1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2015 Google Inc. All rights reserved.
3 // http://ceres-solver.org/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //         sameeragarwal@google.com (Sameer Agarwal)
31 //
32 // This tests the TrustRegionMinimizer loop using a direct Evaluator
33 // implementation, rather than having a test that goes through all the
34 // Program and Problem machinery.
35 
36 #include "ceres/trust_region_minimizer.h"
37 
38 #include <cmath>
39 
40 #include "ceres/autodiff_cost_function.h"
41 #include "ceres/cost_function.h"
42 #include "ceres/dense_qr_solver.h"
43 #include "ceres/dense_sparse_matrix.h"
44 #include "ceres/evaluator.h"
45 #include "ceres/internal/port.h"
46 #include "ceres/linear_solver.h"
47 #include "ceres/minimizer.h"
48 #include "ceres/problem.h"
49 #include "ceres/trust_region_strategy.h"
50 #include "gtest/gtest.h"
51 
52 namespace ceres {
53 namespace internal {
54 
55 // Templated Evaluator for Powell's function. The template parameters
56 // indicate which of the four variables/columns of the jacobian are
57 // active. This is equivalent to constructing a problem and using the
58 // SubsetLocalParameterization. This allows us to test the support for
59 // the Evaluator::Plus operation besides checking for the basic
60 // performance of the trust region algorithm.
61 template <bool col1, bool col2, bool col3, bool col4>
62 class PowellEvaluator2 : public Evaluator {
63  public:
64   // clang-format off
PowellEvaluator2()65   PowellEvaluator2()
66       : num_active_cols_(
67           (col1 ? 1 : 0) +
68           (col2 ? 1 : 0) +
69           (col3 ? 1 : 0) +
70           (col4 ? 1 : 0)) {
71     VLOG(1) << "Columns: "
72             << col1 << " "
73             << col2 << " "
74             << col3 << " "
75             << col4;
76   }
77   // clang-format on
78 
~PowellEvaluator2()79   virtual ~PowellEvaluator2() {}
80 
81   // Implementation of Evaluator interface.
CreateJacobian() const82   SparseMatrix* CreateJacobian() const final {
83     CHECK(col1 || col2 || col3 || col4);
84     DenseSparseMatrix* dense_jacobian =
85         new DenseSparseMatrix(NumResiduals(), NumEffectiveParameters());
86     dense_jacobian->SetZero();
87     return dense_jacobian;
88   }
89 
Evaluate(const Evaluator::EvaluateOptions & evaluate_options,const double * state,double * cost,double * residuals,double * gradient,SparseMatrix * jacobian)90   bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
91                 const double* state,
92                 double* cost,
93                 double* residuals,
94                 double* gradient,
95                 SparseMatrix* jacobian) final {
96     const double x1 = state[0];
97     const double x2 = state[1];
98     const double x3 = state[2];
99     const double x4 = state[3];
100 
101     VLOG(1) << "State: "
102             << "x1=" << x1 << ", "
103             << "x2=" << x2 << ", "
104             << "x3=" << x3 << ", "
105             << "x4=" << x4 << ".";
106 
107     const double f1 = x1 + 10.0 * x2;
108     const double f2 = sqrt(5.0) * (x3 - x4);
109     const double f3 = pow(x2 - 2.0 * x3, 2.0);
110     const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0);
111 
112     VLOG(1) << "Function: "
113             << "f1=" << f1 << ", "
114             << "f2=" << f2 << ", "
115             << "f3=" << f3 << ", "
116             << "f4=" << f4 << ".";
117 
118     *cost = (f1 * f1 + f2 * f2 + f3 * f3 + f4 * f4) / 2.0;
119 
120     VLOG(1) << "Cost: " << *cost;
121 
122     if (residuals != NULL) {
123       residuals[0] = f1;
124       residuals[1] = f2;
125       residuals[2] = f3;
126       residuals[3] = f4;
127     }
128 
129     if (jacobian != NULL) {
130       DenseSparseMatrix* dense_jacobian;
131       dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian);
132       dense_jacobian->SetZero();
133 
134       ColMajorMatrixRef jacobian_matrix = dense_jacobian->mutable_matrix();
135       CHECK_EQ(jacobian_matrix.cols(), num_active_cols_);
136 
137       int column_index = 0;
138       if (col1) {
139         // clang-format off
140         jacobian_matrix.col(column_index++) <<
141             1.0,
142             0.0,
143             0.0,
144             sqrt(10.0) * 2.0 * (x1 - x4) * (1.0 - x4);
145         // clang-format on
146       }
147       if (col2) {
148         // clang-format off
149         jacobian_matrix.col(column_index++) <<
150             10.0,
151             0.0,
152             2.0*(x2 - 2.0*x3)*(1.0 - 2.0*x3),
153             0.0;
154         // clang-format on
155       }
156 
157       if (col3) {
158         // clang-format off
159         jacobian_matrix.col(column_index++) <<
160             0.0,
161             sqrt(5.0),
162             2.0*(x2 - 2.0*x3)*(x2 - 2.0),
163             0.0;
164         // clang-format on
165       }
166 
167       if (col4) {
168         // clang-format off
169         jacobian_matrix.col(column_index++) <<
170             0.0,
171             -sqrt(5.0),
172             0.0,
173             sqrt(10.0) * 2.0 * (x1 - x4) * (x1 - 1.0);
174         // clang-format on
175       }
176       VLOG(1) << "\n" << jacobian_matrix;
177     }
178 
179     if (gradient != NULL) {
180       int column_index = 0;
181       if (col1) {
182         gradient[column_index++] = f1 + f4 * sqrt(10.0) * 2.0 * (x1 - x4);
183       }
184 
185       if (col2) {
186         gradient[column_index++] = f1 * 10.0 + f3 * 2.0 * (x2 - 2.0 * x3);
187       }
188 
189       if (col3) {
190         gradient[column_index++] =
191             f2 * sqrt(5.0) + f3 * (2.0 * 2.0 * (2.0 * x3 - x2));
192       }
193 
194       if (col4) {
195         gradient[column_index++] =
196             -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1);
197       }
198     }
199 
200     return true;
201   }
202 
Plus(const double * state,const double * delta,double * state_plus_delta) const203   bool Plus(const double* state,
204             const double* delta,
205             double* state_plus_delta) const final {
206     int delta_index = 0;
207     state_plus_delta[0] = (col1 ? state[0] + delta[delta_index++] : state[0]);
208     state_plus_delta[1] = (col2 ? state[1] + delta[delta_index++] : state[1]);
209     state_plus_delta[2] = (col3 ? state[2] + delta[delta_index++] : state[2]);
210     state_plus_delta[3] = (col4 ? state[3] + delta[delta_index++] : state[3]);
211     return true;
212   }
213 
NumEffectiveParameters() const214   int NumEffectiveParameters() const final { return num_active_cols_; }
NumParameters() const215   int NumParameters() const final { return 4; }
NumResiduals() const216   int NumResiduals() const final { return 4; }
217 
218  private:
219   const int num_active_cols_;
220 };
221 
222 // Templated function to hold a subset of the columns fixed and check
223 // if the solver converges to the optimal values or not.
224 template <bool col1, bool col2, bool col3, bool col4>
IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type)225 void IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type) {
226   Solver::Options solver_options;
227   LinearSolver::Options linear_solver_options;
228   DenseQRSolver linear_solver(linear_solver_options);
229 
230   double parameters[4] = {3, -1, 0, 1.0};
231 
232   // If the column is inactive, then set its value to the optimal
233   // value.
234   parameters[0] = (col1 ? parameters[0] : 0.0);
235   parameters[1] = (col2 ? parameters[1] : 0.0);
236   parameters[2] = (col3 ? parameters[2] : 0.0);
237   parameters[3] = (col4 ? parameters[3] : 0.0);
238 
239   Minimizer::Options minimizer_options(solver_options);
240   minimizer_options.gradient_tolerance = 1e-26;
241   minimizer_options.function_tolerance = 1e-26;
242   minimizer_options.parameter_tolerance = 1e-26;
243   minimizer_options.evaluator.reset(
244       new PowellEvaluator2<col1, col2, col3, col4>);
245   minimizer_options.jacobian.reset(
246       minimizer_options.evaluator->CreateJacobian());
247 
248   TrustRegionStrategy::Options trust_region_strategy_options;
249   trust_region_strategy_options.trust_region_strategy_type = strategy_type;
250   trust_region_strategy_options.linear_solver = &linear_solver;
251   trust_region_strategy_options.initial_radius = 1e4;
252   trust_region_strategy_options.max_radius = 1e20;
253   trust_region_strategy_options.min_lm_diagonal = 1e-6;
254   trust_region_strategy_options.max_lm_diagonal = 1e32;
255   minimizer_options.trust_region_strategy.reset(
256       TrustRegionStrategy::Create(trust_region_strategy_options));
257 
258   TrustRegionMinimizer minimizer;
259   Solver::Summary summary;
260   minimizer.Minimize(minimizer_options, parameters, &summary);
261 
262   // The minimum is at x1 = x2 = x3 = x4 = 0.
263   EXPECT_NEAR(0.0, parameters[0], 0.001);
264   EXPECT_NEAR(0.0, parameters[1], 0.001);
265   EXPECT_NEAR(0.0, parameters[2], 0.001);
266   EXPECT_NEAR(0.0, parameters[3], 0.001);
267 }
268 
TEST(TrustRegionMinimizer,PowellsSingularFunctionUsingLevenbergMarquardt)269 TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingLevenbergMarquardt) {
270   // This case is excluded because this has a local minimum and does
271   // not find the optimum. This should not affect the correctness of
272   // this test since we are testing all the other 14 combinations of
273   // column activations.
274   //
275   //   IsSolveSuccessful<true, true, false, true>();
276 
277   const TrustRegionStrategyType kStrategy = LEVENBERG_MARQUARDT;
278   // clang-format off
279   IsTrustRegionSolveSuccessful<true,  true,  true,  true >(kStrategy);
280   IsTrustRegionSolveSuccessful<true,  true,  true,  false>(kStrategy);
281   IsTrustRegionSolveSuccessful<true,  false, true,  true >(kStrategy);
282   IsTrustRegionSolveSuccessful<false, true,  true,  true >(kStrategy);
283   IsTrustRegionSolveSuccessful<true,  true,  false, false>(kStrategy);
284   IsTrustRegionSolveSuccessful<true,  false, true,  false>(kStrategy);
285   IsTrustRegionSolveSuccessful<false, true,  true,  false>(kStrategy);
286   IsTrustRegionSolveSuccessful<true,  false, false, true >(kStrategy);
287   IsTrustRegionSolveSuccessful<false, true,  false, true >(kStrategy);
288   IsTrustRegionSolveSuccessful<false, false, true,  true >(kStrategy);
289   IsTrustRegionSolveSuccessful<true,  false, false, false>(kStrategy);
290   IsTrustRegionSolveSuccessful<false, true,  false, false>(kStrategy);
291   IsTrustRegionSolveSuccessful<false, false, true,  false>(kStrategy);
292   IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy);
293   // clang-format on
294 }
295 
TEST(TrustRegionMinimizer,PowellsSingularFunctionUsingDogleg)296 TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingDogleg) {
297   // The following two cases are excluded because they encounter a
298   // local minimum.
299   //
300   //  IsTrustRegionSolveSuccessful<true, true, false, true >(kStrategy);
301   //  IsTrustRegionSolveSuccessful<true,  true,  true,  true >(kStrategy);
302 
303   const TrustRegionStrategyType kStrategy = DOGLEG;
304   // clang-format off
305   IsTrustRegionSolveSuccessful<true,  true,  true,  false>(kStrategy);
306   IsTrustRegionSolveSuccessful<true,  false, true,  true >(kStrategy);
307   IsTrustRegionSolveSuccessful<false, true,  true,  true >(kStrategy);
308   IsTrustRegionSolveSuccessful<true,  true,  false, false>(kStrategy);
309   IsTrustRegionSolveSuccessful<true,  false, true,  false>(kStrategy);
310   IsTrustRegionSolveSuccessful<false, true,  true,  false>(kStrategy);
311   IsTrustRegionSolveSuccessful<true,  false, false, true >(kStrategy);
312   IsTrustRegionSolveSuccessful<false, true,  false, true >(kStrategy);
313   IsTrustRegionSolveSuccessful<false, false, true,  true >(kStrategy);
314   IsTrustRegionSolveSuccessful<true,  false, false, false>(kStrategy);
315   IsTrustRegionSolveSuccessful<false, true,  false, false>(kStrategy);
316   IsTrustRegionSolveSuccessful<false, false, true,  false>(kStrategy);
317   IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy);
318   // clang-format on
319 }
320 
321 class CurveCostFunction : public CostFunction {
322  public:
CurveCostFunction(int num_vertices,double target_length)323   CurveCostFunction(int num_vertices, double target_length)
324       : num_vertices_(num_vertices), target_length_(target_length) {
325     set_num_residuals(1);
326     for (int i = 0; i < num_vertices_; ++i) {
327       mutable_parameter_block_sizes()->push_back(2);
328     }
329   }
330 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const331   bool Evaluate(double const* const* parameters,
332                 double* residuals,
333                 double** jacobians) const {
334     residuals[0] = target_length_;
335 
336     for (int i = 0; i < num_vertices_; ++i) {
337       int prev = (num_vertices_ + i - 1) % num_vertices_;
338       double length = 0.0;
339       for (int dim = 0; dim < 2; dim++) {
340         const double diff = parameters[prev][dim] - parameters[i][dim];
341         length += diff * diff;
342       }
343       residuals[0] -= sqrt(length);
344     }
345 
346     if (jacobians == NULL) {
347       return true;
348     }
349 
350     for (int i = 0; i < num_vertices_; ++i) {
351       if (jacobians[i] != NULL) {
352         int prev = (num_vertices_ + i - 1) % num_vertices_;
353         int next = (i + 1) % num_vertices_;
354 
355         double u[2], v[2];
356         double norm_u = 0., norm_v = 0.;
357         for (int dim = 0; dim < 2; dim++) {
358           u[dim] = parameters[i][dim] - parameters[prev][dim];
359           norm_u += u[dim] * u[dim];
360           v[dim] = parameters[next][dim] - parameters[i][dim];
361           norm_v += v[dim] * v[dim];
362         }
363 
364         norm_u = sqrt(norm_u);
365         norm_v = sqrt(norm_v);
366 
367         for (int dim = 0; dim < 2; dim++) {
368           jacobians[i][dim] = 0.;
369 
370           if (norm_u > std::numeric_limits<double>::min()) {
371             jacobians[i][dim] -= u[dim] / norm_u;
372           }
373 
374           if (norm_v > std::numeric_limits<double>::min()) {
375             jacobians[i][dim] += v[dim] / norm_v;
376           }
377         }
378       }
379     }
380 
381     return true;
382   }
383 
384  private:
385   int num_vertices_;
386   double target_length_;
387 };
388 
TEST(TrustRegionMinimizer,JacobiScalingTest)389 TEST(TrustRegionMinimizer, JacobiScalingTest) {
390   int N = 6;
391   std::vector<double*> y(N);
392   const double pi = 3.1415926535897932384626433;
393   for (int i = 0; i < N; i++) {
394     double theta = i * 2. * pi / static_cast<double>(N);
395     y[i] = new double[2];
396     y[i][0] = cos(theta);
397     y[i][1] = sin(theta);
398   }
399 
400   Problem problem;
401   problem.AddResidualBlock(new CurveCostFunction(N, 10.), NULL, y);
402   Solver::Options options;
403   options.linear_solver_type = ceres::DENSE_QR;
404   Solver::Summary summary;
405   Solve(options, &problem, &summary);
406   EXPECT_LE(summary.final_cost, 1e-10);
407 
408   for (int i = 0; i < N; i++) {
409     delete[] y[i];
410   }
411 }
412 
413 struct ExpCostFunctor {
414   template <typename T>
operator ()ceres::internal::ExpCostFunctor415   bool operator()(const T* const x, T* residual) const {
416     residual[0] = T(10.0) - exp(x[0]);
417     return true;
418   }
419 
Createceres::internal::ExpCostFunctor420   static CostFunction* Create() {
421     return new AutoDiffCostFunction<ExpCostFunctor, 1, 1>(new ExpCostFunctor);
422   }
423 };
424 
TEST(TrustRegionMinimizer,GradientToleranceConvergenceUpdatesStep)425 TEST(TrustRegionMinimizer, GradientToleranceConvergenceUpdatesStep) {
426   double x = 5;
427   Problem problem;
428   problem.AddResidualBlock(ExpCostFunctor::Create(), NULL, &x);
429   problem.SetParameterLowerBound(&x, 0, 3.0);
430   Solver::Options options;
431   Solver::Summary summary;
432   Solve(options, &problem, &summary);
433   EXPECT_NEAR(3.0, x, 1e-12);
434   const double expected_final_cost = 0.5 * pow(10.0 - exp(3.0), 2);
435   EXPECT_NEAR(expected_final_cost, summary.final_cost, 1e-12);
436 }
437 
438 }  // namespace internal
439 }  // namespace ceres
440