1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:05:09 EST 2020 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fuv_10 -include dft/simd/t1fu.h */
29
30 /*
31 * This function contains 51 FP additions, 40 FP multiplications,
32 * (or, 33 additions, 22 multiplications, 18 fused multiply/add),
33 * 32 stack variables, 4 constants, and 20 memory accesses
34 */
35 #include "dft/simd/t1fu.h"
36
t1fuv_10(R * ri,R * ii,const R * W,stride rs,INT mb,INT me,INT ms)37 static void t1fuv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
43 {
44 INT m;
45 R *x;
46 x = ri;
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
48 V T4, TA, Tk, Tp, Tq, TE, TF, TG, T9, Te, Tf, TB, TC, TD, T1;
49 V T3, T2;
50 T1 = LD(&(x[0]), ms, &(x[0]));
51 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
52 T3 = BYTWJ(&(W[TWVL * 8]), T2);
53 T4 = VSUB(T1, T3);
54 TA = VADD(T1, T3);
55 {
56 V Th, To, Tj, Tm;
57 {
58 V Tg, Tn, Ti, Tl;
59 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
60 Th = BYTWJ(&(W[TWVL * 6]), Tg);
61 Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
62 To = BYTWJ(&(W[0]), Tn);
63 Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
64 Tj = BYTWJ(&(W[TWVL * 16]), Ti);
65 Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
66 Tm = BYTWJ(&(W[TWVL * 10]), Tl);
67 }
68 Tk = VSUB(Th, Tj);
69 Tp = VSUB(Tm, To);
70 Tq = VADD(Tk, Tp);
71 TE = VADD(Th, Tj);
72 TF = VADD(Tm, To);
73 TG = VADD(TE, TF);
74 }
75 {
76 V T6, Td, T8, Tb;
77 {
78 V T5, Tc, T7, Ta;
79 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
80 T6 = BYTWJ(&(W[TWVL * 2]), T5);
81 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
82 Td = BYTWJ(&(W[TWVL * 4]), Tc);
83 T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
84 T8 = BYTWJ(&(W[TWVL * 12]), T7);
85 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
86 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
87 }
88 T9 = VSUB(T6, T8);
89 Te = VSUB(Tb, Td);
90 Tf = VADD(T9, Te);
91 TB = VADD(T6, T8);
92 TC = VADD(Tb, Td);
93 TD = VADD(TB, TC);
94 }
95 {
96 V Tt, Tr, Ts, Tx, Tz, Tv, Tw, Ty, Tu;
97 Tt = VSUB(Tf, Tq);
98 Tr = VADD(Tf, Tq);
99 Ts = VFNMS(LDK(KP250000000), Tr, T4);
100 Tv = VSUB(T9, Te);
101 Tw = VSUB(Tk, Tp);
102 Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv));
103 Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw));
104 ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)]));
105 Ty = VFNMS(LDK(KP559016994), Tt, Ts);
106 ST(&(x[WS(rs, 3)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)]));
107 ST(&(x[WS(rs, 7)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)]));
108 Tu = VFMA(LDK(KP559016994), Tt, Ts);
109 ST(&(x[WS(rs, 1)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)]));
110 ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)]));
111 }
112 {
113 V TJ, TH, TI, TN, TP, TL, TM, TO, TK;
114 TJ = VSUB(TD, TG);
115 TH = VADD(TD, TG);
116 TI = VFNMS(LDK(KP250000000), TH, TA);
117 TL = VSUB(TE, TF);
118 TM = VSUB(TB, TC);
119 TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL));
120 TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM));
121 ST(&(x[0]), VADD(TA, TH), ms, &(x[0]));
122 TO = VFMA(LDK(KP559016994), TJ, TI);
123 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
124 ST(&(x[WS(rs, 6)]), VFNMSI(TP, TO), ms, &(x[0]));
125 TK = VFNMS(LDK(KP559016994), TJ, TI);
126 ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
127 ST(&(x[WS(rs, 8)]), VFNMSI(TN, TK), ms, &(x[0]));
128 }
129 }
130 }
131 VLEAVE();
132 }
133
134 static const tw_instr twinstr[] = {
135 VTW(0, 1),
136 VTW(0, 2),
137 VTW(0, 3),
138 VTW(0, 4),
139 VTW(0, 5),
140 VTW(0, 6),
141 VTW(0, 7),
142 VTW(0, 8),
143 VTW(0, 9),
144 { TW_NEXT, VL, 0 }
145 };
146
147 static const ct_desc desc = { 10, XSIMD_STRING("t1fuv_10"), twinstr, &GENUS, { 33, 22, 18, 0 }, 0, 0, 0 };
148
XSIMD(codelet_t1fuv_10)149 void XSIMD(codelet_t1fuv_10) (planner *p) {
150 X(kdft_dit_register) (p, t1fuv_10, &desc);
151 }
152 #else
153
154 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fuv_10 -include dft/simd/t1fu.h */
155
156 /*
157 * This function contains 51 FP additions, 30 FP multiplications,
158 * (or, 45 additions, 24 multiplications, 6 fused multiply/add),
159 * 32 stack variables, 4 constants, and 20 memory accesses
160 */
161 #include "dft/simd/t1fu.h"
162
t1fuv_10(R * ri,R * ii,const R * W,stride rs,INT mb,INT me,INT ms)163 static void t1fuv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
164 {
165 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
166 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
167 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
168 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
169 {
170 INT m;
171 R *x;
172 x = ri;
173 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
174 V Tr, TH, Tg, Tl, Tm, TA, TB, TJ, T5, Ta, Tb, TD, TE, TI, To;
175 V Tq, Tp;
176 To = LD(&(x[0]), ms, &(x[0]));
177 Tp = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
178 Tq = BYTWJ(&(W[TWVL * 8]), Tp);
179 Tr = VSUB(To, Tq);
180 TH = VADD(To, Tq);
181 {
182 V Td, Tk, Tf, Ti;
183 {
184 V Tc, Tj, Te, Th;
185 Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
186 Td = BYTWJ(&(W[TWVL * 6]), Tc);
187 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
188 Tk = BYTWJ(&(W[0]), Tj);
189 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
190 Tf = BYTWJ(&(W[TWVL * 16]), Te);
191 Th = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
192 Ti = BYTWJ(&(W[TWVL * 10]), Th);
193 }
194 Tg = VSUB(Td, Tf);
195 Tl = VSUB(Ti, Tk);
196 Tm = VADD(Tg, Tl);
197 TA = VADD(Td, Tf);
198 TB = VADD(Ti, Tk);
199 TJ = VADD(TA, TB);
200 }
201 {
202 V T2, T9, T4, T7;
203 {
204 V T1, T8, T3, T6;
205 T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
206 T2 = BYTWJ(&(W[TWVL * 2]), T1);
207 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
208 T9 = BYTWJ(&(W[TWVL * 4]), T8);
209 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
210 T4 = BYTWJ(&(W[TWVL * 12]), T3);
211 T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
212 T7 = BYTWJ(&(W[TWVL * 14]), T6);
213 }
214 T5 = VSUB(T2, T4);
215 Ta = VSUB(T7, T9);
216 Tb = VADD(T5, Ta);
217 TD = VADD(T2, T4);
218 TE = VADD(T7, T9);
219 TI = VADD(TD, TE);
220 }
221 {
222 V Tn, Ts, Tt, Tx, Tz, Tv, Tw, Ty, Tu;
223 Tn = VMUL(LDK(KP559016994), VSUB(Tb, Tm));
224 Ts = VADD(Tb, Tm);
225 Tt = VFNMS(LDK(KP250000000), Ts, Tr);
226 Tv = VSUB(T5, Ta);
227 Tw = VSUB(Tg, Tl);
228 Tx = VBYI(VFMA(LDK(KP951056516), Tv, VMUL(LDK(KP587785252), Tw)));
229 Tz = VBYI(VFNMS(LDK(KP587785252), Tv, VMUL(LDK(KP951056516), Tw)));
230 ST(&(x[WS(rs, 5)]), VADD(Tr, Ts), ms, &(x[WS(rs, 1)]));
231 Ty = VSUB(Tt, Tn);
232 ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)]));
233 ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)]));
234 Tu = VADD(Tn, Tt);
235 ST(&(x[WS(rs, 1)]), VSUB(Tu, Tx), ms, &(x[WS(rs, 1)]));
236 ST(&(x[WS(rs, 9)]), VADD(Tx, Tu), ms, &(x[WS(rs, 1)]));
237 }
238 {
239 V TM, TK, TL, TG, TO, TC, TF, TP, TN;
240 TM = VMUL(LDK(KP559016994), VSUB(TI, TJ));
241 TK = VADD(TI, TJ);
242 TL = VFNMS(LDK(KP250000000), TK, TH);
243 TC = VSUB(TA, TB);
244 TF = VSUB(TD, TE);
245 TG = VBYI(VFNMS(LDK(KP587785252), TF, VMUL(LDK(KP951056516), TC)));
246 TO = VBYI(VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC)));
247 ST(&(x[0]), VADD(TH, TK), ms, &(x[0]));
248 TP = VADD(TM, TL);
249 ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));
250 ST(&(x[WS(rs, 6)]), VSUB(TP, TO), ms, &(x[0]));
251 TN = VSUB(TL, TM);
252 ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0]));
253 ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0]));
254 }
255 }
256 }
257 VLEAVE();
258 }
259
260 static const tw_instr twinstr[] = {
261 VTW(0, 1),
262 VTW(0, 2),
263 VTW(0, 3),
264 VTW(0, 4),
265 VTW(0, 5),
266 VTW(0, 6),
267 VTW(0, 7),
268 VTW(0, 8),
269 VTW(0, 9),
270 { TW_NEXT, VL, 0 }
271 };
272
273 static const ct_desc desc = { 10, XSIMD_STRING("t1fuv_10"), twinstr, &GENUS, { 45, 24, 6, 0 }, 0, 0, 0 };
274
XSIMD(codelet_t1fuv_10)275 void XSIMD(codelet_t1fuv_10) (planner *p) {
276 X(kdft_dit_register) (p, t1fuv_10, &desc);
277 }
278 #endif
279