1 /*
2 * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 */
19
20 /* This file was automatically generated --- DO NOT EDIT */
21 /* Generated on Mon Mar 24 02:08:58 EST 2003 */
22
23 #include "fftw-int.h"
24 #include "fftw.h"
25
26 /* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -hc2hc-backward 9 */
27
28 /*
29 * This function contains 182 FP additions, 121 FP multiplications,
30 * (or, 130 additions, 69 multiplications, 52 fused multiply/add),
31 * 43 stack variables, and 72 memory accesses
32 */
33 static const fftw_real K296198132 =
34 FFTW_KONST(+0.296198132726023843175338011893050938967728390);
35 static const fftw_real K813797681 =
36 FFTW_KONST(+0.813797681349373692844693217248393223289101568);
37 static const fftw_real K852868531 =
38 FFTW_KONST(+0.852868531952443209628250963940074071936020296);
39 static const fftw_real K150383733 =
40 FFTW_KONST(+0.150383733180435296639271897612501926072238258);
41 static const fftw_real K663413948 =
42 FFTW_KONST(+0.663413948168938396205421319635891297216863310);
43 static const fftw_real K556670399 =
44 FFTW_KONST(+0.556670399226419366452912952047023132968291906);
45 static const fftw_real K939692620 =
46 FFTW_KONST(+0.939692620785908384054109277324731469936208134);
47 static const fftw_real K342020143 =
48 FFTW_KONST(+0.342020143325668733044099614682259580763083368);
49 static const fftw_real K984807753 =
50 FFTW_KONST(+0.984807753012208059366743024589523013670643252);
51 static const fftw_real K173648177 =
52 FFTW_KONST(+0.173648177666930348851716626769314796000375677);
53 static const fftw_real K1_705737063 =
54 FFTW_KONST(+1.705737063904886419256501927880148143872040591);
55 static const fftw_real K300767466 =
56 FFTW_KONST(+0.300767466360870593278543795225003852144476517);
57 static const fftw_real K642787609 =
58 FFTW_KONST(+0.642787609686539326322643409907263432907559884);
59 static const fftw_real K766044443 =
60 FFTW_KONST(+0.766044443118978035202392650555416673935832457);
61 static const fftw_real K1_113340798 =
62 FFTW_KONST(+1.113340798452838732905825904094046265936583811);
63 static const fftw_real K1_326827896 =
64 FFTW_KONST(+1.326827896337876792410842639271782594433726619);
65 static const fftw_real K500000000 =
66 FFTW_KONST(+0.500000000000000000000000000000000000000000000);
67 static const fftw_real K866025403 =
68 FFTW_KONST(+0.866025403784438646763723170752936183471402627);
69 static const fftw_real K2_000000000 =
70 FFTW_KONST(+2.000000000000000000000000000000000000000000000);
71 static const fftw_real K1_732050807 =
72 FFTW_KONST(+1.732050807568877293527446341505872366942805254);
73
74 /*
75 * Generator Id's :
76 * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $
77 * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $
78 * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $
79 */
80
fftw_hc2hc_backward_9(fftw_real * A,const fftw_complex * W,int iostride,int m,int dist)81 void fftw_hc2hc_backward_9(fftw_real *A, const fftw_complex *W,
82 int iostride, int m, int dist)
83 {
84 int i;
85 fftw_real *X;
86 fftw_real *Y;
87 X = A;
88 Y = A + (9 * iostride);
89 {
90 fftw_real tmp154;
91 fftw_real tmp182;
92 fftw_real tmp176;
93 fftw_real tmp161;
94 fftw_real tmp164;
95 fftw_real tmp159;
96 fftw_real tmp168;
97 fftw_real tmp179;
98 fftw_real tmp171;
99 fftw_real tmp180;
100 fftw_real tmp160;
101 fftw_real tmp165;
102 ASSERT_ALIGNED_DOUBLE;
103 {
104 fftw_real tmp175;
105 fftw_real tmp152;
106 fftw_real tmp153;
107 fftw_real tmp173;
108 fftw_real tmp174;
109 ASSERT_ALIGNED_DOUBLE;
110 tmp174 = Y[-3 * iostride];
111 tmp175 = K1_732050807 * tmp174;
112 tmp152 = X[0];
113 tmp153 = X[3 * iostride];
114 tmp173 = tmp153 - tmp152;
115 tmp154 = tmp152 + (K2_000000000 * tmp153);
116 tmp182 = tmp175 - tmp173;
117 tmp176 = tmp173 + tmp175;
118 }
119 {
120 fftw_real tmp155;
121 fftw_real tmp158;
122 fftw_real tmp169;
123 fftw_real tmp167;
124 fftw_real tmp166;
125 fftw_real tmp170;
126 ASSERT_ALIGNED_DOUBLE;
127 tmp155 = X[iostride];
128 tmp161 = Y[-iostride];
129 {
130 fftw_real tmp156;
131 fftw_real tmp157;
132 fftw_real tmp162;
133 fftw_real tmp163;
134 ASSERT_ALIGNED_DOUBLE;
135 tmp156 = X[4 * iostride];
136 tmp157 = X[2 * iostride];
137 tmp158 = tmp156 + tmp157;
138 tmp169 = K866025403 * (tmp156 - tmp157);
139 tmp162 = Y[-2 * iostride];
140 tmp163 = Y[-4 * iostride];
141 tmp164 = tmp162 - tmp163;
142 tmp167 = K866025403 * (tmp162 + tmp163);
143 }
144 tmp159 = tmp155 + tmp158;
145 tmp166 = tmp155 - (K500000000 * tmp158);
146 tmp168 = tmp166 - tmp167;
147 tmp179 = tmp166 + tmp167;
148 tmp170 = tmp161 + (K500000000 * tmp164);
149 tmp171 = tmp169 + tmp170;
150 tmp180 = tmp170 - tmp169;
151 }
152 X[0] = tmp154 + (K2_000000000 * tmp159);
153 tmp160 = tmp154 - tmp159;
154 tmp165 = K1_732050807 * (tmp161 - tmp164);
155 X[6 * iostride] = tmp160 + tmp165;
156 X[3 * iostride] = tmp160 - tmp165;
157 {
158 fftw_real tmp177;
159 fftw_real tmp172;
160 fftw_real tmp178;
161 fftw_real tmp184;
162 fftw_real tmp181;
163 fftw_real tmp183;
164 ASSERT_ALIGNED_DOUBLE;
165 tmp177 = (K1_326827896 * tmp171) + (K1_113340798 * tmp168);
166 tmp172 = (K766044443 * tmp168) - (K642787609 * tmp171);
167 tmp178 = tmp172 + tmp176;
168 X[iostride] = (K2_000000000 * tmp172) - tmp176;
169 X[7 * iostride] = tmp177 - tmp178;
170 X[4 * iostride] = -(tmp177 + tmp178);
171 tmp184 = (K300767466 * tmp180) + (K1_705737063 * tmp179);
172 tmp181 = (K173648177 * tmp179) - (K984807753 * tmp180);
173 tmp183 = tmp182 - tmp181;
174 X[2 * iostride] = (K2_000000000 * tmp181) + tmp182;
175 X[8 * iostride] = tmp184 + tmp183;
176 X[5 * iostride] = tmp183 - tmp184;
177 }
178 }
179 X = X + dist;
180 Y = Y - dist;
181 for (i = 2; i < m; i = i + 2, X = X + dist, Y = Y - dist, W = W + 8) {
182 fftw_real tmp44;
183 fftw_real tmp87;
184 fftw_real tmp135;
185 fftw_real tmp60;
186 fftw_real tmp107;
187 fftw_real tmp125;
188 fftw_real tmp49;
189 fftw_real tmp54;
190 fftw_real tmp55;
191 fftw_real tmp101;
192 fftw_real tmp109;
193 fftw_real tmp131;
194 fftw_real tmp137;
195 fftw_real tmp128;
196 fftw_real tmp136;
197 fftw_real tmp94;
198 fftw_real tmp108;
199 fftw_real tmp65;
200 fftw_real tmp70;
201 fftw_real tmp71;
202 ASSERT_ALIGNED_DOUBLE;
203 {
204 fftw_real tmp40;
205 fftw_real tmp56;
206 fftw_real tmp43;
207 fftw_real tmp105;
208 fftw_real tmp59;
209 fftw_real tmp86;
210 fftw_real tmp85;
211 fftw_real tmp106;
212 ASSERT_ALIGNED_DOUBLE;
213 tmp40 = X[0];
214 tmp56 = Y[0];
215 {
216 fftw_real tmp41;
217 fftw_real tmp42;
218 fftw_real tmp57;
219 fftw_real tmp58;
220 ASSERT_ALIGNED_DOUBLE;
221 tmp41 = X[3 * iostride];
222 tmp42 = Y[-6 * iostride];
223 tmp43 = tmp41 + tmp42;
224 tmp105 = K866025403 * (tmp41 - tmp42);
225 tmp57 = Y[-3 * iostride];
226 tmp58 = X[6 * iostride];
227 tmp59 = tmp57 - tmp58;
228 tmp86 = K866025403 * (tmp57 + tmp58);
229 }
230 tmp44 = tmp40 + tmp43;
231 tmp85 = tmp40 - (K500000000 * tmp43);
232 tmp87 = tmp85 - tmp86;
233 tmp135 = tmp85 + tmp86;
234 tmp60 = tmp56 + tmp59;
235 tmp106 = tmp56 - (K500000000 * tmp59);
236 tmp107 = tmp105 + tmp106;
237 tmp125 = tmp106 - tmp105;
238 }
239 {
240 fftw_real tmp45;
241 fftw_real tmp48;
242 fftw_real tmp88;
243 fftw_real tmp91;
244 fftw_real tmp61;
245 fftw_real tmp64;
246 fftw_real tmp89;
247 fftw_real tmp92;
248 fftw_real tmp50;
249 fftw_real tmp53;
250 fftw_real tmp95;
251 fftw_real tmp98;
252 fftw_real tmp66;
253 fftw_real tmp69;
254 fftw_real tmp96;
255 fftw_real tmp99;
256 ASSERT_ALIGNED_DOUBLE;
257 {
258 fftw_real tmp46;
259 fftw_real tmp47;
260 fftw_real tmp62;
261 fftw_real tmp63;
262 ASSERT_ALIGNED_DOUBLE;
263 tmp45 = X[iostride];
264 tmp46 = X[4 * iostride];
265 tmp47 = Y[-7 * iostride];
266 tmp48 = tmp46 + tmp47;
267 tmp88 = tmp45 - (K500000000 * tmp48);
268 tmp91 = K866025403 * (tmp46 - tmp47);
269 tmp61 = Y[-iostride];
270 tmp62 = Y[-4 * iostride];
271 tmp63 = X[7 * iostride];
272 tmp64 = tmp62 - tmp63;
273 tmp89 = K866025403 * (tmp62 + tmp63);
274 tmp92 = tmp61 - (K500000000 * tmp64);
275 }
276 {
277 fftw_real tmp51;
278 fftw_real tmp52;
279 fftw_real tmp67;
280 fftw_real tmp68;
281 ASSERT_ALIGNED_DOUBLE;
282 tmp50 = X[2 * iostride];
283 tmp51 = Y[-5 * iostride];
284 tmp52 = Y[-8 * iostride];
285 tmp53 = tmp51 + tmp52;
286 tmp95 = tmp50 - (K500000000 * tmp53);
287 tmp98 = K866025403 * (tmp51 - tmp52);
288 tmp66 = Y[-2 * iostride];
289 tmp67 = X[5 * iostride];
290 tmp68 = X[8 * iostride];
291 tmp69 = tmp67 + tmp68;
292 tmp96 = K866025403 * (tmp67 - tmp68);
293 tmp99 = tmp66 + (K500000000 * tmp69);
294 }
295 tmp49 = tmp45 + tmp48;
296 tmp54 = tmp50 + tmp53;
297 tmp55 = tmp49 + tmp54;
298 {
299 fftw_real tmp97;
300 fftw_real tmp100;
301 fftw_real tmp129;
302 fftw_real tmp130;
303 ASSERT_ALIGNED_DOUBLE;
304 tmp97 = tmp95 + tmp96;
305 tmp100 = tmp98 + tmp99;
306 tmp101 = (K173648177 * tmp97) - (K984807753 * tmp100);
307 tmp109 = (K984807753 * tmp97) + (K173648177 * tmp100);
308 tmp129 = tmp95 - tmp96;
309 tmp130 = tmp99 - tmp98;
310 tmp131 = (K342020143 * tmp129) - (K939692620 * tmp130);
311 tmp137 = (K939692620 * tmp129) + (K342020143 * tmp130);
312 }
313 {
314 fftw_real tmp126;
315 fftw_real tmp127;
316 fftw_real tmp90;
317 fftw_real tmp93;
318 ASSERT_ALIGNED_DOUBLE;
319 tmp126 = tmp92 - tmp91;
320 tmp127 = tmp88 + tmp89;
321 tmp128 = (K173648177 * tmp126) + (K984807753 * tmp127);
322 tmp136 = (K173648177 * tmp127) - (K984807753 * tmp126);
323 tmp90 = tmp88 - tmp89;
324 tmp93 = tmp91 + tmp92;
325 tmp94 = (K766044443 * tmp90) - (K642787609 * tmp93);
326 tmp108 = (K766044443 * tmp93) + (K642787609 * tmp90);
327 tmp65 = tmp61 + tmp64;
328 tmp70 = tmp66 - tmp69;
329 tmp71 = tmp65 + tmp70;
330 }
331 }
332 X[0] = tmp44 + tmp55;
333 {
334 fftw_real tmp75;
335 fftw_real tmp81;
336 fftw_real tmp79;
337 fftw_real tmp83;
338 ASSERT_ALIGNED_DOUBLE;
339 {
340 fftw_real tmp73;
341 fftw_real tmp74;
342 fftw_real tmp77;
343 fftw_real tmp78;
344 ASSERT_ALIGNED_DOUBLE;
345 tmp73 = tmp60 - (K500000000 * tmp71);
346 tmp74 = K866025403 * (tmp49 - tmp54);
347 tmp75 = tmp73 - tmp74;
348 tmp81 = tmp74 + tmp73;
349 tmp77 = tmp44 - (K500000000 * tmp55);
350 tmp78 = K866025403 * (tmp70 - tmp65);
351 tmp79 = tmp77 - tmp78;
352 tmp83 = tmp77 + tmp78;
353 }
354 {
355 fftw_real tmp72;
356 fftw_real tmp76;
357 fftw_real tmp80;
358 fftw_real tmp82;
359 ASSERT_ALIGNED_DOUBLE;
360 tmp72 = c_re(W[5]);
361 tmp76 = c_im(W[5]);
362 Y[-2 * iostride] = (tmp72 * tmp75) - (tmp76 * tmp79);
363 X[6 * iostride] = (tmp76 * tmp75) + (tmp72 * tmp79);
364 tmp80 = c_re(W[2]);
365 tmp82 = c_im(W[2]);
366 Y[-5 * iostride] = (tmp80 * tmp81) - (tmp82 * tmp83);
367 X[3 * iostride] = (tmp82 * tmp81) + (tmp80 * tmp83);
368 }
369 }
370 Y[-8 * iostride] = tmp60 + tmp71;
371 {
372 fftw_real tmp114;
373 fftw_real tmp103;
374 fftw_real tmp117;
375 fftw_real tmp118;
376 fftw_real tmp111;
377 fftw_real tmp113;
378 fftw_real tmp102;
379 fftw_real tmp110;
380 fftw_real tmp84;
381 fftw_real tmp104;
382 ASSERT_ALIGNED_DOUBLE;
383 tmp114 = K866025403 * (tmp94 - tmp101);
384 tmp102 = tmp94 + tmp101;
385 tmp103 = tmp87 + tmp102;
386 tmp117 = tmp87 - (K500000000 * tmp102);
387 tmp118 = K866025403 * (tmp109 - tmp108);
388 tmp110 = tmp108 + tmp109;
389 tmp111 = tmp107 + tmp110;
390 tmp113 = tmp107 - (K500000000 * tmp110);
391 tmp84 = c_re(W[0]);
392 tmp104 = c_im(W[0]);
393 X[iostride] = (tmp84 * tmp103) + (tmp104 * tmp111);
394 Y[-7 * iostride] = (tmp84 * tmp111) - (tmp104 * tmp103);
395 {
396 fftw_real tmp121;
397 fftw_real tmp123;
398 fftw_real tmp120;
399 fftw_real tmp122;
400 ASSERT_ALIGNED_DOUBLE;
401 tmp121 = tmp114 + tmp113;
402 tmp123 = tmp117 + tmp118;
403 tmp120 = c_re(W[3]);
404 tmp122 = c_im(W[3]);
405 Y[-4 * iostride] =
406 (tmp120 * tmp121) - (tmp122 * tmp123);
407 X[4 * iostride] =
408 (tmp122 * tmp121) + (tmp120 * tmp123);
409 }
410 {
411 fftw_real tmp115;
412 fftw_real tmp119;
413 fftw_real tmp112;
414 fftw_real tmp116;
415 ASSERT_ALIGNED_DOUBLE;
416 tmp115 = tmp113 - tmp114;
417 tmp119 = tmp117 - tmp118;
418 tmp112 = c_re(W[6]);
419 tmp116 = c_im(W[6]);
420 Y[-iostride] = (tmp112 * tmp115) - (tmp116 * tmp119);
421 X[7 * iostride] =
422 (tmp116 * tmp115) + (tmp112 * tmp119);
423 }
424 }
425 {
426 fftw_real tmp142;
427 fftw_real tmp133;
428 fftw_real tmp145;
429 fftw_real tmp146;
430 fftw_real tmp139;
431 fftw_real tmp141;
432 fftw_real tmp132;
433 fftw_real tmp138;
434 fftw_real tmp124;
435 fftw_real tmp134;
436 ASSERT_ALIGNED_DOUBLE;
437 tmp142 = K866025403 * (tmp131 - tmp128);
438 tmp132 = tmp128 + tmp131;
439 tmp133 = tmp125 + tmp132;
440 tmp145 = tmp125 - (K500000000 * tmp132);
441 tmp146 = K866025403 * (tmp136 + tmp137);
442 tmp138 = tmp136 - tmp137;
443 tmp139 = tmp135 + tmp138;
444 tmp141 = tmp135 - (K500000000 * tmp138);
445 tmp124 = c_re(W[1]);
446 tmp134 = c_im(W[1]);
447 Y[-6 * iostride] = (tmp124 * tmp133) - (tmp134 * tmp139);
448 X[2 * iostride] = (tmp134 * tmp133) + (tmp124 * tmp139);
449 {
450 fftw_real tmp149;
451 fftw_real tmp151;
452 fftw_real tmp148;
453 fftw_real tmp150;
454 ASSERT_ALIGNED_DOUBLE;
455 tmp149 = tmp142 + tmp141;
456 tmp151 = tmp145 + tmp146;
457 tmp148 = c_re(W[4]);
458 tmp150 = c_im(W[4]);
459 X[5 * iostride] =
460 (tmp148 * tmp149) + (tmp150 * tmp151);
461 Y[-3 * iostride] =
462 (tmp148 * tmp151) - (tmp150 * tmp149);
463 }
464 {
465 fftw_real tmp143;
466 fftw_real tmp147;
467 fftw_real tmp140;
468 fftw_real tmp144;
469 ASSERT_ALIGNED_DOUBLE;
470 tmp143 = tmp141 - tmp142;
471 tmp147 = tmp145 - tmp146;
472 tmp140 = c_re(W[7]);
473 tmp144 = c_im(W[7]);
474 X[8 * iostride] =
475 (tmp140 * tmp143) + (tmp144 * tmp147);
476 Y[0] = (tmp140 * tmp147) - (tmp144 * tmp143);
477 }
478 }
479 }
480 if (i == m) {
481 fftw_real tmp3;
482 fftw_real tmp37;
483 fftw_real tmp30;
484 fftw_real tmp12;
485 fftw_real tmp11;
486 fftw_real tmp18;
487 fftw_real tmp33;
488 fftw_real tmp7;
489 fftw_real tmp35;
490 fftw_real tmp24;
491 fftw_real tmp21;
492 fftw_real tmp34;
493 fftw_real tmp32;
494 fftw_real tmp15;
495 fftw_real tmp8;
496 fftw_real tmp13;
497 ASSERT_ALIGNED_DOUBLE;
498 {
499 fftw_real tmp29;
500 fftw_real tmp1;
501 fftw_real tmp2;
502 fftw_real tmp27;
503 fftw_real tmp28;
504 ASSERT_ALIGNED_DOUBLE;
505 tmp28 = Y[-iostride];
506 tmp29 = K1_732050807 * tmp28;
507 tmp1 = X[4 * iostride];
508 tmp2 = X[iostride];
509 tmp27 = tmp2 - tmp1;
510 tmp3 = tmp1 + (K2_000000000 * tmp2);
511 tmp37 = tmp27 + tmp29;
512 tmp30 = tmp27 - tmp29;
513 }
514 {
515 fftw_real tmp4;
516 fftw_real tmp6;
517 fftw_real tmp5;
518 fftw_real tmp14;
519 fftw_real tmp16;
520 fftw_real tmp19;
521 fftw_real tmp22;
522 fftw_real tmp10;
523 fftw_real tmp23;
524 fftw_real tmp17;
525 fftw_real tmp9;
526 fftw_real tmp20;
527 ASSERT_ALIGNED_DOUBLE;
528 tmp4 = X[3 * iostride];
529 tmp6 = X[2 * iostride];
530 tmp5 = X[0];
531 tmp14 = K500000000 * (tmp5 + tmp6);
532 tmp16 = K866025403 * (tmp6 - tmp5);
533 tmp19 = K866025403 * (tmp4 - tmp5);
534 tmp22 = K500000000 * (tmp4 + tmp5);
535 tmp9 = Y[-3 * iostride];
536 tmp12 = Y[-2 * iostride];
537 tmp10 = Y[0];
538 tmp11 = tmp9 + tmp10;
539 tmp23 = K866025403 * (tmp10 - tmp9);
540 tmp17 = tmp9 + (K500000000 * (tmp12 - tmp10));
541 tmp18 = tmp16 + tmp17;
542 tmp33 = tmp16 - tmp17;
543 tmp7 = tmp4 + tmp5 + tmp6;
544 tmp35 = (tmp6 + tmp23) - tmp22;
545 tmp24 = tmp22 + tmp23 - tmp6;
546 tmp20 = (K500000000 * tmp11) + tmp12;
547 tmp21 = tmp19 + tmp20;
548 tmp34 = tmp19 - tmp20;
549 tmp32 = tmp4 - (K866025403 * (tmp10 + tmp12)) - tmp14;
550 tmp15 = tmp14 - (K866025403 * (tmp10 + tmp12)) - tmp4;
551 }
552 X[0] = tmp3 + (K2_000000000 * tmp7);
553 tmp8 = tmp7 - tmp3;
554 tmp13 = K1_732050807 * (tmp11 - tmp12);
555 X[3 * iostride] = tmp8 - tmp13;
556 X[6 * iostride] = -(tmp8 + tmp13);
557 {
558 fftw_real tmp25;
559 fftw_real tmp26;
560 fftw_real tmp31;
561 fftw_real tmp38;
562 fftw_real tmp36;
563 fftw_real tmp39;
564 ASSERT_ALIGNED_DOUBLE;
565 tmp25 =
566 (K556670399 * tmp15) + (K663413948 * tmp18) -
567 (K150383733 * tmp21) - (K852868531 * tmp24);
568 tmp26 =
569 (K173648177 * tmp24) + (K766044443 * tmp15) -
570 (K642787609 * tmp18) - (K984807753 * tmp21);
571 tmp31 = (K500000000 * tmp26) - tmp30;
572 X[7 * iostride] = tmp25 - tmp31;
573 X[4 * iostride] = tmp25 + tmp31;
574 X[iostride] = tmp26 + tmp30;
575 tmp38 =
576 (K813797681 * tmp34) + (K852868531 * tmp32) +
577 (K150383733 * tmp33) - (K296198132 * tmp35);
578 tmp36 =
579 (K173648177 * tmp32) - (K984807753 * tmp33) -
580 (K342020143 * tmp34) - (K939692620 * tmp35);
581 tmp39 = (K500000000 * tmp36) + tmp37;
582 X[2 * iostride] = tmp36 - tmp37;
583 X[5 * iostride] = tmp38 + tmp39;
584 X[8 * iostride] = tmp38 - tmp39;
585 }
586 }
587 }
588
589 static const int twiddle_order[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
590 fftw_codelet_desc fftw_hc2hc_backward_9_desc = {
591 "fftw_hc2hc_backward_9",
592 (void (*)()) fftw_hc2hc_backward_9,
593 9,
594 FFTW_BACKWARD,
595 FFTW_HC2HC,
596 212,
597 8,
598 twiddle_order,
599 };
600