1/// @ref gtc_noise
2///
3// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
4// https://github.com/ashima/webgl-noise
5// Following Stefan Gustavson's paper "Simplex noise demystified":
6// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
7
8namespace glm{
9namespace gtc
10{
11	template<typename T, qualifier Q>
12	GLM_FUNC_QUALIFIER vec<4, T, Q> grad4(T const& j, vec<4, T, Q> const& ip)
13	{
14		vec<3, T, Q> pXYZ = floor(fract(vec<3, T, Q>(j) * vec<3, T, Q>(ip)) * T(7)) * ip[2] - T(1);
15		T pW = static_cast<T>(1.5) - dot(abs(pXYZ), vec<3, T, Q>(1));
16		vec<4, T, Q> s = vec<4, T, Q>(lessThan(vec<4, T, Q>(pXYZ, pW), vec<4, T, Q>(0.0)));
17		pXYZ = pXYZ + (vec<3, T, Q>(s) * T(2) - T(1)) * s.w;
18		return vec<4, T, Q>(pXYZ, pW);
19	}
20}//namespace gtc
21
22	// Classic Perlin noise
23	template<typename T, qualifier Q>
24	GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position)
25	{
26		vec<4, T, Q> Pi = glm::floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0);
27		vec<4, T, Q> Pf = glm::fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0);
28		Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation
29		vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z);
30		vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w);
31		vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z);
32		vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w);
33
34		vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy);
35
36		vec<4, T, Q> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1);
37		vec<4, T, Q> gy = glm::abs(gx) - T(0.5);
38		vec<4, T, Q> tx = glm::floor(gx + T(0.5));
39		gx = gx - tx;
40
41		vec<2, T, Q> g00(gx.x, gy.x);
42		vec<2, T, Q> g10(gx.y, gy.y);
43		vec<2, T, Q> g01(gx.z, gy.z);
44		vec<2, T, Q> g11(gx.w, gy.w);
45
46		vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
47		g00 *= norm.x;
48		g01 *= norm.y;
49		g10 *= norm.z;
50		g11 *= norm.w;
51
52		T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x));
53		T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y));
54		T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z));
55		T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w));
56
57		vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y));
58		vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x);
59		T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
60		return T(2.3) * n_xy;
61	}
62
63	// Classic Perlin noise
64	template<typename T, qualifier Q>
65	GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position)
66	{
67		vec<3, T, Q> Pi0 = floor(Position); // Integer part for indexing
68		vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1
69		Pi0 = detail::mod289(Pi0);
70		Pi1 = detail::mod289(Pi1);
71		vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation
72		vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0
73		vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
74		vec<4, T, Q> iy = vec<4, T, Q>(vec<2, T, Q>(Pi0.y), vec<2, T, Q>(Pi1.y));
75		vec<4, T, Q> iz0(Pi0.z);
76		vec<4, T, Q> iz1(Pi1.z);
77
78		vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy);
79		vec<4, T, Q> ixy0 = detail::permute(ixy + iz0);
80		vec<4, T, Q> ixy1 = detail::permute(ixy + iz1);
81
82		vec<4, T, Q> gx0 = ixy0 * T(1.0 / 7.0);
83		vec<4, T, Q> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5);
84		gx0 = fract(gx0);
85		vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0);
86		vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0));
87		gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
88		gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
89
90		vec<4, T, Q> gx1 = ixy1 * T(1.0 / 7.0);
91		vec<4, T, Q> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5);
92		gx1 = fract(gx1);
93		vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1);
94		vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0));
95		gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
96		gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
97
98		vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x);
99		vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y);
100		vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z);
101		vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w);
102		vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x);
103		vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y);
104		vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z);
105		vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w);
106
107		vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
108		g000 *= norm0.x;
109		g010 *= norm0.y;
110		g100 *= norm0.z;
111		g110 *= norm0.w;
112		vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
113		g001 *= norm1.x;
114		g011 *= norm1.y;
115		g101 *= norm1.z;
116		g111 *= norm1.w;
117
118		T n000 = dot(g000, Pf0);
119		T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z));
120		T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z));
121		T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z));
122		T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z));
123		T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z));
124		T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z));
125		T n111 = dot(g111, Pf1);
126
127		vec<3, T, Q> fade_xyz = detail::fade(Pf0);
128		vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z);
129		vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y);
130		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
131		return T(2.2) * n_xyz;
132	}
133	/*
134	// Classic Perlin noise
135	template<typename T, qualifier Q>
136	GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& P)
137	{
138		vec<3, T, Q> Pi0 = floor(P); // Integer part for indexing
139		vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1
140		Pi0 = mod(Pi0, T(289));
141		Pi1 = mod(Pi1, T(289));
142		vec<3, T, Q> Pf0 = fract(P); // Fractional part for interpolation
143		vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0
144		vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
145		vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
146		vec<4, T, Q> iz0(Pi0.z);
147		vec<4, T, Q> iz1(Pi1.z);
148
149		vec<4, T, Q> ixy = permute(permute(ix) + iy);
150		vec<4, T, Q> ixy0 = permute(ixy + iz0);
151		vec<4, T, Q> ixy1 = permute(ixy + iz1);
152
153		vec<4, T, Q> gx0 = ixy0 / T(7);
154		vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
155		gx0 = fract(gx0);
156		vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0);
157		vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0));
158		gx0 -= sz0 * (step(0.0, gx0) - T(0.5));
159		gy0 -= sz0 * (step(0.0, gy0) - T(0.5));
160
161		vec<4, T, Q> gx1 = ixy1 / T(7);
162		vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
163		gx1 = fract(gx1);
164		vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1);
165		vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0));
166		gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
167		gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
168
169		vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x);
170		vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y);
171		vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z);
172		vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w);
173		vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x);
174		vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y);
175		vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z);
176		vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w);
177
178		vec<4, T, Q> norm0 = taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
179		g000 *= norm0.x;
180		g010 *= norm0.y;
181		g100 *= norm0.z;
182		g110 *= norm0.w;
183		vec<4, T, Q> norm1 = taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
184		g001 *= norm1.x;
185		g011 *= norm1.y;
186		g101 *= norm1.z;
187		g111 *= norm1.w;
188
189		T n000 = dot(g000, Pf0);
190		T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z));
191		T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z));
192		T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z));
193		T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z));
194		T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z));
195		T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z));
196		T n111 = dot(g111, Pf1);
197
198		vec<3, T, Q> fade_xyz = fade(Pf0);
199		vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z);
200		vec<2, T, Q> n_yz = mix(
201			vec<2, T, Q>(n_z.x, n_z.y),
202			vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y);
203		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
204		return T(2.2) * n_xyz;
205	}
206	*/
207	// Classic Perlin noise
208	template<typename T, qualifier Q>
209	GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position)
210	{
211		vec<4, T, Q> Pi0 = floor(Position);	// Integer part for indexing
212		vec<4, T, Q> Pi1 = Pi0 + T(1);		// Integer part + 1
213		Pi0 = mod(Pi0, vec<4, T, Q>(289));
214		Pi1 = mod(Pi1, vec<4, T, Q>(289));
215		vec<4, T, Q> Pf0 = fract(Position);	// Fractional part for interpolation
216		vec<4, T, Q> Pf1 = Pf0 - T(1);		// Fractional part - 1.0
217		vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
218		vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
219		vec<4, T, Q> iz0(Pi0.z);
220		vec<4, T, Q> iz1(Pi1.z);
221		vec<4, T, Q> iw0(Pi0.w);
222		vec<4, T, Q> iw1(Pi1.w);
223
224		vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy);
225		vec<4, T, Q> ixy0 = detail::permute(ixy + iz0);
226		vec<4, T, Q> ixy1 = detail::permute(ixy + iz1);
227		vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0);
228		vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1);
229		vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0);
230		vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1);
231
232		vec<4, T, Q> gx00 = ixy00 / T(7);
233		vec<4, T, Q> gy00 = floor(gx00) / T(7);
234		vec<4, T, Q> gz00 = floor(gy00) / T(6);
235		gx00 = fract(gx00) - T(0.5);
236		gy00 = fract(gy00) - T(0.5);
237		gz00 = fract(gz00) - T(0.5);
238		vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
239		vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0.0));
240		gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
241		gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
242
243		vec<4, T, Q> gx01 = ixy01 / T(7);
244		vec<4, T, Q> gy01 = floor(gx01) / T(7);
245		vec<4, T, Q> gz01 = floor(gy01) / T(6);
246		gx01 = fract(gx01) - T(0.5);
247		gy01 = fract(gy01) - T(0.5);
248		gz01 = fract(gz01) - T(0.5);
249		vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
250		vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0));
251		gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
252		gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
253
254		vec<4, T, Q> gx10 = ixy10 / T(7);
255		vec<4, T, Q> gy10 = floor(gx10) / T(7);
256		vec<4, T, Q> gz10 = floor(gy10) / T(6);
257		gx10 = fract(gx10) - T(0.5);
258		gy10 = fract(gy10) - T(0.5);
259		gz10 = fract(gz10) - T(0.5);
260		vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
261		vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0));
262		gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
263		gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
264
265		vec<4, T, Q> gx11 = ixy11 / T(7);
266		vec<4, T, Q> gy11 = floor(gx11) / T(7);
267		vec<4, T, Q> gz11 = floor(gy11) / T(6);
268		gx11 = fract(gx11) - T(0.5);
269		gy11 = fract(gy11) - T(0.5);
270		gz11 = fract(gz11) - T(0.5);
271		vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
272		vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(0.0));
273		gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
274		gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
275
276		vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
277		vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
278		vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
279		vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
280		vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
281		vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
282		vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
283		vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
284		vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
285		vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
286		vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
287		vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
288		vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
289		vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
290		vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
291		vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
292
293		vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
294		g0000 *= norm00.x;
295		g0100 *= norm00.y;
296		g1000 *= norm00.z;
297		g1100 *= norm00.w;
298
299		vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
300		g0001 *= norm01.x;
301		g0101 *= norm01.y;
302		g1001 *= norm01.z;
303		g1101 *= norm01.w;
304
305		vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
306		g0010 *= norm10.x;
307		g0110 *= norm10.y;
308		g1010 *= norm10.z;
309		g1110 *= norm10.w;
310
311		vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
312		g0011 *= norm11.x;
313		g0111 *= norm11.y;
314		g1011 *= norm11.z;
315		g1111 *= norm11.w;
316
317		T n0000 = dot(g0000, Pf0);
318		T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
319		T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
320		T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
321		T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
322		T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
323		T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
324		T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
325		T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
326		T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
327		T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
328		T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
329		T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
330		T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
331		T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
332		T n1111 = dot(g1111, Pf1);
333
334		vec<4, T, Q> fade_xyzw = detail::fade(Pf0);
335		vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w);
336		vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w);
337		vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
338		vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y);
339		T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
340		return T(2.2) * n_xyzw;
341	}
342
343	// Classic Perlin noise, periodic variant
344	template<typename T, qualifier Q>
345	GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position, vec<2, T, Q> const& rep)
346	{
347		vec<4, T, Q> Pi = floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0);
348		vec<4, T, Q> Pf = fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0);
349		Pi = mod(Pi, vec<4, T, Q>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period
350		Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation
351		vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z);
352		vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w);
353		vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z);
354		vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w);
355
356		vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy);
357
358		vec<4, T, Q> gx = static_cast<T>(2) * fract(i / T(41)) - T(1);
359		vec<4, T, Q> gy = abs(gx) - T(0.5);
360		vec<4, T, Q> tx = floor(gx + T(0.5));
361		gx = gx - tx;
362
363		vec<2, T, Q> g00(gx.x, gy.x);
364		vec<2, T, Q> g10(gx.y, gy.y);
365		vec<2, T, Q> g01(gx.z, gy.z);
366		vec<2, T, Q> g11(gx.w, gy.w);
367
368		vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
369		g00 *= norm.x;
370		g01 *= norm.y;
371		g10 *= norm.z;
372		g11 *= norm.w;
373
374		T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x));
375		T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y));
376		T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z));
377		T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w));
378
379		vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y));
380		vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x);
381		T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
382		return T(2.3) * n_xy;
383	}
384
385	// Classic Perlin noise, periodic variant
386	template<typename T, qualifier Q>
387	GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position, vec<3, T, Q> const& rep)
388	{
389		vec<3, T, Q> Pi0 = mod(floor(Position), rep); // Integer part, modulo period
390		vec<3, T, Q> Pi1 = mod(Pi0 + vec<3, T, Q>(T(1)), rep); // Integer part + 1, mod period
391		Pi0 = mod(Pi0, vec<3, T, Q>(289));
392		Pi1 = mod(Pi1, vec<3, T, Q>(289));
393		vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation
394		vec<3, T, Q> Pf1 = Pf0 - vec<3, T, Q>(T(1)); // Fractional part - 1.0
395		vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
396		vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
397		vec<4, T, Q> iz0(Pi0.z);
398		vec<4, T, Q> iz1(Pi1.z);
399
400		vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy);
401		vec<4, T, Q> ixy0 = detail::permute(ixy + iz0);
402		vec<4, T, Q> ixy1 = detail::permute(ixy + iz1);
403
404		vec<4, T, Q> gx0 = ixy0 / T(7);
405		vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
406		gx0 = fract(gx0);
407		vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0);
408		vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0));
409		gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
410		gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
411
412		vec<4, T, Q> gx1 = ixy1 / T(7);
413		vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
414		gx1 = fract(gx1);
415		vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1);
416		vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(T(0)));
417		gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
418		gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
419
420		vec<3, T, Q> g000 = vec<3, T, Q>(gx0.x, gy0.x, gz0.x);
421		vec<3, T, Q> g100 = vec<3, T, Q>(gx0.y, gy0.y, gz0.y);
422		vec<3, T, Q> g010 = vec<3, T, Q>(gx0.z, gy0.z, gz0.z);
423		vec<3, T, Q> g110 = vec<3, T, Q>(gx0.w, gy0.w, gz0.w);
424		vec<3, T, Q> g001 = vec<3, T, Q>(gx1.x, gy1.x, gz1.x);
425		vec<3, T, Q> g101 = vec<3, T, Q>(gx1.y, gy1.y, gz1.y);
426		vec<3, T, Q> g011 = vec<3, T, Q>(gx1.z, gy1.z, gz1.z);
427		vec<3, T, Q> g111 = vec<3, T, Q>(gx1.w, gy1.w, gz1.w);
428
429		vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
430		g000 *= norm0.x;
431		g010 *= norm0.y;
432		g100 *= norm0.z;
433		g110 *= norm0.w;
434		vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
435		g001 *= norm1.x;
436		g011 *= norm1.y;
437		g101 *= norm1.z;
438		g111 *= norm1.w;
439
440		T n000 = dot(g000, Pf0);
441		T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z));
442		T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z));
443		T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z));
444		T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z));
445		T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z));
446		T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z));
447		T n111 = dot(g111, Pf1);
448
449		vec<3, T, Q> fade_xyz = detail::fade(Pf0);
450		vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z);
451		vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y);
452		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
453		return T(2.2) * n_xyz;
454	}
455
456	// Classic Perlin noise, periodic version
457	template<typename T, qualifier Q>
458	GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position, vec<4, T, Q> const& rep)
459	{
460		vec<4, T, Q> Pi0 = mod(floor(Position), rep); // Integer part modulo rep
461		vec<4, T, Q> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep
462		vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation
463		vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0
464		vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
465		vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
466		vec<4, T, Q> iz0(Pi0.z);
467		vec<4, T, Q> iz1(Pi1.z);
468		vec<4, T, Q> iw0(Pi0.w);
469		vec<4, T, Q> iw1(Pi1.w);
470
471		vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy);
472		vec<4, T, Q> ixy0 = detail::permute(ixy + iz0);
473		vec<4, T, Q> ixy1 = detail::permute(ixy + iz1);
474		vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0);
475		vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1);
476		vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0);
477		vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1);
478
479		vec<4, T, Q> gx00 = ixy00 / T(7);
480		vec<4, T, Q> gy00 = floor(gx00) / T(7);
481		vec<4, T, Q> gz00 = floor(gy00) / T(6);
482		gx00 = fract(gx00) - T(0.5);
483		gy00 = fract(gy00) - T(0.5);
484		gz00 = fract(gz00) - T(0.5);
485		vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
486		vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0));
487		gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
488		gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
489
490		vec<4, T, Q> gx01 = ixy01 / T(7);
491		vec<4, T, Q> gy01 = floor(gx01) / T(7);
492		vec<4, T, Q> gz01 = floor(gy01) / T(6);
493		gx01 = fract(gx01) - T(0.5);
494		gy01 = fract(gy01) - T(0.5);
495		gz01 = fract(gz01) - T(0.5);
496		vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
497		vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0));
498		gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
499		gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
500
501		vec<4, T, Q> gx10 = ixy10 / T(7);
502		vec<4, T, Q> gy10 = floor(gx10) / T(7);
503		vec<4, T, Q> gz10 = floor(gy10) / T(6);
504		gx10 = fract(gx10) - T(0.5);
505		gy10 = fract(gy10) - T(0.5);
506		gz10 = fract(gz10) - T(0.5);
507		vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
508		vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0.0));
509		gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
510		gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
511
512		vec<4, T, Q> gx11 = ixy11 / T(7);
513		vec<4, T, Q> gy11 = floor(gx11) / T(7);
514		vec<4, T, Q> gz11 = floor(gy11) / T(6);
515		gx11 = fract(gx11) - T(0.5);
516		gy11 = fract(gy11) - T(0.5);
517		gz11 = fract(gz11) - T(0.5);
518		vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
519		vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(T(0)));
520		gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
521		gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
522
523		vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
524		vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
525		vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
526		vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
527		vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
528		vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
529		vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
530		vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
531		vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
532		vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
533		vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
534		vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
535		vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
536		vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
537		vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
538		vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
539
540		vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
541		g0000 *= norm00.x;
542		g0100 *= norm00.y;
543		g1000 *= norm00.z;
544		g1100 *= norm00.w;
545
546		vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
547		g0001 *= norm01.x;
548		g0101 *= norm01.y;
549		g1001 *= norm01.z;
550		g1101 *= norm01.w;
551
552		vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
553		g0010 *= norm10.x;
554		g0110 *= norm10.y;
555		g1010 *= norm10.z;
556		g1110 *= norm10.w;
557
558		vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
559		g0011 *= norm11.x;
560		g0111 *= norm11.y;
561		g1011 *= norm11.z;
562		g1111 *= norm11.w;
563
564		T n0000 = dot(g0000, Pf0);
565		T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
566		T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
567		T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
568		T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
569		T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
570		T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
571		T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
572		T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
573		T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
574		T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
575		T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
576		T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
577		T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
578		T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
579		T n1111 = dot(g1111, Pf1);
580
581		vec<4, T, Q> fade_xyzw = detail::fade(Pf0);
582		vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w);
583		vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w);
584		vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
585		vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y);
586		T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
587		return T(2.2) * n_xyzw;
588	}
589
590	template<typename T, qualifier Q>
591	GLM_FUNC_QUALIFIER T simplex(glm::vec<2, T, Q> const& v)
592	{
593		vec<4, T, Q> const C = vec<4, T, Q>(
594			T( 0.211324865405187),  // (3.0 -  sqrt(3.0)) / 6.0
595			T( 0.366025403784439),  //  0.5 * (sqrt(3.0)  - 1.0)
596			T(-0.577350269189626),	// -1.0 + 2.0 * C.x
597			T( 0.024390243902439)); //  1.0 / 41.0
598
599		// First corner
600		vec<2, T, Q> i  = floor(v + dot(v, vec<2, T, Q>(C[1])));
601		vec<2, T, Q> x0 = v -   i + dot(i, vec<2, T, Q>(C[0]));
602
603		// Other corners
604		//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
605		//i1.y = 1.0 - i1.x;
606		vec<2, T, Q> i1 = (x0.x > x0.y) ? vec<2, T, Q>(1, 0) : vec<2, T, Q>(0, 1);
607		// x0 = x0 - 0.0 + 0.0 * C.xx ;
608		// x1 = x0 - i1 + 1.0 * C.xx ;
609		// x2 = x0 - 1.0 + 2.0 * C.xx ;
610		vec<4, T, Q> x12 = vec<4, T, Q>(x0.x, x0.y, x0.x, x0.y) + vec<4, T, Q>(C.x, C.x, C.z, C.z);
611		x12 = vec<4, T, Q>(vec<2, T, Q>(x12) - i1, x12.z, x12.w);
612
613		// Permutations
614		i = mod(i, vec<2, T, Q>(289)); // Avoid truncation effects in permutation
615		vec<3, T, Q> p = detail::permute(
616			detail::permute(i.y + vec<3, T, Q>(T(0), i1.y, T(1)))
617			+ i.x + vec<3, T, Q>(T(0), i1.x, T(1)));
618
619		vec<3, T, Q> m = max(vec<3, T, Q>(0.5) - vec<3, T, Q>(
620			dot(x0, x0),
621			dot(vec<2, T, Q>(x12.x, x12.y), vec<2, T, Q>(x12.x, x12.y)),
622			dot(vec<2, T, Q>(x12.z, x12.w), vec<2, T, Q>(x12.z, x12.w))), vec<3, T, Q>(0));
623		m = m * m ;
624		m = m * m ;
625
626		// Gradients: 41 points uniformly over a line, mapped onto a diamond.
627		// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
628
629		vec<3, T, Q> x = static_cast<T>(2) * fract(p * C.w) - T(1);
630		vec<3, T, Q> h = abs(x) - T(0.5);
631		vec<3, T, Q> ox = floor(x + T(0.5));
632		vec<3, T, Q> a0 = x - ox;
633
634		// Normalise gradients implicitly by scaling m
635		// Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h );
636		m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h);
637
638		// Compute final noise value at P
639		vec<3, T, Q> g;
640		g.x  = a0.x  * x0.x  + h.x  * x0.y;
641		//g.yz = a0.yz * x12.xz + h.yz * x12.yw;
642		g.y = a0.y * x12.x + h.y * x12.y;
643		g.z = a0.z * x12.z + h.z * x12.w;
644		return T(130) * dot(m, g);
645	}
646
647	template<typename T, qualifier Q>
648	GLM_FUNC_QUALIFIER T simplex(vec<3, T, Q> const& v)
649	{
650		vec<2, T, Q> const C(1.0 / 6.0, 1.0 / 3.0);
651		vec<4, T, Q> const D(0.0, 0.5, 1.0, 2.0);
652
653		// First corner
654		vec<3, T, Q> i(floor(v + dot(v, vec<3, T, Q>(C.y))));
655		vec<3, T, Q> x0(v - i + dot(i, vec<3, T, Q>(C.x)));
656
657		// Other corners
658		vec<3, T, Q> g(step(vec<3, T, Q>(x0.y, x0.z, x0.x), x0));
659		vec<3, T, Q> l(T(1) - g);
660		vec<3, T, Q> i1(min(g, vec<3, T, Q>(l.z, l.x, l.y)));
661		vec<3, T, Q> i2(max(g, vec<3, T, Q>(l.z, l.x, l.y)));
662
663		//   x0 = x0 - 0.0 + 0.0 * C.xxx;
664		//   x1 = x0 - i1  + 1.0 * C.xxx;
665		//   x2 = x0 - i2  + 2.0 * C.xxx;
666		//   x3 = x0 - 1.0 + 3.0 * C.xxx;
667		vec<3, T, Q> x1(x0 - i1 + C.x);
668		vec<3, T, Q> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y
669		vec<3, T, Q> x3(x0 - D.y);      // -1.0+3.0*C.x = -0.5 = -D.y
670
671		// Permutations
672		i = detail::mod289(i);
673		vec<4, T, Q> p(detail::permute(detail::permute(detail::permute(
674			i.z + vec<4, T, Q>(T(0), i1.z, i2.z, T(1))) +
675			i.y + vec<4, T, Q>(T(0), i1.y, i2.y, T(1))) +
676			i.x + vec<4, T, Q>(T(0), i1.x, i2.x, T(1))));
677
678		// Gradients: 7x7 points over a square, mapped onto an octahedron.
679		// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
680		T n_ = static_cast<T>(0.142857142857); // 1.0/7.0
681		vec<3, T, Q> ns(n_ * vec<3, T, Q>(D.w, D.y, D.z) - vec<3, T, Q>(D.x, D.z, D.x));
682
683		vec<4, T, Q> j(p - T(49) * floor(p * ns.z * ns.z));  //  mod(p,7*7)
684
685		vec<4, T, Q> x_(floor(j * ns.z));
686		vec<4, T, Q> y_(floor(j - T(7) * x_));    // mod(j,N)
687
688		vec<4, T, Q> x(x_ * ns.x + ns.y);
689		vec<4, T, Q> y(y_ * ns.x + ns.y);
690		vec<4, T, Q> h(T(1) - abs(x) - abs(y));
691
692		vec<4, T, Q> b0(x.x, x.y, y.x, y.y);
693		vec<4, T, Q> b1(x.z, x.w, y.z, y.w);
694
695		// vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
696		// vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
697		vec<4, T, Q> s0(floor(b0) * T(2) + T(1));
698		vec<4, T, Q> s1(floor(b1) * T(2) + T(1));
699		vec<4, T, Q> sh(-step(h, vec<4, T, Q>(0.0)));
700
701		vec<4, T, Q> a0 = vec<4, T, Q>(b0.x, b0.z, b0.y, b0.w) + vec<4, T, Q>(s0.x, s0.z, s0.y, s0.w) * vec<4, T, Q>(sh.x, sh.x, sh.y, sh.y);
702		vec<4, T, Q> a1 = vec<4, T, Q>(b1.x, b1.z, b1.y, b1.w) + vec<4, T, Q>(s1.x, s1.z, s1.y, s1.w) * vec<4, T, Q>(sh.z, sh.z, sh.w, sh.w);
703
704		vec<3, T, Q> p0(a0.x, a0.y, h.x);
705		vec<3, T, Q> p1(a0.z, a0.w, h.y);
706		vec<3, T, Q> p2(a1.x, a1.y, h.z);
707		vec<3, T, Q> p3(a1.z, a1.w, h.w);
708
709		// Normalise gradients
710		vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
711		p0 *= norm.x;
712		p1 *= norm.y;
713		p2 *= norm.z;
714		p3 *= norm.w;
715
716		// Mix final noise value
717		vec<4, T, Q> m = max(T(0.6) - vec<4, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), vec<4, T, Q>(0));
718		m = m * m;
719		return T(42) * dot(m * m, vec<4, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
720	}
721
722	template<typename T, qualifier Q>
723	GLM_FUNC_QUALIFIER T simplex(vec<4, T, Q> const& v)
724	{
725		vec<4, T, Q> const C(
726			0.138196601125011,  // (5 - sqrt(5))/20  G4
727			0.276393202250021,  // 2 * G4
728			0.414589803375032,  // 3 * G4
729			-0.447213595499958); // -1 + 4 * G4
730
731		// (sqrt(5) - 1)/4 = F4, used once below
732		T const F4 = static_cast<T>(0.309016994374947451);
733
734		// First corner
735		vec<4, T, Q> i  = floor(v + dot(v, vec<4, T, Q>(F4)));
736		vec<4, T, Q> x0 = v -   i + dot(i, vec<4, T, Q>(C.x));
737
738		// Other corners
739
740		// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
741		vec<4, T, Q> i0;
742		vec<3, T, Q> isX = step(vec<3, T, Q>(x0.y, x0.z, x0.w), vec<3, T, Q>(x0.x));
743		vec<3, T, Q> isYZ = step(vec<3, T, Q>(x0.z, x0.w, x0.w), vec<3, T, Q>(x0.y, x0.y, x0.z));
744		//  i0.x = dot(isX, vec3(1.0));
745		//i0.x = isX.x + isX.y + isX.z;
746		//i0.yzw = static_cast<T>(1) - isX;
747		i0 = vec<4, T, Q>(isX.x + isX.y + isX.z, T(1) - isX);
748		//  i0.y += dot(isYZ.xy, vec2(1.0));
749		i0.y += isYZ.x + isYZ.y;
750		//i0.zw += 1.0 - vec<2, T, Q>(isYZ.x, isYZ.y);
751		i0.z += static_cast<T>(1) - isYZ.x;
752		i0.w += static_cast<T>(1) - isYZ.y;
753		i0.z += isYZ.z;
754		i0.w += static_cast<T>(1) - isYZ.z;
755
756		// i0 now contains the unique values 0,1,2,3 in each channel
757		vec<4, T, Q> i3 = clamp(i0, T(0), T(1));
758		vec<4, T, Q> i2 = clamp(i0 - T(1), T(0), T(1));
759		vec<4, T, Q> i1 = clamp(i0 - T(2), T(0), T(1));
760
761		//  x0 = x0 - 0.0 + 0.0 * C.xxxx
762		//  x1 = x0 - i1  + 0.0 * C.xxxx
763		//  x2 = x0 - i2  + 0.0 * C.xxxx
764		//  x3 = x0 - i3  + 0.0 * C.xxxx
765		//  x4 = x0 - 1.0 + 4.0 * C.xxxx
766		vec<4, T, Q> x1 = x0 - i1 + C.x;
767		vec<4, T, Q> x2 = x0 - i2 + C.y;
768		vec<4, T, Q> x3 = x0 - i3 + C.z;
769		vec<4, T, Q> x4 = x0 + C.w;
770
771		// Permutations
772		i = mod(i, vec<4, T, Q>(289));
773		T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x);
774		vec<4, T, Q> j1 = detail::permute(detail::permute(detail::permute(detail::permute(
775			i.w + vec<4, T, Q>(i1.w, i2.w, i3.w, T(1))) +
776			i.z + vec<4, T, Q>(i1.z, i2.z, i3.z, T(1))) +
777			i.y + vec<4, T, Q>(i1.y, i2.y, i3.y, T(1))) +
778			i.x + vec<4, T, Q>(i1.x, i2.x, i3.x, T(1)));
779
780		// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
781		// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
782		vec<4, T, Q> ip = vec<4, T, Q>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0));
783
784		vec<4, T, Q> p0 = gtc::grad4(j0,   ip);
785		vec<4, T, Q> p1 = gtc::grad4(j1.x, ip);
786		vec<4, T, Q> p2 = gtc::grad4(j1.y, ip);
787		vec<4, T, Q> p3 = gtc::grad4(j1.z, ip);
788		vec<4, T, Q> p4 = gtc::grad4(j1.w, ip);
789
790		// Normalise gradients
791		vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
792		p0 *= norm.x;
793		p1 *= norm.y;
794		p2 *= norm.z;
795		p3 *= norm.w;
796		p4 *= detail::taylorInvSqrt(dot(p4, p4));
797
798		// Mix contributions from the five corners
799		vec<3, T, Q> m0 = max(T(0.6) - vec<3, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), vec<3, T, Q>(0));
800		vec<2, T, Q> m1 = max(T(0.6) - vec<2, T, Q>(dot(x3, x3), dot(x4, x4)             ), vec<2, T, Q>(0));
801		m0 = m0 * m0;
802		m1 = m1 * m1;
803		return T(49) *
804			(dot(m0 * m0, vec<3, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) +
805			dot(m1 * m1, vec<2, T, Q>(dot(p3, x3), dot(p4, x4))));
806	}
807}//namespace glm
808