIWORK is issued by XERBLA.
315*> \endverbatim
316*>
317*> \param[out] INFO
318*> \verbatim
319*>          INFO is INTEGER
320*>          = 0:  successful exit
321*>          < 0:  if INFO = -i, the i-th argument had an illegal value
322*>          > 0:  Internal error
323*> \endverbatim
324*
325*  Authors:
326*  ========
327*
328*> \author Univ. of Tennessee
329*> \author Univ. of California Berkeley
330*> \author Univ. of Colorado Denver
331*> \author NAG Ltd.
332*
333*> \ingroup realSYeigen
334*
335*> \par Contributors:
336*  ==================
337*>
338*>     Inderjit Dhillon, IBM Almaden, USA \n
339*>     Osni Marques, LBNL/NERSC, USA \n
340*>     Ken Stanley, Computer Science Division, University of
341*>       California at Berkeley, USA \n
342*>     Jason Riedy, Computer Science Division, University of
343*>       California at Berkeley, USA \n
344*>
345*> \par Further Details:
346*  =====================
347*>
348*> \verbatim
349*>
350*>  All details about the 2stage techniques are available in:
351*>
352*>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
353*>  Parallel reduction to condensed forms for symmetric eigenvalue problems
354*>  using aggregated fine-grained and memory-aware kernels. In Proceedings
355*>  of 2011 International Conference for High Performance Computing,
356*>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
357*>  Article 8 , 11 pages.
358*>  http://doi.acm.org/10.1145/2063384.2063394
359*>
360*>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
361*>  An improved parallel singular value algorithm and its implementation
362*>  for multicore hardware, In Proceedings of 2013 International Conference
363*>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
364*>  Denver, Colorado, USA, 2013.
365*>  Article 90, 12 pages.
366*>  http://doi.acm.org/10.1145/2503210.2503292
367*>
368*>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
369*>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure
370*>  calculations based on fine-grained memory aware tasks.
371*>  International Journal of High Performance Computing Applications.
372*>  Volume 28 Issue 2, Pages 196-209, May 2014.
373*>  http://hpc.sagepub.com/content/28/2/196
374*>
375*> \endverbatim
376*
377*  =====================================================================
378      SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
379     $                   IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK,
380     $                   LWORK, IWORK, LIWORK, INFO )
381*
382      IMPLICIT NONE
383*
384*  -- LAPACK driver routine --
385*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
386*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
387*
388*     .. Scalar Arguments ..
389      CHARACTER          JOBZ, RANGE, UPLO
390      INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
391      REAL               ABSTOL, VL, VU
392*     ..
393*     .. Array Arguments ..
394      INTEGER            ISUPPZ( * ), IWORK( * )
395      REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
396*     ..
397*
398* =====================================================================
399*
400*     .. Parameters ..
401      REAL               ZERO, ONE, TWO
402      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
403*     ..
404*     .. Local Scalars ..
405      LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
406     $                   TRYRAC, TEST
407      CHARACTER          ORDER
408      INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
409     $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
410     $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
411     $                   LLWORK, LLWRKN, LWMIN, NSPLIT,
412     $                   LHTRD, LWTRD, KD, IB, INDHOUS
413      REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
414     $                   SIGMA, SMLNUM, TMP1, VLL, VUU
415*     ..
416*     .. External Functions ..
417      LOGICAL            LSAME
418      INTEGER            ILAENV, ILAENV2STAGE
419      REAL               SLAMCH, SLANSY
420      EXTERNAL           LSAME, SLAMCH, SLANSY, ILAENV, ILAENV2STAGE
421*     ..
422*     .. External Subroutines ..
423      EXTERNAL           SCOPY, SORMTR, SSCAL, SSTEBZ, SSTEMR, SSTEIN,
424     $                   SSTERF, SSWAP, SSYTRD_2STAGE, XERBLA
425*     ..
426*     .. Intrinsic Functions ..
427      INTRINSIC          MAX, MIN, SQRT
428*     ..
429*     .. Executable Statements ..
430*
431*     Test the input parameters.
432*
433      IEEEOK = ILAENV( 10, 'SSYEVR', 'N', 1, 2, 3, 4 )
434*
435      LOWER = LSAME( UPLO, 'L' )
436      WANTZ = LSAME( JOBZ, 'V' )
437      ALLEIG = LSAME( RANGE, 'A' )
438      VALEIG = LSAME( RANGE, 'V' )
439      INDEIG = LSAME( RANGE, 'I' )
440*
441      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
442*
443      KD     = ILAENV2STAGE( 1, 'SSYTRD_2STAGE', JOBZ, N, -1, -1, -1 )
444      IB     = ILAENV2STAGE( 2, 'SSYTRD_2STAGE', JOBZ, N, KD, -1, -1 )
445      LHTRD  = ILAENV2STAGE( 3, 'SSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
446      LWTRD  = ILAENV2STAGE( 4, 'SSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
447      LWMIN  = MAX( 26*N, 5*N + LHTRD + LWTRD )
448      LIWMIN = MAX( 1, 10*N )
449*
450      INFO = 0
451      IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
452         INFO = -1
453      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
454         INFO = -2
455      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
456         INFO = -3
457      ELSE IF( N.LT.0 ) THEN
458         INFO = -4
459      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
460         INFO = -6
461      ELSE
462         IF( VALEIG ) THEN
463            IF( N.GT.0 .AND. VU.LE.VL )
464     $         INFO = -8
465         ELSE IF( INDEIG ) THEN
466            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
467               INFO = -9
468            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
469               INFO = -10
470            END IF
471         END IF
472      END IF
473      IF( INFO.EQ.0 ) THEN
474         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
475            INFO = -15
476         ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
477            INFO = -18
478         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
479            INFO = -20
480         END IF
481      END IF
482*
483      IF( INFO.EQ.0 ) THEN
484*         NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
485*         NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) )
486*         LWKOPT = MAX( ( NB+1 )*N, LWMIN )
487         WORK( 1 ) = LWMIN
488         IWORK( 1 ) = LIWMIN
489      END IF
490*
491      IF( INFO.NE.0 ) THEN
492         CALL XERBLA( 'SSYEVR_2STAGE', -INFO )
493         RETURN
494      ELSE IF( LQUERY ) THEN
495         RETURN
496      END IF
497*
498*     Quick return if possible
499*
500      M = 0
501      IF( N.EQ.0 ) THEN
502         WORK( 1 ) = 1
503         RETURN
504      END IF
505*
506      IF( N.EQ.1 ) THEN
507         WORK( 1 ) = 26
508         IF( ALLEIG .OR. INDEIG ) THEN
509            M = 1
510            W( 1 ) = A( 1, 1 )
511         ELSE
512            IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
513               M = 1
514               W( 1 ) = A( 1, 1 )
515            END IF
516         END IF
517         IF( WANTZ ) THEN
518            Z( 1, 1 ) = ONE
519            ISUPPZ( 1 ) = 1
520            ISUPPZ( 2 ) = 1
521         END IF
522         RETURN
523      END IF
524*
525*     Get machine constants.
526*
527      SAFMIN = SLAMCH( 'Safe minimum' )
528      EPS    = SLAMCH( 'Precision' )
529      SMLNUM = SAFMIN / EPS
530      BIGNUM = ONE / SMLNUM
531      RMIN   = SQRT( SMLNUM )
532      RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
533*
534*     Scale matrix to allowable range, if necessary.
535*
536      ISCALE = 0
537      ABSTLL = ABSTOL
538      IF (VALEIG) THEN
539         VLL = VL
540         VUU = VU
541      END IF
542      ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
543      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
544         ISCALE = 1
545         SIGMA = RMIN / ANRM
546      ELSE IF( ANRM.GT.RMAX ) THEN
547         ISCALE = 1
548         SIGMA = RMAX / ANRM
549      END IF
550      IF( ISCALE.EQ.1 ) THEN
551         IF( LOWER ) THEN
552            DO 10 J = 1, N
553               CALL SSCAL( N-J+1, SIGMA, A( J, J ), 1 )
554   10       CONTINUE
555         ELSE
556            DO 20 J = 1, N
557               CALL SSCAL( J, SIGMA, A( 1, J ), 1 )
558   20       CONTINUE
559         END IF
560         IF( ABSTOL.GT.0 )
561     $      ABSTLL = ABSTOL*SIGMA
562         IF( VALEIG ) THEN
563            VLL = VL*SIGMA
564            VUU = VU*SIGMA
565         END IF
566      END IF
567
568*     Initialize indices into workspaces.  Note: The IWORK indices are
569*     used only if SSTERF or SSTEMR fail.
570
571*     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
572*     elementary reflectors used in SSYTRD.
573      INDTAU = 1
574*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
575      INDD = INDTAU + N
576*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
577*     tridiagonal matrix from SSYTRD.
578      INDE = INDD + N
579*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
580*     -written by SSTEMR (the SSTERF path copies the diagonal to W).
581      INDDD = INDE + N
582*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
583*     -written while computing the eigenvalues in SSTERF and SSTEMR.
584      INDEE = INDDD + N
585*     INDHOUS is the starting offset Householder storage of stage 2
586      INDHOUS = INDEE + N
587*     INDWK is the starting offset of the left-over workspace, and
588*     LLWORK is the remaining workspace size.
589      INDWK  = INDHOUS + LHTRD
590      LLWORK = LWORK - INDWK + 1
591
592
593*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
594*     stores the block indices of each of the M<=N eigenvalues.
595      INDIBL = 1
596*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
597*     stores the starting and finishing indices of each block.
598      INDISP = INDIBL + N
599*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
600*     that corresponding to eigenvectors that fail to converge in
601*     SSTEIN.  This information is discarded; if any fail, the driver
602*     returns INFO > 0.
603      INDIFL = INDISP + N
604*     INDIWO is the offset of the remaining integer workspace.
605      INDIWO = INDIFL + N
606
607*
608*     Call SSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
609*
610*
611      CALL SSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, WORK( INDD ),
612     $                    WORK( INDE ), WORK( INDTAU ), WORK( INDHOUS ),
613     $                    LHTRD, WORK( INDWK ), LLWORK, IINFO )
614*
615*     If all eigenvalues are desired
616*     then call SSTERF or SSTEMR and SORMTR.
617*
618      TEST = .FALSE.
619      IF( INDEIG ) THEN
620         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
621            TEST = .TRUE.
622         END IF
623      END IF
624      IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
625         IF( .NOT.WANTZ ) THEN
626            CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
627            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
628            CALL SSTERF( N, W, WORK( INDEE ), INFO )
629         ELSE
630            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
631            CALL SCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
632*
633            IF (ABSTOL .LE. TWO*N*EPS) THEN
634               TRYRAC = .TRUE.
635            ELSE
636               TRYRAC = .FALSE.
637            END IF
638            CALL SSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
639     $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
640     $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
641     $                   INFO )
642*
643*
644*
645*        Apply orthogonal matrix used in reduction to tridiagonal
646*        form to eigenvectors returned by SSTEMR.
647*
648            IF( WANTZ .AND. INFO.EQ.0 ) THEN
649               INDWKN = INDE
650               LLWRKN = LWORK - INDWKN + 1
651               CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA,
652     $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
653     $                      LLWRKN, IINFO )
654            END IF
655         END IF
656*
657*
658         IF( INFO.EQ.0 ) THEN
659*           Everything worked.  Skip SSTEBZ/SSTEIN.  IWORK(:) are
660*           undefined.
661            M = N
662            GO TO 30
663         END IF
664         INFO = 0
665      END IF
666*
667*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
668*     Also call SSTEBZ and SSTEIN if SSTEMR fails.
669*
670      IF( WANTZ ) THEN
671         ORDER = 'B'
672      ELSE
673         ORDER = 'E'
674      END IF
675
676      CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
677     $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
678     $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
679     $             IWORK( INDIWO ), INFO )
680*
681      IF( WANTZ ) THEN
682         CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
683     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
684     $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
685     $                INFO )
686*
687*        Apply orthogonal matrix used in reduction to tridiagonal
688*        form to eigenvectors returned by SSTEIN.
689*
690         INDWKN = INDE
691         LLWRKN = LWORK - INDWKN + 1
692         CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
693     $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
694      END IF
695*
696*     If matrix was scaled, then rescale eigenvalues appropriately.
697*
698*  Jump here if SSTEMR/SSTEIN succeeded.
699   30 CONTINUE
700      IF( ISCALE.EQ.1 ) THEN
701         IF( INFO.EQ.0 ) THEN
702            IMAX = M
703         ELSE
704            IMAX = INFO - 1
705         END IF
706         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
707      END IF
708*
709*     If eigenvalues are not in order, then sort them, along with
710*     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
711*     It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do
712*     not return this detailed information to the user.
713*
714      IF( WANTZ ) THEN
715         DO 50 J = 1, M - 1
716            I = 0
717            TMP1 = W( J )
718            DO 40 JJ = J + 1, M
719               IF( W( JJ ).LT.TMP1 ) THEN
720                  I = JJ
721                  TMP1 = W( JJ )
722               END IF
723   40       CONTINUE
724*
725            IF( I.NE.0 ) THEN
726               W( I ) = W( J )
727               W( J ) = TMP1
728               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
729            END IF
730   50    CONTINUE
731      END IF
732*
733*     Set WORK(1) to optimal workspace size.
734*
735      WORK( 1 ) = LWMIN
736      IWORK( 1 ) = LIWMIN
737*
738      RETURN
739*
740*     End of SSYEVR_2STAGE
741*
742      END
743