1 /*
2  * Copyright (c) 2003, 2007-11 Matteo Frigo
3  * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4  *
5  * Generic256d added by Romain Dolbeau, and turned into simd-generic256.h
6  * with single & double precision by Erik Lindahl.
7  * Romain Dolbeau hereby places his modifications in the public domain.
8  * Erik Lindahl hereby places his modifications in the public domain.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
23  *
24  */
25 
26 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
27 #  error "Generic simd256 only works in single or double precision"
28 #endif
29 
30 #define SIMD_SUFFIX  _generic_simd256  /* for renaming */
31 
32 #ifdef FFTW_SINGLE
33 #  define DS(d,s) s /* single-precision option */
34 #  define VDUPL(x) {x[0],x[0],x[2],x[2],x[4],x[4],x[6],x[6]}
35 #  define VDUPH(x) {x[1],x[1],x[3],x[3],x[5],x[5],x[7],x[7]}
36 #  define DVK(var, val) V var = {val,val,val,val,val,val,val,val}
37 #else
38 #  define DS(d,s) d /* double-precision option */
39 #  define VDUPL(x) {x[0],x[0],x[2],x[2]}
40 #  define VDUPH(x) {x[1],x[1],x[3],x[3]}
41 #  define DVK(var, val) V var = {val, val, val, val}
42 #endif
43 
44 #define VL DS(2,4)         /* SIMD vector length, in term of complex numbers */
45 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
46 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
47 
48 typedef DS(double,float) V __attribute__ ((vector_size(32)));
49 
50 #define VADD(a,b) ((a)+(b))
51 #define VSUB(a,b) ((a)-(b))
52 #define VMUL(a,b) ((a)*(b))
53 
54 #define LDK(x) x
55 
LDA(const R * x,INT ivs,const R * aligned_like)56 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
57 {
58     V var;
59     (void)aligned_like; /* UNUSED */
60     return *(const V *)x;
61 }
62 
STA(R * x,V v,INT ovs,const R * aligned_like)63 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
64 {
65     (void)aligned_like; /* UNUSED */
66     (void)ovs; /* UNUSED */
67     *(V *)x = v;
68 }
69 
LD(const R * x,INT ivs,const R * aligned_like)70 static inline V LD(const R *x, INT ivs, const R *aligned_like)
71 {
72     V var;
73     (void)aligned_like; /* UNUSED */
74     var[0] = x[0];
75     var[1] = x[1];
76     var[2] = x[ivs];
77     var[3] = x[ivs+1];
78 #ifdef FFTW_SINGLE
79     var[4] = x[2*ivs];
80     var[5] = x[2*ivs+1];
81     var[6] = x[3*ivs];
82     var[7] = x[3*ivs+1];
83 #endif
84     return var;
85 }
86 
87 
88 /* ST has to be separate due to the storage hack requiring reverse order */
89 
ST(R * x,V v,INT ovs,const R * aligned_like)90 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
91 {
92      (void)aligned_like; /* UNUSED */
93 #ifdef FFTW_SINGLE
94     *(x + 3*ovs    ) = v[6];
95     *(x + 3*ovs + 1) = v[7];
96     *(x + 2*ovs    ) = v[4];
97     *(x + 2*ovs + 1) = v[5];
98     *(x + ovs      ) = v[2];
99     *(x + ovs   + 1) = v[3];
100     *(x            ) = v[0];
101     *(x         + 1) = v[1];
102 #else
103     *(x  +  ovs    ) = v[2];
104     *(x  +  ovs + 1) = v[3];
105     *(x            ) = v[0];
106     *(x         + 1) = v[1];
107 #endif
108 }
109 
110 #ifdef FFTW_SINGLE
111 #define STM2(x, v, ovs, a) /* no-op */
STN2(R * x,V v0,V v1,INT ovs)112 static inline void STN2(R *x, V v0, V v1, INT ovs)
113 {
114     x[        0] = v0[0];
115     x[        1] = v0[1];
116     x[        2] = v1[0];
117     x[        3] = v1[1];
118     x[  ovs    ] = v0[2];
119     x[  ovs + 1] = v0[3];
120     x[  ovs + 2] = v1[2];
121     x[  ovs + 3] = v1[3];
122     x[2*ovs    ] = v0[4];
123     x[2*ovs + 1] = v0[5];
124     x[2*ovs + 2] = v1[4];
125     x[2*ovs + 3] = v1[5];
126     x[3*ovs    ] = v0[6];
127     x[3*ovs + 1] = v0[7];
128     x[3*ovs + 2] = v1[6];
129     x[3*ovs + 3] = v1[7];
130 }
131 
132 #  define STM4(x, v, ovs, aligned_like) /* no-op */
STN4(R * x,V v0,V v1,V v2,V v3,INT ovs)133 static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
134 {
135     *(x              ) = v0[0];
136     *(x           + 1) = v1[0];
137     *(x           + 2) = v2[0];
138     *(x           + 3) = v3[0];
139     *(x     + ovs    ) = v0[1];
140     *(x     + ovs + 1) = v1[1];
141     *(x     + ovs + 2) = v2[1];
142     *(x     + ovs + 3) = v3[1];
143     *(x + 2 * ovs    ) = v0[2];
144     *(x + 2 * ovs + 1) = v1[2];
145     *(x + 2 * ovs + 2) = v2[2];
146     *(x + 2 * ovs + 3) = v3[2];
147     *(x + 3 * ovs    ) = v0[3];
148     *(x + 3 * ovs + 1) = v1[3];
149     *(x + 3 * ovs + 2) = v2[3];
150     *(x + 3 * ovs + 3) = v3[3];
151     *(x + 4 * ovs    ) = v0[4];
152     *(x + 4 * ovs + 1) = v1[4];
153     *(x + 4 * ovs + 2) = v2[4];
154     *(x + 4 * ovs + 3) = v3[4];
155     *(x + 5 * ovs    ) = v0[5];
156     *(x + 5 * ovs + 1) = v1[5];
157     *(x + 5 * ovs + 2) = v2[5];
158     *(x + 5 * ovs + 3) = v3[5];
159     *(x + 6 * ovs    ) = v0[6];
160     *(x + 6 * ovs + 1) = v1[6];
161     *(x + 6 * ovs + 2) = v2[6];
162     *(x + 6 * ovs + 3) = v3[6];
163     *(x + 7 * ovs    ) = v0[7];
164     *(x + 7 * ovs + 1) = v1[7];
165     *(x + 7 * ovs + 2) = v2[7];
166     *(x + 7 * ovs + 3) = v3[7];
167 }
168 
169 #else
170 /* FFTW_DOUBLE */
171 
172 #define STM2 ST
173 #define STN2(x, v0, v1, ovs) /* nop */
174 #define STM4(x, v, ovs, aligned_like) /* no-op */
175 
STN4(R * x,V v0,V v1,V v2,V v3,INT ovs)176 static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs) {
177   *(x              ) = v0[0];
178   *(x           + 1) = v1[0];
179   *(x           + 2) = v2[0];
180   *(x           + 3) = v3[0];
181   *(x     + ovs    ) = v0[1];
182   *(x     + ovs + 1) = v1[1];
183   *(x     + ovs + 2) = v2[1];
184   *(x     + ovs + 3) = v3[1];
185   *(x + 2 * ovs    ) = v0[2];
186   *(x + 2 * ovs + 1) = v1[2];
187   *(x + 2 * ovs + 2) = v2[2];
188   *(x + 2 * ovs + 3) = v3[2];
189   *(x + 3 * ovs    ) = v0[3];
190   *(x + 3 * ovs + 1) = v1[3];
191   *(x + 3 * ovs + 2) = v2[3];
192   *(x + 3 * ovs + 3) = v3[3];
193 }
194 #endif
195 
FLIP_RI(V x)196 static inline V FLIP_RI(V x)
197 {
198 #ifdef FFTW_SINGLE
199     return (V){x[1],x[0],x[3],x[2],x[5],x[4],x[7],x[6]};
200 #else
201     return (V){x[1],x[0],x[3],x[2]};
202 #endif
203 }
204 
VCONJ(V x)205 static inline V VCONJ(V x)
206 {
207 #ifdef FFTW_SINGLE
208     return (x * (V){1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0});
209 #else
210     return (x * (V){1.0,-1.0,1.0,-1.0});
211 #endif
212 }
213 
VBYI(V x)214 static inline V VBYI(V x)
215 {
216      return FLIP_RI(VCONJ(x));
217 }
218 
219 /* FMA support */
220 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
221 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
222 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
223 #define VFMAI(b, c) VADD(c, VBYI(b))
224 #define VFNMSI(b, c) VSUB(c, VBYI(b))
225 #define VFMACONJ(b,c)  VADD(VCONJ(b),c)
226 #define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
227 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
228 
VZMUL(V tx,V sr)229 static inline V VZMUL(V tx, V sr)
230 {
231      V tr = VDUPL(tx);
232      V ti = VDUPH(tx);
233      tr = VMUL(sr, tr);
234      sr = VBYI(sr);
235      return VFMA(ti, sr, tr);
236 }
237 
VZMULJ(V tx,V sr)238 static inline V VZMULJ(V tx, V sr)
239 {
240      V tr = VDUPL(tx);
241      V ti = VDUPH(tx);
242      tr = VMUL(sr, tr);
243      sr = VBYI(sr);
244      return VFNMS(ti, sr, tr);
245 }
246 
VZMULI(V tx,V sr)247 static inline V VZMULI(V tx, V sr)
248 {
249      V tr = VDUPL(tx);
250      V ti = VDUPH(tx);
251      ti = VMUL(ti, sr);
252      sr = VBYI(sr);
253      return VFMS(tr, sr, ti);
254 }
255 
VZMULIJ(V tx,V sr)256 static inline V VZMULIJ(V tx, V sr)
257 {
258      V tr = VDUPL(tx);
259      V ti = VDUPH(tx);
260      ti = VMUL(ti, sr);
261      sr = VBYI(sr);
262      return VFMA(tr, sr, ti);
263 }
264 
265 /* twiddle storage #1: compact, slower */
266 #ifdef FFTW_SINGLE
267 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
268 #else
269 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
270 #endif
271 #define TWVL1 (VL)
272 
BYTW1(const R * t,V sr)273 static inline V BYTW1(const R *t, V sr)
274 {
275      return VZMUL(LDA(t, 2, t), sr);
276 }
277 
BYTWJ1(const R * t,V sr)278 static inline V BYTWJ1(const R *t, V sr)
279 {
280      return VZMULJ(LDA(t, 2, t), sr);
281 }
282 
283 /* twiddle storage #2: twice the space, faster (when in cache) */
284 #ifdef FFTW_SINGLE
285 # define VTW2(v,x)                                                      \
286    {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},  \
287    {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
288    {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
289    {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
290 #else
291 # define VTW2(v,x)                                                      \
292    {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},  \
293    {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
294 #endif
295 #define TWVL2 (2 * VL)
296 
BYTW2(const R * t,V sr)297 static inline V BYTW2(const R *t, V sr)
298 {
299      const V *twp = (const V *)t;
300      V si = FLIP_RI(sr);
301      V tr = twp[0], ti = twp[1];
302      return VFMA(tr, sr, VMUL(ti, si));
303 }
304 
BYTWJ2(const R * t,V sr)305 static inline V BYTWJ2(const R *t, V sr)
306 {
307      const V *twp = (const V *)t;
308      V si = FLIP_RI(sr);
309      V tr = twp[0], ti = twp[1];
310      return VFNMS(ti, si, VMUL(tr, sr));
311 }
312 
313 /* twiddle storage #3 */
314 #define VTW3 VTW1
315 #define TWVL3 TWVL1
316 
317 /* twiddle storage for split arrays */
318 #ifdef FFTW_SINGLE
319 # define VTWS(v,x)                                                      \
320   {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
321   {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
322   {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
323   {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
324 #else
325 # define VTWS(v,x)                                                      \
326   {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
327   {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
328 #endif
329 #define TWVLS (2 * VL)
330 
331 #define VLEAVE() /* nothing */
332 
333 #include "simd-common.h"
334