1\input texinfo   @c -*-texinfo-*-
2@c %**start of header
3@setfilename giac_us.info
4@settitle Giac API
5@comment Carleos 20020729 for Debian packaging added:
6@dircategory Math
7@direntry
8* Giac : (giac_us).         Computer Algebra System Library
9@end direntry
10@documentlanguage en
11@documentencoding ISO-8859-1
12@c %**end of header
13
14@setchapternewpage odd
15
16@titlepage
17@sp 10
18@comment The title is printed in a large font.
19@center @titlefont{Giac/Xcas}
20
21@c The following two commands start the copyright page.
22@page
23@vskip 0pt plus 1filll
24Copyright @copyright{} 2001 B. Parisse, Institut Fourier
25@end titlepage
26
27@node    Top, Installation, , (dir)
28@comment node-name, next,previous, up
29
30Giac is a C++ library that has types for symbolic algebraic manipulations.
31Xcas is a GUI linked with Giac that provides the functionnalities
32of a general purpose computer algebra system.
33Giac's name derive from @uref{http://www.ginac.de}, another C++
34library for symbolic algebraic computations.
35
36@menu
37* Installation::     How to install giac/icas/xcas
38* Xcas::             Describes the xcas user-interface to giac
39* Giac::             How to program in C++ using giac.
40* Examples::         Some examples of xcas script and C++ program using giac
41* Concept Index::    Index.
42@end menu
43
44@node    Installation, Xcas, Top, Top
45@chapter Installing Giac/Xcas
46@menu
47* Binaries::         Installing xcas binaries only
48* Requirements::     Compiling xcas requires libraries and program
49* Options::          Optionnal libraries that enhance giac behaviour
50* Configure::        Options for the configure shell script
51* Compiling::        Compilation of giac
52* Troubles::         Some tips if you are in trouble
53@end menu
54
55@node    Binaries, Requirements, Installation, Installation
56@section Installing binaries
57If you want to use @code{xcas/giac} like another CAS and your OS is
58Intel x86 GNU/Linux or Intel StrongARM GNU/Linux or Windows 9x or Mac OS
59X.4(+), then
60you don't need to worry about compilation. Instead you can install
61precompiled binaries:
62@itemize
63@item x86 GNU/Linux as a normal user:
64@uref{ftp://ftp-fourier.ujf-grenoble.fr/xcas/xcas_user.tgz}
65
66Unpack the archive with
67@command{tar xvfz xcas_user.tgz}
68
69then
70@command{cd xcas}
71
72and
73@command{./xcas}
74@item x86 GNU/Linux if you have root access:
75@uref{ftp://ftp-fourier.ujf-grenoble.fr/xcas/xcas_root.tgz}
76Unpack the archive from the @code{/} directory
77@item ARM GNU/Linux:
78@uref{ftp://ftp-fourier.ujf-grenoble.fr/xcas/xcas_ipaq.tgz}
79@item Windows 9x:
80@uref{ftp://ftp-fourier.ujf-grenoble.fr/xcas/xcasinst.exe}.
81Run @code{xcas} from the Start menu.
82@item Mac OS X:
83@uref{ftp://ftp-fourier.ujf-grenoble.fr/xcas/xcas_osx4.dmg.gz}.
84Run @code{xcas} from the Applications.
85@end itemize
86
87@node    Requirements, Options, Binaries, Installation
88@section Requirements
89Get Giac source at @uref{ftp://ftp-fourier.ujf-grenoble.fr/xcas/giac_stable.tgz}
90or @uref{http://perso.wanadoo.fr/bernard.parisse/}.
91Check that your C++ compiler understand the C++ ANSI 3 norm. For
92example @code{gcc} version 2.95 or later will work. If the GMP GNU Math
93Precision Library is not installed on your system, install it:
94@uref{http://www.gnu.org/directory/gnump.html}. If you are using GNU/Linux,
95the GMP library is most probably installed but the headers files
96might not, check for a package named something like @code{gmp-devel}.
97
98@node    Options, Configure, Requirements, Installation
99@section Options
100@enumerate
101@item If you want numerical functions you should install the Gnu Scientific
102Library available at @uref{http://sources.redhat.com/gsl}
103@item If you want to use NTL for some polynomial operations (currently
104factorization), get version >= 5.2 at @uref{http://www.shoup.net}. Then
105check that you configured with namespace enabled (this is not the
106default) and with GMP enabled (not the default, but this is not mandatory)
107If you are not sure of your install go in the NTL directory and type
108@smallexample
109 make clean
110 ./configure NTL_GMP_LIP=on NTL_STD_CXX=on
111 make
112 make install
113@end smallexample
114@item If you want advanced arithmetic functions, get PARI at
115@uref{http://www.parigp-home.de}.
116If you plan to use an old version of PARI WITHOUT NTL then you MUST MAKE THE
117FOLLOWING PATCHES in the PARI source directory:
118@itemize
119@item File @code{src/basemath/polarit2.c}: remove the word
120@code{static} from the declaration:
121@smallexample
122  static GEN
123  combine_factors(...)
124@end smallexample
125@item File @code{src/headers/paridecl.h}: Add the line
126
127@code{GEN     combine_factors(GEN a, GEN famod, GEN p, long klim, long hint);}
128
129in the @code{* polarit2.c} section.
130@item Recompile (@command{make all}) and reinstall PARI (@code{make install})
131and check that @code{libpari.a} has been updated or copy it explicitely
132from the @code{O<your_os>} directory.
133@item Replace in @code{/usr/local/include/pari/pariinl.h} @code{labs}
134by @code{std::abs} otherwise you might get compiler errors.
135@end itemize
136Check in the giac src directory, file pari.cc that the memory allocated
137to the PARI stack suit your needs (default is 10M of RAM) or modify:
138@code{  long pari_mem_size=10000000;}
139
140@item If you want GUI support, check that you have FLTK 1.1
141installed (available at @uref{http://www.fltk.org}).
142
143@item TeXmacs provides an interface for giac. You can get it
144at @uref{http://www.texmacs.org}.
145After installing giac, run texmacs and use Insert->Session->giac.
146
147@end enumerate
148
149@node    Configure, Compiling, Options, Installation
150@section Configure options
151The @code{./configure } shell-script recognizes the following options:
152@enumerate
153@item --enable-debug
154  Allow vecteurs printing and add some debugging code
155@item --enable-fltk
156  GUI support
157@item --enable-gsl
158  Use the Gnu Scientific Library for floating point (e.g. special functions..)
159@item --enable-sscl
160  Allow inclusion of code for semi-classical algorithms (Moyal product, ...)
161  Not available yet
162@item --enable-ntl
163  Allow inclusion of NTL code
164@item --enable-pari
165  Allow inclusion of PARI code
166@end enumerate
167
168These options can be turned off using @code{--disable-option-name} instead of
169@code{--enable-option-name}. By default @code{configure} will use these
170options if the libraries are available on your system.
171
172For full speed binaries, before calling @code{configure} do (with bash
173as shell)
174
175@command{$ export CXXFLAGS="-O3 -fexpensive-optimizations -malign-loops=2 -malign-jumps=2 -malign-functions=2"}
176
177or (with tcsh as shell)
178
179@command{$ setenv CXXFLAGS "-O3 -fexpensive-optimizations -malign-loops=2 -malign-jumps=2 -malign-functions=2"}
180
181
182
183@node    Compiling, Troubles, Configure, Installation
184@section Compiling
185Like with any autoconfiguring GNU software, you can type :
186
187@command{ ./configure }
188
189[add options as needed: try @command{./configure -help} for option info]
190
191@command{ make }
192
193@command{ make check }
194
195[become root if necessary]
196
197@command{ make install }
198
199Tips:
200@itemize
201
202@item If you don't want optimizations, set the environment variable
203@env{CXXFLAGS} to @code{-g} before calling configure, with tcsh
204@command{ setenv CXXFLAGS -g}, with bash @command{export CXXFLAGS=-g}.
205
206@item If you want the commandline icas only run
207
208 @command{ ./configure --disable-gui}
209
210 @command{ make }
211
212@item If you want to build xcas for the ARM processor with the Linux familiar
213distribution (e.g. for an iPaq @uref{http://www.handhelds.org})
214assuming you have the skiff toolchain installed and FLTK installed.
215Check that @code{config.h} defines HAVE_LIBFLTK and does not define
216HAVE_LIBGSL and HAVE_LIBGSLCBLAS unless you have these libraries too, then
217
218@command{ make -f Makefile.ipaq}
219
220Note that I never succeded to build with optimization for the iPaq.
221
222
223@item Windows
224
225You can compile the library version of giac like under Unix.
226Or assuming you have the cygwin tools, gmp and FLTK installed (see
227@uref{http://sources.redhat.com/cygwin} for cygwin, run cygwin,
228go in the @code{src} directory and run
229
230@command{ make -f Makefile.win}
231
232After that, you may run @code{xcas.exe} standalone, provided
233@code{/usr/bin/cygwin1.dll} has been copied in the path (e.g. in the same
234directory as @code{xcas.exe})
235@end itemize
236
237
238@node    Troubles, , Compiling, Installation
239@section Troubles
240@itemize
241@item If you test giac after compilation with @code{make check},
242please note that the answer assume PARI and NTL are enabled.
243Otherwise you will get some errors because factoring will not
244return the factors in the same order.
245@item Optimization requires much memory for compilation. If you are low
246in memory edit @code{src/Makefile} and if necessary replace the line :
247
248@code{CXXFLAGS = -g -O2}
249by :
250
251@code{CXXFLAGS = -g}
252
253@item If you get an error like
254
255@command{autoheader: Symbol 'CONSTANT_DEBUG_SUPPORT' is not covered by ...}
256
257run
258
259@command{autoheader --localdir=.}
260@item If you get error when compiling @code{modpoly.cc}, it's most certainly
261because you compiled NTL without namespaces. Recompile it (see section)
262@item If you get a linker error about combine_factors not found in
263@code{modfactor.o} it's because you did not modify PARI correctly or
264forgot to re-install the PARI libraries (see section)
265@item Cygwin compilation of Giac with PARI 2.1.1 requires you to make
266some hand work. I could not get the dynamic version of PARI library compiling.
267Therefore I had to do the install by hand
268@smallexample
269cp libpari.a /usr/local/lib
270mkdir /usr/local/include/pari
271cp src/headers/*.h /usr/local/include/pari
272cp Ocygwin/*.h /usr/local/include/pari
273@end smallexample
274Then I got an error compiling @code{pari.cc} that dispeared by commenting
275the offending line in the header @code{/usr/local/include/pari/paricom.h}
276After that all went OK.
277@end itemize
278
279@node    Xcas, Giac, Installation, Top
280@chapter Using xcas, an user-interface to giac
281@code{xcas} is an user-interface to giac that is similar to a calculator.
282A readline interface named @code{cas} is also available.
283
284@menu
285* Interface::
286* CAS::
287* Geometry::
288* Spreadsheet::
289* Scripting::
290* Environment::
291@end menu
292
293@node Interface, CAS, ,Xcas
294@section The interface
295You can use but you don't need to have a keyboard to use xcas, it
296is designed to be used on a PDA as well. Use the green shift button to get the
297button-keyboard.
298
299The window is composed from left and up to right and down of:
300@enumerate
301@item The main menu-bar: at the left: session management, configuration
302and help, at the right the commands by theme
303@item The session menu: file and edit operations. In the Edit menu,
304the Add item lets you add levels of different kinds: commandlines,
305comments, 2-d and 3-d geometry and graphs, spreadsheet, program editor
306@item The session, with a blank commandline at startup
307@item The buttons: help (?), switch for scientific keyboard (kbd),
308status button (in red, click here to change the CAS configuration)
309@end enumerate
310
311
312The on-line help gives a short description of all the CAS commands
313with examples that can be pasted to the commandline. A more complete
314description is available by clicking on Details. Command completion
315is enabled in commandlines with the Tab key.
316
317Printing may be done natively to Postscript or with a working
318@code{LaTeX} installation (with @code{pstricks} for 2-d graphs).
319
320@node CAS, Geometry, Interface, Xcas
321@section Computer algebra system commands
322A list of commands of the CAS system.
323@menu
324* Math menu::
325* Arithmetic::
326* Cas menu::
327* Linear algebra::
328@end menu
329
330@node Math menu, Arithmetic, , CAS
331@subsection Basic mathematic commands
332
333@node Arithmetic, Cas menu, Math menu, CAS
334@subsection Arithmetic of integers and polynomials
335The @code{gcd} and @code{lcm} commands apply to both argument types : they
336return the greatest common divisor or the least common multiplicator.
337Other arithmetic commands must begin with an @code{i} if you want
338to use them with integers, otherwise the arguments will be considered
339as constant polynomials.
340@menu
341* Integer arithmetic::
342* Polynomial arithmetic::
343@end menu
344
345@node Integer arithmetic, Polynomial arithmetic, , Arithmetic
346@subsubsection Integer arithmetic functions
347@menu
348* Division::      Euclidean division
349* Gcd::           Gcd, lcm, extended gcd, chinese remainder
350* Primality::     Primality test, factorization, Euler characteristic
351* Other integer:: Jacobi, Legendre symbol...
352@end menu
353
354@node Division, Gcd, , Integer arithmetic
355@subsubsection Euclidean integer division
356Given two integers @code{a} and @code{b}, the euclidean integer division
357is defined by the equality :
358@example
359a=b*q+r
360@end example
361where usually @code{r} is taken between 0 and @code{b-1}, or
362in the symmetric representation, between @code{-b/2} and @code{b/2}.
363The functions @code{iquo(a,b)} and @code{irem(a,b)} return respectively
364@code{q} and @code{r}, or @code{iquorem(a,b)} return both in a vector.
365The @code{smod(a,b)} function will return @code{r} using the symmetric
366remainder convention.
367
368@node Gcd, Primality, Division, Integer arithmetic
369@subsubsection Integer gcd
370The @code{gcd(a,b)} function returns the greatest common divisor
371@code{d} of two integers @code{a} and @code{b}. If you need two integers
372@code{u} and @code{v} such that:
373@example
374a*u+b*v=d
375@end example
376you should call @code{egcd(a,b)} instead, it will return @code{[u,v,d]}.
377
378The @code{ichinrem([a,n],[b,m])} call where @code{n} and @code{m}
379are prime together will return a vector @code{[c,n*m]} such that
380@code{c=a (mod n)} and @code{c=b (mod m)}.
381
382@node Primality, Other integer, Gcd, Integer arithmetic
383@subsubsection Primality and factorization
384The @code{is_prime(a)} function will return 0 if @code{a} is not prime.
385It will return 2 if @code{a} is known to be prime, and 1 if @code{a}
386is a (strong) pseudo-prime. If you have compiled @code{xcas} with PARI
387support, you will get a prime certificate instead (see PARI documentation for
388more information).
389
390The @code{nextprime(a)} and @code{prevprime(a)} will return the next
391or previous (pseudo-)prime, given an integer @code{a}.
392
393The @code{ifactor(a)} function returns a factorization of @code{a}.
394It is a good idea to compile with PARI support if you plan to factor
395relatively large integers (with prime factors having more than 20 digits).
396
397@node Other integer, , Primality, Integer arithmetic
398@subsubsection Other integer functions (Legendre, Jacobi, ...)
399Additional integer functions provided by @code{xcas} are
400@itemize
401@item @code{jacobi(a,b)}
402and @code{legendre(a,b)}, see the GMP documentation for more details.
403@item @code{pa2b2(p)} return @code{[a,b]} so that @code{p=a*a+b*b}
404if @code{p=1 (mod 4)} is prime.
405@end itemize
406
407@node Polynomial arithmetic, , Integer arithmetic, Arithmetic
408@subsubsection Polynomial arithmetic functions
409Polynomials have two representations: symbolic representation or
410by a vector of coefficients. In the symbolic representation you might
411add the variable name as an additionnal parameter to the functions
412you call, otherwise the default variable is used. For the vector
413representation, it is recommended to use the right delimiter @code{poly1[}
414instead of @code{[} so that usual operations (addition, ...) behave
415correctly (i.e. not like vectors or matrices).
416@enumerate
417@item @code{quo(a,b)} @code{rem(a,b)} and @code{quorem(a,b)}
418return respectively @code{q}, @code{r} and @code{[q,r]} polynomials
419so that @code{a=b*q+r} and @code{degree(r)<degree(b)}
420@item @code{gcd(a,b)} return the greatest common divisor of two
421polynomials
422@item @code{egcd(a,b)} is the extended euclidean GCD algorithm, like for
423integers it returns a list of 3 polynomials @code{u,v,d} such
424that @code{au+bv=d}.
425@item @code{chinrem} return the chinese remainder for polynomials written
426as lists. The 2 arguments are two lists made of a polynomial modulo
427another polynomial (where the modulo polynomials must be prime together).
428The answer is the polynomial modulo the product of the modulo polynomials
429that reduce to the original polynomials modulo the original modulo
430polynomials
431@item @code{cyclotomic} takes an integer n as argument and returns the
432n-th cyclotomic polynomial.
433@end enumerate
434
435@node Cas menu, Linear algebra, Arithmetic, CAS
436@subsection Algebra, calculus, ...
437@menu
438* Rewriting::
439* Diff and integrate::
440* Limits and series::
441* Solving equations::
442* Other cas functions::
443@end menu
444
445@node Rewriting, Diff and integrate, , Cas menu
446@subsubsection Rewriting expressions
447The @code{normal} command rewrites a rational fraction as a ratio of two
448coprime polynomials. If an expression is not rational, it is first
449rationalized by substitution of transcendental expressions (e.g.
450@code{sin(x)} by a temporary identifier. Algebraic expressions
451(e.g. @code{sqrt(x)}) are normalized too.
452
453The @code{factor} command factorize polynomials. Like above a non
454polynomial expression is first rationalized. You can choose the main
455variable with respect to which the polynomial will be factorized by
456adding it as second argument of @code{factor}.
457
458The @code{texpand} function is called to expand transcendental
459expressions like @code{exp(x+y)=exp(x)*exp(y)} or similar rules
460for trigonometric functions. The @code{tlin} function does
461the reverse operation for trigonometric functions, as the @code{lin}
462function does it for exponentials.
463
464The @code{halftan} function rewrites trigonometric expressions
465in terms of the tangent of the half angle. The @code{hyp2exp}
466function rewrites hyperbolic functions in terms of exponentials.
467
468@node Diff and integrate, Limits and series, Rewriting, Cas menu
469@subsubsection Derivation, integration
470The differentiation instruction is @code{diff(expression,variable)}.
471The undefined antiderivative is obtained using
472@code{integrate(expression,variable)}. If you need defined integration
473between bounds @code{a} and @code{b}, choose
474@code{integrate(expression,variable,a,b)} for exact integration
475or @code{romberg(expression,variable,a,b)} for numeric integration.
476
477Example of defined integration are Fourier coefficients of periodic
478functions. They are provided using @code{fourier_an} and @code{fourier_bn}
479for trigonometric coefficients or using @code{fourier_cn} for
480complex exponentials coefficients.
481
482Some discrete antiderivatives may be obtained using the
483@code{sum(variable,expression)} call.
484
485@node Limits and series, Solving equations, Diff and integrate, Cas menu
486@subsubsection Limits, series expansion.
487For a limit the syntax is
488@code{limit(expression,variable,limitpoint[,direction])}.
489For a series expansion
490@code{series(expression,variable,limitpoint,order[,direction])}.
491@code{giac} implementation of @code{limit} and @code{series} is based
492on the mrv algorithm.
493
494@node Solving equations, Other cas functions, Limits and series, Cas menu
495@subsection Solving equations
496The @code{solve(expression,variable)} call is used to find exact
497solutions of (polynomial-)like equations. Use @code{newton} instead
498for numeric solutions (of a wider range of equations).
499
500@node Other cas functions, , Solving equations, Cas menu
501
502@node Linear algebra, , Cas menu, CAS
503@subsection Linear algebra
504Arithmetic operations on matrices and vectors are done using the usual
505operators. The scalar product of two vectors is obtained using the @code{*}
506operator.
507
508Gaussian elimination (Gauss-Bareiss) over a matrix is performed
509using @code{rref(m)}. The kernel of a linear application with matrix
510m is obtained with @code{ker(m)}. A system of linear equations (written
511symbolically in a vector) can be solved via
512@code{linsolve([equations],[variables])}.
513
514The determinant of a matrix may be obtained using two algorithms,
515either Gauss-Bareiss invoking @code{det(m)}, or by computing minors
516@code{det_minor(m)}. Actually, a last method is provided using the
517computation of the constant coefficient of the characteristic polynomial
518using Fadeev-Leverrier algorithm.
519
520The characteristic polynomial of a matrix may be computed by Fadeev-Leverrier
521algorithm calling @code{pcar(m)}. For matrices withe coefficients in
522a finite field, @code{pcar_hessenberg(m)} is a better choice (@code{O(n^3)}
523complexity where @code{n} is the size of the matrix).
524
525Eigenvalues and eigenvectors are computed using respectively @code{egvl(m)}
526and @code{egv(m)}. The Jordan normal form is obtained invoking
527@code{jordan(m)}.
528
529Quadratic forms (written symbolically) can be reduced to sum and differences
530of squares using @code{gauss(expression,[variables])}.
531
532There is some support for isometries: @code{mkisom} may be used to
533make an isometry from its proper elements as @code{isom(m)} return the
534proper elements of an isometry.
535
536@node Geometry, Spreadsheet, CAS, Xcas
537@section Geometry
538Add a figure (Edit menu of the session, Add item, then select geometry
539and graph 2-d or 3-d).
540As other objects, you can create geometrical objects anatically using the
541commandlines at the left. You may also create points,
542segments, etc. with the mouse (or the stylus) or move a geometrical
543object depending on the mouse mode (Pointer, point, segment, circle, etc.)
544
545To configure or print a graph, use the menu at the right of the graph.
546
547@node Spreadsheet, Scripting, Geometry, Xcas
548@section Spreadsheet
549Add a spreadsheet (Edit menu of the session, Add item, spreadsheet).
550Cells may have a formal value, or eval to a geometric 2-d object
551that will be displayed in a dynamically linked 2-d graph.
552
553@node Scripting, Environment, Spreadsheet, Xcas
554@section The xcas scripting language
555The xcas and icas program provide an interpreted language that is similar to
556popular other CAS programming language. This scripting language is
557available in 4 flavours: C-like syntax (default) or compatibility
558mode for simple Maple, Mupad or TI programs. We describe only the C-like
559syntax. Instructions must end with a semi-column @code{;}. Groups of
560instructions may be combined like in C with brackets.
561
562You can define a program in a commandline, but it is recommended
563to use a Program Editor (Edit->Add->Program menuitem of the session
564menubar) if it is larger than a few lines.
565
566@menu
567* Language mode::
568* Data::
569* Loops and conditionnals::
570* Functions::
571@end menu
572
573@node Language mode, Data, , Scripting
574@section Selecting the language mode
575Click on the status button and select the programming style.
576Alternatively, the command @code{maple_mode(0)} or @code{maple_mode(1)} or
577@code{maple_mode(2)} may be used to switch the language flavour
578respectively from C-like to Maple-like or Mupad-like mode. Note that this
579command takes effect only when the current parser session is finished
580which means when the next command is processed in interative mode or at
581the end of the current file in batch mode, hence you should not begin a script
582file with this command. In batch mode you can achieve the mode switch by
583setting the environment variable @code{GIAC_MAPLE_MODE}, for example with
584tcsh: @command{setenv GIAC_MAPLE_MODE 1}
585or with bash @command{export GIAC_MAPLE_MODE=1}
586will switch to the Maple-like language. Additionnally you can enter
587the @code{maple_mode(1)} command in the @code{.xcasrc} of your home directory
588to change the default behavior. Or inside @code{xcas} you can run
589the @code{Import} command of the @code{File} menu and select the flavour.
590The @code{Export} command can be used to translate the current level
591of the history inside @code{xcas} to a file, or the @code{View as} command
592of the @code{Edit} menu to translate to the Help output window.
593
594@node Data, Loops and conditionnals, Language mode, Scripting
595@section Data
596The language accept local and global variables, variables are not typed.
597Global variables do not need to be declared, local variables must be declared
598at the beginning of a function by the keyword @code{local} followed by
599the names of the local variables separated by commas @code{,} with a final
600semi-columns @code{;}
601
602The affectation sign is @code{:=} like popular CAS and unlike C.
603For large vectors, lists and matrices, you may also use @code{=<} to make
604in-place modifications (in other words by reference), but be aware
605that all references of the object will be modified.
606Other operations (e.g. @{+ - * /@}) and function calls are done like in C
607or like in an interactive session.
608As in C, the equality test is @code{==}. The single equal sign @code{=}
609is used to return an equation (note that
610an equation will be transformed in a test
611in some situations where an equation could not be expected).
612The other tests are @code{!=} for non equal, @code{< <= > >=} for
613real value comparisons. You can combine tests with @code{&&} or @code{and},
614and @code{||} or @code{or}. The boolean negation is @code{!} or @code{not}.
615
616@node Loops and conditionnals, Functions, Data, Scripting
617The loop keywoard is like in C
618
619@command{for (initialization;while_condition;increment)@{ loop_block @}}
620
621You can break a loop inside the loop block with @code{break;}.
622You can skip immediately to the next iteration with @code{continue;}.
623
624The conditionnal keywoard is like in C
625
626@command{if (condition) @{ bloc_if_true @} [ else @{ bloc_if_false @} ]}
627
628Additionnaly, multiple-cases is translated like in C
629
630@command{swith (variable)@{ case (value_1): ... break; default: ... ; @} }
631
632@node Functions, , Loops and conditionnals, Scripting
633Functions are declared and implemeted together like this
634
635@command{function_name(parameters):=@{ definition @}}
636
637Parameters are like local variables with an additional initialization
638from the values of the parameters inside the calling instruction.
639
640@code{return return_value;} should be used to return the value
641of the function.
642
643It is not possible to pass arguments by reference, only by value.
644
645
646@node Environment, ,  Scripting, Xcas
647@section Environment variables
648If one of these variables @code{GIAC_MAPLE}, @code{GIAC_MUPAD},
649@code{GIAC_C} or @code{GIAC_TI} is defined, the corresponding
650syntax mode will be in effect. If @code{XCAS_RPN} is defined,
651then xcas will start in RPN mode.
652
653The variable @code{XCAS_ROOT} may be used for a custom xcas installation,
654it should point to the directory where xcas is installed. @code{XCAS_LOCALE}
655should point to the directory where the locales are. @code{XCAS_TMP}
656may be defined for temporary exchange files between xcas processes,
657if not defined it will use the home directory.
658
659The variable @code{PARI_SIZE} may be used to define the memory
660available for pari.
661
662The variable @code{BROWSER} may be used for the HTML documentation browser.
663
664The variable @code{LANG} may be used for internationalization.
665
666The variable @code{GIAC_TIME} and @code{GIAC_TEX} may be used
667in giac readline interface to ask for timing and tex output.
668@code{GIAC_DEBUG} will give some info on the internals used.
669
670@node    Giac, Examples, Xcas, Top
671In this chapter we will first describe the generic data type of giac,
672the @code{gen} class. Then we describe the most important data
673types than @code{gen} dispatches to (polynomials, vectors, symbolic
674objects and gen unary functions). At this point, the reader should be
675able to code using @code{giac}, hence we describe how to integrate
676code to @code{giac} by inclusion in the library or as a separate
677runtime loadable library (called module). The last item describes
678how you can add new mathematical objects, e.g. quaternions,
679inside the @code{gen} type.
680
681@menu
682* C++::                       Why we choosed C++
683* Gen::                       The generic class used everywhere in giac
684* Polynomials::               Polynomials.
685* Vectors and matrices::      Vectors and matrices.
686* Symbolics::                 Symbolics.
687* Unary functions::           Functions taking a gen and returning a gen
688* Making a library function:: Add functionnalities to giac
689* Making modules::            Add dynamically loadable functions to giac
690* User defined data::         Define your own data inside giac
691@end menu
692
693@node C++, Gen, , Giac
694Giac uses the C++ language because it is easier to write algebraic
695operations using usual operators, for example @code{a+b*x} is easier
696to understand and modify than @code{add(a,mul(b,x))}, but it does not
697require that you learn object oriented programming. In fact it is more
698a C library using C++ features that makes programming easier (like the
699I/O streams and the Standard Template Library). However you will need
700a recent C++ compiler, e.g. @code{gcc} version 2.95 or later.
701
702
703@node Gen, Polynomials, C++, Giac
704@chapter The gen class
705@cindex gen
706
707@code{gen} is the class used to represent mathematical objects
708(@code{#include <giac/gen.h>}). It's a C union, made either of ``direct''
709objects like @code{int} or @code{double}
710or of pointers to heap allocated objects that are reference counted.
711Memory allocation is handled by the class itself (except for
712user-defined object types). You can check
713the actual type of a variable of type @code{gen}, e.g. @code{gen e;},
714using it's @code{type} field (e.g. @code{if (e.type==...)}). This
715@code{type} field of a @code{gen} is an @code{int}.
716
717The @code{gen} might be~:
718@enumerate
719@item an immediate int (@code{e.type==_INT_})
720@item a double (@code{e.type==_DOUBLE_})
721@item an arbitrary precision integer (@code{e.type==_ZINT})
722@item a complex number (@code{e.type==_CPLX}), a pointer to
723two objects of type @code{gen} the real and imaginary parts
724@item a global name (@code{e.type==_IDNT}), with a pointer to an
725@code{identificateur} type
726@item a symbolic object (@code{e.type==_SYMB}), with a pointer to
727a @code{symbolic} type
728@item a vector object (in fact it is a list) (@code{e.type==_VECT}),
729with a pointer to a @code{vecteur} type
730@item a function object (@code{e.type==_FUNC}),
731with a pointer to a @code{unary_function_ptr} type
732@end enumerate
733
734Some other types are available (e.g. a pointer to @code{gen_user}
735an object you can derive to make your own class, or arbitrary precision
736floating point numbers @code{_REAL}), for a complete
737description look at @code{giac/gen.h} (if you have installed @code{giac}
738the path to the include files is @code{/usr/local/include/giac} unless you
739override the default, if you did not install it, the path is the path
740to the @code{src} directory of the source code distribution).
741
742If you want to access the underlying type, after checking that the type
743is correct, you can do the following:
744@enumerate
745@item for immediate int: @code{int i=e.val;}
746@item for double: @code{double d=e._DOUBLE_val;}
747@item for arbitray precision integers: @code{mpz_t * m=e._ZINTptr;}
748@item for complex numbers: @code{gen realpart=*e._CPLXptr,impart=*(e._CPLXptr+1); }
749@item for identificateur: @code{identificateur i=*e._IDNTptr; }
750@item for symbolics: @code{symbolic s=*e._SYMBptr;}
751@item for composites: @code{vecteur v=*e._VECTptr;}
752@item for function objects: @code{unary_function_ptr u=*e._FUNCptr}
753@end enumerate
754
755In addition to the main @code{type}, each @code{gen} has a @code{subtype}.
756This subtype is used sometimes to select different behaviour, e.g.
757adding a constant to a vector might add the constant to all terms for
758some geometric objects represented using vectors, only to the term of
759the diagonal of a square matrix, or to the last term for dense polynomials.
760See @code{giac/dispatch.h} for the description of the subtypes.
761
762@node Polynomials, Vectors and matrices, Gen, Giac
763@cindex Polynomials
764@section Polynomials
765Polynomials are available as:
766@itemize
767@item sparse multivariate polynomials @code{polynome},
768header files are @code{gausspol.h}, @code{poly.h}, @code{monomial.h}
769@item dense univariate polynomials: @code{poly1} or alias @code{modpoly}
770used for modular univariate polynomials. The type used is the same
771as for vectors and matrices.
772Header files are @code{giac/modfactor.h} and @code{giac/modpoly.h}.
773@end itemize
774
775A @code{gen} can be a polynomials if it's @code{type} field is
776respectively @code{_POLY} (sparse) or @code{_VECT} (dense).
777Conversion functions to and from the symbolic representation with
778respect to global names are declared in @code{giac/sym2poly.cc/h}.
779
780@node Vectors and matrices, Symbolics, Polynomials, Giac
781@cindex Vectors
782@cindex Matrices
783@section Vectors and matrices
784The type used for vectors and matrices is the same, it's a
785@code{std::vector<gen>} (unless you have configured with
786@code{--enable-debug}). The header file is @code{giac/vecteur.h}.
787A @code{gen} can be a vector if it's @code{type} field is
788@code{_VECT}.
789
790@node Symbolics, Unary functions, Vectors and matrices, Giac
791@cindex Symbolics
792@section Symbolics
793Symbolic objects are trees. The @code{sommet} is a @code{unary_function_ptr}
794(a class pointing to the function). The @code{feuille} is either
795an atomic @code{gen} (for a function with one argument) or a composite
796(@code{feuille.type==_VECT}) for a function with more than one argument
797(these functions appears therefore as a function with one argument which
798is the list of all it's arguments).
799
800@node Unary functions, Making a library function, Symbolics, Giac
801@cindex Unary functions
802@section Unary functions
803In the giac library, every function is viewed as a function taking one
804argument and returning one argument. Almost every Xcas functions have
805a C++ equivalent with the same name preceded by a _.
806If a Xcas function has more than one argument, these arguments
807are packed in a vector which is the first argument of the C++ function.
808Most C++ functions require a second argument, which is
809a context pointer. This context pointer
810encapsulate all the context (e.g. complex vs real mode, or all the
811variables that are assigned or assumed). You can use
812@code{giac::context0} as global context pointer or define a context
813@code{giac::context ct;} and use @code{&ct} as last argument to the function.
814
815The files @code{usual.cc/.h} give examples of declaration e.g. for
816exponential and trigonometric functions. Unary functions have the
817following members~:
818@itemize
819@item a fonction taking a @code{gen} and a @code{context *}
820and returning an @code{gen} which does the job
821@item partial derivatives of this function if they exist
822@item a special Taylor expansion if it's needed (see e.g. @code{taylor_asin}).
823This is always the case if your function is defined at infinity.
824Note that this function
825is called at initialization so that you can include code in it for
826example to add your function to the symbolic preprocessing step of the
827@code{limit/series} algorithm.
828@item a string identifier for printing. If you want the parser to
829recognize your function you must add a line in @code{input_lexer.ll}
830(see for example @code{"sin"}) or you must register it (see below).
831@item two special printing function if normal printing (normal printing
832means printing the function name followed by the argument(s) in parentheses)
833is not the right way to print. A null pointer means using normal
834printing.
835@end itemize
836Once your @code{unary_function_eval} is defined, you must construct
837a @code{unary_function_ptr} to be able to use it inside symbolics.
838When declaring the @code{unary_function_ptr},
839you may give an optional argument to specify a behavior for the evaluation
840of arguments (quoting or special parser rules).
841In this case, you may give a second optionnal argument
842to register your function dynamically in the list of function names
843recognized by the lexer. Be sure to link the object file so that
844initialization occurs after the initialization of @code{input_lexer.ll},
845it means you must put your object file before @code{input_lexer.o}
846when linking (see for example the position of @code{moyal.o} in
847the @code{Makefile.am} file, @code{moyal}
848is one example where dynamic registering is done).
849
850You have of course the option to declare the function name
851statically in the file @code{input_lexer.ll} but this is not recommended.
852
853@node Making a library function, Making modules, Unary functions, Giac
854Here is one example of a dynamically linkable function named
855@code{example} which takes 2 arguments and returns the sum divided
856by the product if the argument are integers and return itself otherwise.
857The C++ header @code{example.h} code looks like
858@example
859#ifndef __EXAMPLE_H
860#define __EXAMPLE_H
861#include <giac/config.h>
862#include <giac/gen.h>
863#include <giac/unary.h>
864
865#ifndef NO_NAMESPACE_GIAC
866namespace giac @{
867#endif // ndef NO_NAMESPACE_GIAC
868
869  gen example(const gen & a,const gen & b,GIAC_CONTEXT);
870  gen _example(const gen & args,GIAC_CONTEXT);
871  extern const unary_function_ptr * const at_example ;
872
873#ifndef NO_NAMESPACE_GIAC
874@} // namespace giac
875#endif // ndef NO_NAMESPACE_GIAC
876#endif // __EXAMPLE_H
877@end example
878
879The C++ source code looks like:
880@example
881using namespace std;
882#include "example.h"
883#include <giac/giac.h>
884
885#ifndef NO_NAMESPACE_GIAC
886namespace giac @{
887#endif // ndef NO_NAMESPACE_GIAC
888
889  gen example(const gen & a,const gen & b,GIAC_CONTEXT)@{
890    if (is_integer(a) && is_integer(b))
891      return (a+b)/(a*b);
892    return symbolic(at_example,makesequence(a,b));
893  @}
894
895  gen _example(const gen & args,GIAC_CONTEXT)@{
896    if ( (args.type!=_VECT) || (args._VECTptr->size()!=2) )
897      return gensizeerr(contextptr); // type checking : args must be a vector of size 2
898    vecteur & v=*args._VECTptr;
899    return example(v[0],v[1],contextptr);
900  @}
901  const string _example_s("example");
902  static define_unary_function_eval (__example,&_example,_example_s);
903  define_unary_function_ptr5( at_example ,alias_at_example,&__example,0,true);
904
905#ifndef NO_NAMESPACE_GIAC
906@}
907#endif // ndef NO_NAMESPACE_GIAC
908@end example
909
910Compile it with
911@example
912c++ -g -c example.cc
913@end example
914
915To test your code, you should write the following @code{test.cc} program
916@example
917#include "example.h"
918
919using namespace std;
920using namespace giac;
921
922int main()@{
923  gen args;
924  context ct;
925  cout << "Enter arguments of example function, for example 2,3 ";
926  cin >> args;
927  cout << "Result: " << _example(args,&ct) << endl;
928@}
929@end example
930Compile it with the command
931@example
932c++ -g example.o test.cc -lgiac -lgmp
933@end example
934You might need to link to other libraries e.g.
935@code{-lreadline -lhistory -lcurses} depedning on your installation.
936Then run @code{a.out}. Here you would test e.g. with @code{[1,2]}.
937
938You can debug your program as usual, e.g. with
939@code{gdb a.out}, it is recommended to create a @code{.gdbinit} file
940in the current directory so that you can use the @code{v} command
941to print giac data, the @code{.gdbinit} file should contain :
942@example
943echo Defining v as print command for giac types\n
944define v
945print ($arg0).dbgprint()
946end
947@end example
948
949When your function is tested, you can add it to the library. Edit
950the file @code{Makefile.am} of the @code{src} subdirectory
951of @code{giac} : just add @code{example.cc} before @code{input_lexer.cc}
952in the @code{libgiac_la_SOURCES} line and add @code{example.h} in the
953@code{giacinclude_HEADERS} line.
954
955To rebuild the library go in the @code{giac} directory and type
956@code{automake; make}
957
958If you want to share your function(s) with other people, you must
959license it under the GPL (because it will be linked to GPL-ed code).
960Add the GPL header to the files, and send them to the @code{giac}
961contribution e-mail, currently @code{mailto:parisse@@fourier.ujf-grenoble.fr}
962@example
963/*
964 *  Copyright (C) 2007 Your name
965 *
966 *  This program is free software; you can redistribute it and/or modify
967 *  it under the terms of the GNU General Public License as published by
968 *  the Free Software Foundation; either version 3 of the License, or
969 *  (at your option) any later version.
970 *
971 *  This program is distributed in the hope that it will be useful,
972 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
973 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
974 *  GNU General Public License for more details.
975 *
976 *  You should have received a copy of the GNU General Public License
977 *  along with this program; if not, write to the Free Software
978 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
979 */
980@end example
981
982@node  Making modules, User defined data,  Making a library function, Giac
983Another way to share your code could be to build a dynamic library
984that can be loaded at runtime using facilities of @code{<dlfcns.h>}.
985Warning: modules do not work with static binaries. Be sure
986to have dynamic binaries (this is the default when you compile giac,
987but the packaged @code{xcas} distributed as a binary is build static to
988avoid incompatible libraries).
989
990Let us define a function named @code{mydll} in the file @code{mydll.cc} like
991this :
992@example
993#include <giac/config.h>
994#include <giac/giac.h>
995
996#ifndef NO_NAMESPACE_GIAC
997namespace giac @{
998#endif // ndef NO_NAMESPACE_GIAC
999
1000  const string _mydll_s("mydll");
1001  gen _mydll(const gen & args,GIAC_CONTEXT)@{
1002    return sin(ln(args,contextptr),contextptr);
1003  @}
1004  unary_function_eval __mydll(0,&giac::_mydll,_mydll_s);
1005  unary_function_ptr at_mydll (&__mydll,0,true); // auto-register
1006
1007#ifndef NO_NAMESPACE_GIAC
1008@} // namespace giac
1009#endif // ndef NO_NAMESPACE_GIAC
1010@end example
1011
1012Compile it like this
1013@example
1014c++ -fPIC -DPIC -g -c mydll.cc -o mydll.lo
1015cc -shared  mydll.lo  -lc  -Wl,-soname -Wl,libgiac_mydll.so.0 -o libgiac_mydll.so.0.0.0
1016rm -f libgiac_mydll.so.0 && ln -s libgiac_mydll.so.0.0.0 libgiac_mydll.so.0
1017rm -f libgiac_mydll.so && ln -s libgiac_mydll.so.0.0.0 libgiac_mydll.so
1018@end example
1019
1020The library is loadable at runtime in a session using the command
1021@code{insmod("mydll")}
1022assuming it is stored in a directory available
1023from @code{LD_LIBRARY_PATH} or in @code{/etc/ld.so.conf} otherwise
1024you must put a path to the library file (beginning with @code{./} if
1025it is in the current directory), something like
1026@code{insmod("/path_to/libgiac_mydll.so")}
1027
1028A nice way to test your code is to add the following line in your
1029@code{~/.xcasrc} file :
1030@example
1031insmod("path_to_libmydll/libmydll.so");
1032@end example
1033where you replace @code{path_to_libmydll.so} with the actual path to
1034@code{libmydll.so} for example @code{/home/joe} if your login name is
1035@code{joe} and @code{mydll} is in your home directory.
1036Then if you are using @code{emacs} as editor, put as first line of
1037the file @code{mydll.cc}
1038@example
1039// -*- mode:C++ ; compile-command: "g++ -I.. -fPIC -DPIC -g -c mydll.cc -o mydll.lo && ln -sf mydll.lo mydll.o && gcc -shared mydll.lo -lc  -Wl,-soname -Wl,libmydll.so.0 -o libmydll.so.0.0.0 && ln -sf libmydll.so.0.0.0 libmydll.so.0 && ln -sf libmydll.so.0.0.0 libmydll.so" -*-
1040@end example
1041Now you can compile it with @code{Compile} of the menu @code{Tools}
1042and the resulting code is automatically loaded when you launch a new
1043session with @code{xcas} or @code{cas} which makes testing a breath.
1044
1045@node  User defined data, , Making modules, Giac
1046@cindex  User defined data
1047@section  User defined data
1048The class @code{gen_user} can be derived so that you can include
1049your own data inside @code{gen}. Look at the declaration of @code{gen_user}
1050in the file @code{gen.h} and at the example of the quaternions
1051in the files @code{quater.h} and @code{quater.cc}.
1052
1053@node    Examples, Concept Index, Giac, Top
1054@chapter Some examples of C++ program using giac
1055
1056@menu
1057* First example::
1058@end menu
1059
1060@node    First example, , , Examples
1061@chapter A first simple example
1062Type the following text with your favorite editor
1063
1064@smallexample
1065#include <giac/config.h>
1066#include <giac/giac.h>
1067using namespace std;
1068using namespace giac;
1069
1070int main()@{
1071  context ct;
1072  gen e("x^2-1",&ct);
1073  e=eval(e,1,&ct);
1074  cout << _factor(e,&ct) << endl;
1075@}
1076@end smallexample
1077
1078save it e.g. as @code{tryit.cc} and compile it with
1079
1080@command{c++ -g tryit.cc -lgiac -lgmp}
1081
1082If you get unresolved symbol, then @code{readline} is probably enabled
1083and you should compile like that
1084
1085@command{c++ -g tryit.cc -lgiac -lgmp -lreadline -lcurses}
1086
1087You can now run @code{a.out} which will print the factorisation of
1088@code{x^2-1}.
1089
1090You can also run the program step by step using gdb. We
1091recommended that you copy the file @code{.gdbinit} from the @code{src}
1092directory of the giac distribution, because it enables using
1093@code{v varname} to print the variable @code{varname} of type @code{gen}.
1094
1095Some explanations of the code:
1096@itemize
1097@item the @code{#include <giac/giac.h>}
1098directive includes all the headers of giac (which includes some STL
1099headers like @code{string} or @code{vector}).
1100@item The @code{using namespace}
1101directive are not mandatory, if you don't use them, you need to modify
1102some of the code, e.g. use @code{std::string} instead of @code{string}
1103or @code{giac::gen} instead of @code{gen}.
1104@item Variables of type @code{gen}
1105can be constructed from strings (using the parser), from some C types
1106(like @code{int} or @code{double}), from the STL type
1107@code{std::complex<double>} or from streams (using the parser).
1108@item Operations like @code{+, -, *} are defined on the @code{gen} type
1109but the division is not redefined to avoid confusion between integers
1110(use @code{iquo}) and double C division (use @code{rdiv}). For powers,
1111use @code{pow} as usual.
1112@end itemize
1113
1114@node    Concept Index,    ,  Examples, Top
1115@comment node-name,    next,  previous, up
1116@unnumbered Concept Index
1117
1118@printindex cp
1119
1120@contents
1121@bye
1122