1 // ---------------------------------------------------------------------
2 //
3 // Copyright (C) 2003 - 2019 by the deal.II authors
4 //
5 // This file is part of the deal.II library.
6 //
7 // The deal.II library is free software; you can use it, redistribute
8 // it, and/or modify it under the terms of the GNU Lesser General
9 // Public License as published by the Free Software Foundation; either
10 // version 2.1 of the License, or (at your option) any later version.
11 // The full text of the license can be found in the file LICENSE.md at
12 // the top level directory of deal.II.
13 //
14 // ---------------------------------------------------------------------
15 
16 #ifndef dealii_fe_raviart_thomas_h
17 #define dealii_fe_raviart_thomas_h
18 
19 #include <deal.II/base/config.h>
20 
21 #include <deal.II/base/geometry_info.h>
22 #include <deal.II/base/polynomial.h>
23 #include <deal.II/base/polynomials_raviart_thomas.h>
24 #include <deal.II/base/table.h>
25 #include <deal.II/base/tensor_product_polynomials.h>
26 
27 #include <deal.II/fe/fe.h>
28 #include <deal.II/fe/fe_poly_tensor.h>
29 
30 #include <vector>
31 
32 DEAL_II_NAMESPACE_OPEN
33 
34 /*!@addtogroup fe */
35 /*@{*/
36 
37 /**
38  * Implementation of Raviart-Thomas (RT) elements. The Raviart-Thomas space
39  * is designed to solve problems in which the solution only lives in the
40  * space
41  * $H^\text{div}=\{ {\mathbf u} \in L_2: \text{div}\, {\mathbf u} \in L_2\}$,
42  * rather than in the more commonly used space
43  * $H^1=\{ u \in L_2: \nabla u \in L_2\}$. In other words, the solution must
44  * be a vector field whose divergence is square integrable, but for which the
45  * gradient may not be square integrable. The typical application for this
46  * space (and these elements) is to the mixed formulation of the Laplace
47  * equation and related situations, see for example step-20. The defining
48  * characteristic of functions in $H^\text{div}$ is that they are in
49  * general discontinuous -- but that if you draw a line in 2d (or a
50  * surface in 3d), then the <i>normal</i> component of the vector
51  * field must be continuous across the line (or surface) even though
52  * the tangential component may not be. As a consequence, the
53  * Raviart-Thomas element is constructed in such a way that (i) it is
54  * @ref vector_valued "vector-valued", (ii) the shape functions are
55  * discontinuous, but (iii) the normal component of the vector field
56  * represented by each shape function is continuous across the faces
57  * of cells.
58  *
59  * Other properties of the Raviart-Thomas element are that (i) it is
60  * @ref GlossPrimitive "not a primitive element"; (ii) the shape functions
61  * are defined so that certain integrals over the faces are either zero
62  * or one, rather than the common case of certain point values being
63  * either zero or one. (There is, however, the FE_RaviartThomasNodal
64  * element that uses point values.)
65  *
66  * We follow the commonly used -- though confusing -- definition of the "degree"
67  * of RT elements. Specifically, the "degree" of the element denotes
68  * the polynomial degree of the <i>largest complete polynomial subspace</i>
69  * contained in the finite element space, even if the space may contain shape
70  * functions of higher polynomial degree. The lowest order element is
71  * consequently FE_RaviartThomas(0), i.e., the Raviart-Thomas element "of
72  * degree zero", even though the functions of this space are in general
73  * polynomials of degree one in each variable. This choice of "degree"
74  * implies that the approximation order of the function itself is
75  * <i>degree+1</i>, as with usual polynomial spaces. The numbering so chosen
76  * implies the sequence
77  * @f[
78  *   Q_{k+1}
79  *   \stackrel{\text{grad}}{\rightarrow}
80  *   \text{Nedelec}_k
81  *   \stackrel{\text{curl}}{\rightarrow}
82  *   \text{RaviartThomas}_k
83  *   \stackrel{\text{div}}{\rightarrow}
84  *   DGQ_{k}
85  * @f]
86  *
87  * This class is not implemented for the codimension one case (<tt>spacedim !=
88  * dim</tt>).
89  *
90  *
91  * <h3>Interpolation</h3>
92  *
93  * The
94  * @ref GlossInterpolation "interpolation"
95  * operators associated with the RT element are constructed such that
96  * interpolation and computing the divergence are commuting operations. We
97  * require this from interpolating arbitrary functions as well as the
98  * #restriction matrices.  It can be achieved by two interpolation schemes,
99  * the simplified one in FE_RaviartThomasNodal and the original one here:
100  *
101  * <h4>Node values on edges/faces</h4>
102  *
103  * On edges or faces, the
104  * @ref GlossNodes "node values"
105  * are the moments of the normal component of the interpolated function with
106  * respect to the traces of the RT polynomials. Since the normal trace of the
107  * RT space of degree <i>k</i> on an edge/face is the space
108  * <i>Q<sub>k</sub></i>, the moments are taken with respect to this space.
109  *
110  * <h4>Interior node values</h4>
111  *
112  * Higher order RT spaces have interior nodes. These are moments taken with
113  * respect to the gradient of functions in <i>Q<sub>k</sub></i> on the cell
114  * (this space is the matching space for RT<sub>k</sub> in a mixed
115  * formulation).
116  *
117  * <h4>Generalized support points</h4>
118  *
119  * The node values above rely on integrals, which will be computed by
120  * quadrature rules themselves. The generalized support points are a set of
121  * points such that this quadrature can be performed with sufficient accuracy.
122  * The points needed are those of QGauss<sub>k+1</sub> on each face as well as
123  * QGauss<sub>k+1</sub> in the interior of the cell (or none for
124  * RT<sub>0</sub>).
125  */
126 template <int dim>
127 class FE_RaviartThomas : public FE_PolyTensor<dim>
128 {
129 public:
130   /**
131    * Constructor for the Raviart-Thomas element of degree @p p.
132    */
133   FE_RaviartThomas(const unsigned int p);
134 
135   /**
136    * Return a string that uniquely identifies a finite element. This class
137    * returns <tt>FE_RaviartThomas<dim>(degree)</tt>, with @p dim and @p degree
138    * replaced by appropriate values.
139    */
140   virtual std::string
141   get_name() const override;
142 
143   // documentation inherited from the base class
144   virtual std::unique_ptr<FiniteElement<dim, dim>>
145   clone() const override;
146 
147   /**
148    * This function returns @p true, if the shape function @p shape_index has
149    * non-zero function values somewhere on the face @p face_index.
150    *
151    * Right now, this is only implemented for RT0 in 1D. Otherwise, returns
152    * always @p true.
153    */
154   virtual bool
155   has_support_on_face(const unsigned int shape_index,
156                       const unsigned int face_index) const override;
157 
158   // documentation inherited from the base class
159   virtual void
160   convert_generalized_support_point_values_to_dof_values(
161     const std::vector<Vector<double>> &support_point_values,
162     std::vector<double> &              nodal_values) const override;
163 
164   /**
165    * Return a list of constant modes of the element. This method is currently
166    * not correctly implemented because it returns ones for all components.
167    */
168   virtual std::pair<Table<2, bool>, std::vector<unsigned int>>
169   get_constant_modes() const override;
170 
171   virtual std::size_t
172   memory_consumption() const override;
173 
174 private:
175   /**
176    * Only for internal use. Its full name is @p get_dofs_per_object_vector
177    * function and it creates the @p dofs_per_object vector that is needed
178    * within the constructor to be passed to the constructor of @p
179    * FiniteElementData.
180    */
181   static std::vector<unsigned int>
182   get_dpo_vector(const unsigned int degree);
183 
184   /**
185    * Initialize the @p generalized_support_points field of the FiniteElement
186    * class and fill the tables with interpolation weights (#boundary_weights
187    * and #interior_weights). Called from the constructor.
188    */
189   void
190   initialize_support_points(const unsigned int rt_degree);
191 
192   /**
193    * Initialize the interpolation from functions on refined mesh cells onto
194    * the father cell. According to the philosophy of the Raviart-Thomas
195    * element, this restriction operator preserves the divergence of a function
196    * weakly.
197    */
198   void
199   initialize_restriction();
200 
201   /**
202    * These are the factors multiplied to a function in the
203    * #generalized_face_support_points when computing the integration. They are
204    * organized such that there is one row for each generalized face support
205    * point and one column for each degree of freedom on the face.
206    *
207    * See the
208    * @ref GlossGeneralizedSupport "glossary entry on generalized support points"
209    * for more information.
210    */
211   Table<2, double> boundary_weights;
212 
213   /**
214    * Precomputed factors for interpolation of interior degrees of freedom. The
215    * rationale for this Table is the same as for #boundary_weights. Only, this
216    * table has a third coordinate for the space direction of the component
217    * evaluated.
218    */
219   Table<3, double> interior_weights;
220 
221   // Allow access from other dimensions.
222   template <int dim1>
223   friend class FE_RaviartThomas;
224 };
225 
226 
227 
228 /**
229  * The Raviart-Thomas elements with node functionals defined as point values
230  * in Gauss points.
231  *
232  * <h3>Description of node values</h3>
233  *
234  * For this Raviart-Thomas element, the node values are not cell and face
235  * moments with respect to certain polynomials, but the values in quadrature
236  * points. Following the general scheme for numbering degrees of freedom, the
237  * node values on edges are first, edge by edge, according to the natural
238  * ordering of the edges of a cell. The interior degrees of freedom are last.
239  *
240  * For an RT-element of degree <i>k</i>, we choose <i>(k+1)<sup>d-1</sup></i>
241  * Gauss points on each face. These points are ordered lexicographically with
242  * respect to the orientation of the face. This way, the normal component
243  * which is in <i>Q<sub>k</sub></i> is uniquely determined. Furthermore, since
244  * this Gauss-formula is exact on <i>Q<sub>2k+1</sub></i>, these node values
245  * correspond to the exact integration of the moments of the RT-space.
246  *
247  * In the interior of the cells, the moments are with respect to an
248  * anisotropic <i>Q<sub>k</sub></i> space, where the test functions are one
249  * degree lower in the direction corresponding to the vector component under
250  * consideration. This is emulated by using an anisotropic Gauss formula for
251  * integration.
252  *
253  * @todo The current implementation is for Cartesian meshes only. You must use
254  * MappingCartesian.
255  *
256  * @todo Even if this element is implemented for two and three space
257  * dimensions, the definition of the node values relies on consistently
258  * oriented faces in 3D. Therefore, care should be taken on complicated
259  * meshes.
260  *
261  * @note The degree stored in the member variable
262  * FiniteElementData<dim>::degree is higher by one than the constructor
263  * argument!
264  */
265 template <int dim>
266 class FE_RaviartThomasNodal : public FE_PolyTensor<dim>
267 {
268 public:
269   /**
270    * Constructor for the Raviart-Thomas element of degree @p p.
271    */
272   FE_RaviartThomasNodal(const unsigned int p);
273 
274   /**
275    * Return a string that uniquely identifies a finite element. This class
276    * returns <tt>FE_RaviartThomasNodal<dim>(degree)</tt>, with @p dim and @p
277    * degree replaced by appropriate values.
278    */
279   virtual std::string
280   get_name() const override;
281 
282   // documentation inherited from the base class
283   virtual std::unique_ptr<FiniteElement<dim, dim>>
284   clone() const override;
285 
286   virtual void
287   convert_generalized_support_point_values_to_dof_values(
288     const std::vector<Vector<double>> &support_point_values,
289     std::vector<double> &              nodal_values) const override;
290 
291   virtual void
292   get_face_interpolation_matrix(const FiniteElement<dim> &source,
293                                 FullMatrix<double> &      matrix,
294                                 const unsigned int face_no = 0) const override;
295 
296   virtual void
297   get_subface_interpolation_matrix(
298     const FiniteElement<dim> &source,
299     const unsigned int        subface,
300     FullMatrix<double> &      matrix,
301     const unsigned int        face_no = 0) const override;
302   virtual bool
303   hp_constraints_are_implemented() const override;
304 
305   virtual std::vector<std::pair<unsigned int, unsigned int>>
306   hp_vertex_dof_identities(const FiniteElement<dim> &fe_other) const override;
307 
308   virtual std::vector<std::pair<unsigned int, unsigned int>>
309   hp_line_dof_identities(const FiniteElement<dim> &fe_other) const override;
310 
311   virtual std::vector<std::pair<unsigned int, unsigned int>>
312   hp_quad_dof_identities(const FiniteElement<dim> &fe_other,
313                          const unsigned int        face_no = 0) const override;
314 
315   /**
316    * @copydoc FiniteElement::compare_for_domination()
317    */
318   virtual FiniteElementDomination::Domination
319   compare_for_domination(const FiniteElement<dim> &fe_other,
320                          const unsigned int codim = 0) const override final;
321 
322 private:
323   /**
324    * Only for internal use. Its full name is @p get_dofs_per_object_vector
325    * function and it creates the @p dofs_per_object vector that is needed
326    * within the constructor to be passed to the constructor of @p
327    * FiniteElementData.
328    */
329   static std::vector<unsigned int>
330   get_dpo_vector(const unsigned int degree);
331 
332   /**
333    * Compute the vector used for the @p restriction_is_additive field passed
334    * to the base class's constructor.
335    */
336   static std::vector<bool>
337   get_ria_vector(const unsigned int degree);
338 
339   /**
340    * This function returns @p true, if the shape function @p shape_index has
341    * non-zero function values somewhere on the face @p face_index.
342    *
343    * Right now, this is only implemented for RT0 in 1D. Otherwise, returns
344    * always @p true.
345    */
346   virtual bool
347   has_support_on_face(const unsigned int shape_index,
348                       const unsigned int face_index) const override;
349   /**
350    * Initialize the FiniteElement<dim>::generalized_support_points and
351    * FiniteElement<dim>::generalized_face_support_points fields. Called from
352    * the constructor.
353    *
354    * See the
355    * @ref GlossGeneralizedSupport "glossary entry on generalized support points"
356    * for more information.
357    */
358   void
359   initialize_support_points(const unsigned int rt_degree);
360 };
361 
362 
363 /*@}*/
364 
365 /* -------------- declaration of explicit specializations ------------- */
366 
367 #ifndef DOXYGEN
368 
369 template <>
370 void
371 FE_RaviartThomas<1>::initialize_restriction();
372 
373 #endif // DOXYGEN
374 
375 DEAL_II_NAMESPACE_CLOSE
376 
377 #endif
378