1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2015 Google Inc. All rights reserved.
3 // http://ceres-solver.org/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/implicit_schur_complement.h"
32 
33 #include "Eigen/Dense"
34 #include "ceres/block_sparse_matrix.h"
35 #include "ceres/block_structure.h"
36 #include "ceres/internal/eigen.h"
37 #include "ceres/linear_solver.h"
38 #include "ceres/types.h"
39 #include "glog/logging.h"
40 
41 namespace ceres {
42 namespace internal {
43 
ImplicitSchurComplement(const LinearSolver::Options & options)44 ImplicitSchurComplement::ImplicitSchurComplement(
45     const LinearSolver::Options& options)
46     : options_(options), D_(NULL), b_(NULL) {}
47 
~ImplicitSchurComplement()48 ImplicitSchurComplement::~ImplicitSchurComplement() {}
49 
Init(const BlockSparseMatrix & A,const double * D,const double * b)50 void ImplicitSchurComplement::Init(const BlockSparseMatrix& A,
51                                    const double* D,
52                                    const double* b) {
53   // Since initialization is reasonably heavy, perhaps we can save on
54   // constructing a new object everytime.
55   if (A_ == NULL) {
56     A_.reset(PartitionedMatrixViewBase::Create(options_, A));
57   }
58 
59   D_ = D;
60   b_ = b;
61 
62   // Initialize temporary storage and compute the block diagonals of
63   // E'E and F'E.
64   if (block_diagonal_EtE_inverse_ == NULL) {
65     block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
66     if (options_.preconditioner_type == JACOBI) {
67       block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
68     }
69     rhs_.resize(A_->num_cols_f());
70     rhs_.setZero();
71     tmp_rows_.resize(A_->num_rows());
72     tmp_e_cols_.resize(A_->num_cols_e());
73     tmp_e_cols_2_.resize(A_->num_cols_e());
74     tmp_f_cols_.resize(A_->num_cols_f());
75   } else {
76     A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
77     if (options_.preconditioner_type == JACOBI) {
78       A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
79     }
80   }
81 
82   // The block diagonals of the augmented linear system contain
83   // contributions from the diagonal D if it is non-null. Add that to
84   // the block diagonals and invert them.
85   AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
86   if (options_.preconditioner_type == JACOBI) {
87     AddDiagonalAndInvert((D_ == NULL) ? NULL : D_ + A_->num_cols_e(),
88                          block_diagonal_FtF_inverse_.get());
89   }
90 
91   // Compute the RHS of the Schur complement system.
92   UpdateRhs();
93 }
94 
95 // Evaluate the product
96 //
97 //   Sx = [F'F - F'E (E'E)^-1 E'F]x
98 //
99 // By breaking it down into individual matrix vector products
100 // involving the matrices E and F. This is implemented using a
101 // PartitionedMatrixView of the input matrix A.
RightMultiply(const double * x,double * y) const102 void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
103   // y1 = F x
104   tmp_rows_.setZero();
105   A_->RightMultiplyF(x, tmp_rows_.data());
106 
107   // y2 = E' y1
108   tmp_e_cols_.setZero();
109   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
110 
111   // y3 = -(E'E)^-1 y2
112   tmp_e_cols_2_.setZero();
113   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
114                                              tmp_e_cols_2_.data());
115   tmp_e_cols_2_ *= -1.0;
116 
117   // y1 = y1 + E y3
118   A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());
119 
120   // y5 = D * x
121   if (D_ != NULL) {
122     ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
123     VectorRef(y, num_cols()) =
124         (Dref.array().square() * ConstVectorRef(x, num_cols()).array())
125             .matrix();
126   } else {
127     VectorRef(y, num_cols()).setZero();
128   }
129 
130   // y = y5 + F' y1
131   A_->LeftMultiplyF(tmp_rows_.data(), y);
132 }
133 
134 // Given a block diagonal matrix and an optional array of diagonal
135 // entries D, add them to the diagonal of the matrix and compute the
136 // inverse of each diagonal block.
AddDiagonalAndInvert(const double * D,BlockSparseMatrix * block_diagonal)137 void ImplicitSchurComplement::AddDiagonalAndInvert(
138     const double* D, BlockSparseMatrix* block_diagonal) {
139   const CompressedRowBlockStructure* block_diagonal_structure =
140       block_diagonal->block_structure();
141   for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
142     const int row_block_pos = block_diagonal_structure->rows[r].block.position;
143     const int row_block_size = block_diagonal_structure->rows[r].block.size;
144     const Cell& cell = block_diagonal_structure->rows[r].cells[0];
145     MatrixRef m(block_diagonal->mutable_values() + cell.position,
146                 row_block_size,
147                 row_block_size);
148 
149     if (D != NULL) {
150       ConstVectorRef d(D + row_block_pos, row_block_size);
151       m += d.array().square().matrix().asDiagonal();
152     }
153 
154     m = m.selfadjointView<Eigen::Upper>().llt().solve(
155         Matrix::Identity(row_block_size, row_block_size));
156   }
157 }
158 
159 // Similar to RightMultiply, use the block structure of the matrix A
160 // to compute y = (E'E)^-1 (E'b - E'F x).
BackSubstitute(const double * x,double * y)161 void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
162   const int num_cols_e = A_->num_cols_e();
163   const int num_cols_f = A_->num_cols_f();
164   const int num_cols = A_->num_cols();
165   const int num_rows = A_->num_rows();
166 
167   // y1 = F x
168   tmp_rows_.setZero();
169   A_->RightMultiplyF(x, tmp_rows_.data());
170 
171   // y2 = b - y1
172   tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;
173 
174   // y3 = E' y2
175   tmp_e_cols_.setZero();
176   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
177 
178   // y = (E'E)^-1 y3
179   VectorRef(y, num_cols).setZero();
180   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);
181 
182   // The full solution vector y has two blocks. The first block of
183   // variables corresponds to the eliminated variables, which we just
184   // computed via back substitution. The second block of variables
185   // corresponds to the Schur complement system, so we just copy those
186   // values from the solution to the Schur complement.
187   VectorRef(y + num_cols_e, num_cols_f) = ConstVectorRef(x, num_cols_f);
188 }
189 
190 // Compute the RHS of the Schur complement system.
191 //
192 // rhs = F'b - F'E (E'E)^-1 E'b
193 //
194 // Like BackSubstitute, we use the block structure of A to implement
195 // this using a series of matrix vector products.
UpdateRhs()196 void ImplicitSchurComplement::UpdateRhs() {
197   // y1 = E'b
198   tmp_e_cols_.setZero();
199   A_->LeftMultiplyE(b_, tmp_e_cols_.data());
200 
201   // y2 = (E'E)^-1 y1
202   Vector y2 = Vector::Zero(A_->num_cols_e());
203   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
204 
205   // y3 = E y2
206   tmp_rows_.setZero();
207   A_->RightMultiplyE(y2.data(), tmp_rows_.data());
208 
209   // y3 = b - y3
210   tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;
211 
212   // rhs = F' y3
213   rhs_.setZero();
214   A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
215 }
216 
217 }  // namespace internal
218 }  // namespace ceres
219