1*> \brief <b> CGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGEESX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeesx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeesx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeesx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
22*                          VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
23*                          BWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          JOBVS, SENSE, SORT
27*       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
28*       REAL               RCONDE, RCONDV
29*       ..
30*       .. Array Arguments ..
31*       LOGICAL            BWORK( * )
32*       REAL               RWORK( * )
33*       COMPLEX            A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
34*       ..
35*       .. Function Arguments ..
36*       LOGICAL            SELECT
37*       EXTERNAL           SELECT
38*       ..
39*
40*
41*> \par Purpose:
42*  =============
43*>
44*> \verbatim
45*>
46*> CGEESX computes for an N-by-N complex nonsymmetric matrix A, the
47*> eigenvalues, the Schur form T, and, optionally, the matrix of Schur
48*> vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).
49*>
50*> Optionally, it also orders the eigenvalues on the diagonal of the
51*> Schur form so that selected eigenvalues are at the top left;
52*> computes a reciprocal condition number for the average of the
53*> selected eigenvalues (RCONDE); and computes a reciprocal condition
54*> number for the right invariant subspace corresponding to the
55*> selected eigenvalues (RCONDV).  The leading columns of Z form an
56*> orthonormal basis for this invariant subspace.
57*>
58*> For further explanation of the reciprocal condition numbers RCONDE
59*> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
60*> these quantities are called s and sep respectively).
61*>
62*> A complex matrix is in Schur form if it is upper triangular.
63*> \endverbatim
64*
65*  Arguments:
66*  ==========
67*
68*> \param[in] JOBVS
69*> \verbatim
70*>          JOBVS is CHARACTER*1
71*>          = 'N': Schur vectors are not computed;
72*>          = 'V': Schur vectors are computed.
73*> \endverbatim
74*>
75*> \param[in] SORT
76*> \verbatim
77*>          SORT is CHARACTER*1
78*>          Specifies whether or not to order the eigenvalues on the
79*>          diagonal of the Schur form.
80*>          = 'N': Eigenvalues are not ordered;
81*>          = 'S': Eigenvalues are ordered (see SELECT).
82*> \endverbatim
83*>
84*> \param[in] SELECT
85*> \verbatim
86*>          SELECT is a LOGICAL FUNCTION of one COMPLEX argument
87*>          SELECT must be declared EXTERNAL in the calling subroutine.
88*>          If SORT = 'S', SELECT is used to select eigenvalues to order
89*>          to the top left of the Schur form.
90*>          If SORT = 'N', SELECT is not referenced.
91*>          An eigenvalue W(j) is selected if SELECT(W(j)) is true.
92*> \endverbatim
93*>
94*> \param[in] SENSE
95*> \verbatim
96*>          SENSE is CHARACTER*1
97*>          Determines which reciprocal condition numbers are computed.
98*>          = 'N': None are computed;
99*>          = 'E': Computed for average of selected eigenvalues only;
100*>          = 'V': Computed for selected right invariant subspace only;
101*>          = 'B': Computed for both.
102*>          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
103*> \endverbatim
104*>
105*> \param[in] N
106*> \verbatim
107*>          N is INTEGER
108*>          The order of the matrix A. N >= 0.
109*> \endverbatim
110*>
111*> \param[in,out] A
112*> \verbatim
113*>          A is COMPLEX array, dimension (LDA, N)
114*>          On entry, the N-by-N matrix A.
115*>          On exit, A is overwritten by its Schur form T.
116*> \endverbatim
117*>
118*> \param[in] LDA
119*> \verbatim
120*>          LDA is INTEGER
121*>          The leading dimension of the array A.  LDA >= max(1,N).
122*> \endverbatim
123*>
124*> \param[out] SDIM
125*> \verbatim
126*>          SDIM is INTEGER
127*>          If SORT = 'N', SDIM = 0.
128*>          If SORT = 'S', SDIM = number of eigenvalues for which
129*>                         SELECT is true.
130*> \endverbatim
131*>
132*> \param[out] W
133*> \verbatim
134*>          W is COMPLEX array, dimension (N)
135*>          W contains the computed eigenvalues, in the same order
136*>          that they appear on the diagonal of the output Schur form T.
137*> \endverbatim
138*>
139*> \param[out] VS
140*> \verbatim
141*>          VS is COMPLEX array, dimension (LDVS,N)
142*>          If JOBVS = 'V', VS contains the unitary matrix Z of Schur
143*>          vectors.
144*>          If JOBVS = 'N', VS is not referenced.
145*> \endverbatim
146*>
147*> \param[in] LDVS
148*> \verbatim
149*>          LDVS is INTEGER
150*>          The leading dimension of the array VS.  LDVS >= 1, and if
151*>          JOBVS = 'V', LDVS >= N.
152*> \endverbatim
153*>
154*> \param[out] RCONDE
155*> \verbatim
156*>          RCONDE is REAL
157*>          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
158*>          condition number for the average of the selected eigenvalues.
159*>          Not referenced if SENSE = 'N' or 'V'.
160*> \endverbatim
161*>
162*> \param[out] RCONDV
163*> \verbatim
164*>          RCONDV is REAL
165*>          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
166*>          condition number for the selected right invariant subspace.
167*>          Not referenced if SENSE = 'N' or 'E'.
168*> \endverbatim
169*>
170*> \param[out] WORK
171*> \verbatim
172*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
173*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
174*> \endverbatim
175*>
176*> \param[in] LWORK
177*> \verbatim
178*>          LWORK is INTEGER
179*>          The dimension of the array WORK.  LWORK >= max(1,2*N).
180*>          Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM),
181*>          where SDIM is the number of selected eigenvalues computed by
182*>          this routine.  Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also
183*>          that an error is only returned if LWORK < max(1,2*N), but if
184*>          SENSE = 'E' or 'V' or 'B' this may not be large enough.
185*>          For good performance, LWORK must generally be larger.
186*>
187*>          If LWORK = -1, then a workspace query is assumed; the routine
188*>          only calculates upper bound on the optimal size of the
189*>          array WORK, returns this value as the first entry of the WORK
190*>          array, and no error message related to LWORK is issued by
191*>          XERBLA.
192*> \endverbatim
193*>
194*> \param[out] RWORK
195*> \verbatim
196*>          RWORK is REAL array, dimension (N)
197*> \endverbatim
198*>
199*> \param[out] BWORK
200*> \verbatim
201*>          BWORK is LOGICAL array, dimension (N)
202*>          Not referenced if SORT = 'N'.
203*> \endverbatim
204*>
205*> \param[out] INFO
206*> \verbatim
207*>          INFO is INTEGER
208*>          = 0: successful exit
209*>          < 0: if INFO = -i, the i-th argument had an illegal value.
210*>          > 0: if INFO = i, and i is
211*>             <= N: the QR algorithm failed to compute all the
212*>                   eigenvalues; elements 1:ILO-1 and i+1:N of W
213*>                   contain those eigenvalues which have converged; if
214*>                   JOBVS = 'V', VS contains the transformation which
215*>                   reduces A to its partially converged Schur form.
216*>             = N+1: the eigenvalues could not be reordered because some
217*>                   eigenvalues were too close to separate (the problem
218*>                   is very ill-conditioned);
219*>             = N+2: after reordering, roundoff changed values of some
220*>                   complex eigenvalues so that leading eigenvalues in
221*>                   the Schur form no longer satisfy SELECT=.TRUE.  This
222*>                   could also be caused by underflow due to scaling.
223*> \endverbatim
224*
225*  Authors:
226*  ========
227*
228*> \author Univ. of Tennessee
229*> \author Univ. of California Berkeley
230*> \author Univ. of Colorado Denver
231*> \author NAG Ltd.
232*
233*> \ingroup complexGEeigen
234*
235*  =====================================================================
236      SUBROUTINE CGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
237     $                   VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
238     $                   BWORK, INFO )
239*
240*  -- LAPACK driver routine --
241*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
242*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
243*
244*     .. Scalar Arguments ..
245      CHARACTER          JOBVS, SENSE, SORT
246      INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
247      REAL               RCONDE, RCONDV
248*     ..
249*     .. Array Arguments ..
250      LOGICAL            BWORK( * )
251      REAL               RWORK( * )
252      COMPLEX            A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
253*     ..
254*     .. Function Arguments ..
255      LOGICAL            SELECT
256      EXTERNAL           SELECT
257*     ..
258*
259*  =====================================================================
260*
261*     .. Parameters ..
262      REAL               ZERO, ONE
263      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
264*     ..
265*     .. Local Scalars ..
266      LOGICAL            LQUERY, SCALEA, WANTSB, WANTSE, WANTSN, WANTST,
267     $                   WANTSV, WANTVS
268      INTEGER            HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
269     $                   ITAU, IWRK, LWRK, MAXWRK, MINWRK
270      REAL               ANRM, BIGNUM, CSCALE, EPS, SMLNUM
271*     ..
272*     .. Local Arrays ..
273      REAL               DUM( 1 )
274*     ..
275*     .. External Subroutines ..
276      EXTERNAL           CCOPY, CGEBAK, CGEBAL, CGEHRD, CHSEQR, CLACPY,
277     $                   CLASCL, CTRSEN, CUNGHR, SLABAD, SLASCL, XERBLA
278*     ..
279*     .. External Functions ..
280      LOGICAL            LSAME
281      INTEGER            ILAENV
282      REAL               CLANGE, SLAMCH
283      EXTERNAL           LSAME, ILAENV, CLANGE, SLAMCH
284*     ..
285*     .. Intrinsic Functions ..
286      INTRINSIC          MAX, SQRT
287*     ..
288*     .. Executable Statements ..
289*
290*     Test the input arguments
291*
292      INFO = 0
293      WANTVS = LSAME( JOBVS, 'V' )
294      WANTST = LSAME( SORT, 'S' )
295      WANTSN = LSAME( SENSE, 'N' )
296      WANTSE = LSAME( SENSE, 'E' )
297      WANTSV = LSAME( SENSE, 'V' )
298      WANTSB = LSAME( SENSE, 'B' )
299      LQUERY = ( LWORK.EQ.-1 )
300*
301      IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
302         INFO = -1
303      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
304         INFO = -2
305      ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
306     $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
307         INFO = -4
308      ELSE IF( N.LT.0 ) THEN
309         INFO = -5
310      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
311         INFO = -7
312      ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
313         INFO = -11
314      END IF
315*
316*     Compute workspace
317*      (Note: Comments in the code beginning "Workspace:" describe the
318*       minimal amount of real workspace needed at that point in the
319*       code, as well as the preferred amount for good performance.
320*       CWorkspace refers to complex workspace, and RWorkspace to real
321*       workspace. NB refers to the optimal block size for the
322*       immediately following subroutine, as returned by ILAENV.
323*       HSWORK refers to the workspace preferred by CHSEQR, as
324*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
325*       the worst case.
326*       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
327*       depends on SDIM, which is computed by the routine CTRSEN later
328*       in the code.)
329*
330      IF( INFO.EQ.0 ) THEN
331         IF( N.EQ.0 ) THEN
332            MINWRK = 1
333            LWRK = 1
334         ELSE
335            MAXWRK = N + N*ILAENV( 1, 'CGEHRD', ' ', N, 1, N, 0 )
336            MINWRK = 2*N
337*
338            CALL CHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
339     $             WORK, -1, IEVAL )
340            HSWORK = REAL( WORK( 1 ) )
341*
342            IF( .NOT.WANTVS ) THEN
343               MAXWRK = MAX( MAXWRK, HSWORK )
344            ELSE
345               MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
346     $                       ' ', N, 1, N, -1 ) )
347               MAXWRK = MAX( MAXWRK, HSWORK )
348            END IF
349            LWRK = MAXWRK
350            IF( .NOT.WANTSN )
351     $         LWRK = MAX( LWRK, ( N*N )/2 )
352         END IF
353         WORK( 1 ) = LWRK
354*
355         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
356            INFO = -15
357         END IF
358      END IF
359*
360      IF( INFO.NE.0 ) THEN
361         CALL XERBLA( 'CGEESX', -INFO )
362         RETURN
363      ELSE IF( LQUERY ) THEN
364         RETURN
365      END IF
366*
367*     Quick return if possible
368*
369      IF( N.EQ.0 ) THEN
370         SDIM = 0
371         RETURN
372      END IF
373*
374*     Get machine constants
375*
376      EPS = SLAMCH( 'P' )
377      SMLNUM = SLAMCH( 'S' )
378      BIGNUM = ONE / SMLNUM
379      CALL SLABAD( SMLNUM, BIGNUM )
380      SMLNUM = SQRT( SMLNUM ) / EPS
381      BIGNUM = ONE / SMLNUM
382*
383*     Scale A if max element outside range [SMLNUM,BIGNUM]
384*
385      ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
386      SCALEA = .FALSE.
387      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
388         SCALEA = .TRUE.
389         CSCALE = SMLNUM
390      ELSE IF( ANRM.GT.BIGNUM ) THEN
391         SCALEA = .TRUE.
392         CSCALE = BIGNUM
393      END IF
394      IF( SCALEA )
395     $   CALL CLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
396*
397*
398*     Permute the matrix to make it more nearly triangular
399*     (CWorkspace: none)
400*     (RWorkspace: need N)
401*
402      IBAL = 1
403      CALL CGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
404*
405*     Reduce to upper Hessenberg form
406*     (CWorkspace: need 2*N, prefer N+N*NB)
407*     (RWorkspace: none)
408*
409      ITAU = 1
410      IWRK = N + ITAU
411      CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
412     $             LWORK-IWRK+1, IERR )
413*
414      IF( WANTVS ) THEN
415*
416*        Copy Householder vectors to VS
417*
418         CALL CLACPY( 'L', N, N, A, LDA, VS, LDVS )
419*
420*        Generate unitary matrix in VS
421*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
422*        (RWorkspace: none)
423*
424         CALL CUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
425     $                LWORK-IWRK+1, IERR )
426      END IF
427*
428      SDIM = 0
429*
430*     Perform QR iteration, accumulating Schur vectors in VS if desired
431*     (CWorkspace: need 1, prefer HSWORK (see comments) )
432*     (RWorkspace: none)
433*
434      IWRK = ITAU
435      CALL CHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
436     $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
437      IF( IEVAL.GT.0 )
438     $   INFO = IEVAL
439*
440*     Sort eigenvalues if desired
441*
442      IF( WANTST .AND. INFO.EQ.0 ) THEN
443         IF( SCALEA )
444     $      CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
445         DO 10 I = 1, N
446            BWORK( I ) = SELECT( W( I ) )
447   10    CONTINUE
448*
449*        Reorder eigenvalues, transform Schur vectors, and compute
450*        reciprocal condition numbers
451*        (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM)
452*                     otherwise, need none )
453*        (RWorkspace: none)
454*
455         CALL CTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
456     $                RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
457     $                ICOND )
458         IF( .NOT.WANTSN )
459     $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
460         IF( ICOND.EQ.-14 ) THEN
461*
462*           Not enough complex workspace
463*
464            INFO = -15
465         END IF
466      END IF
467*
468      IF( WANTVS ) THEN
469*
470*        Undo balancing
471*        (CWorkspace: none)
472*        (RWorkspace: need N)
473*
474         CALL CGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
475     $                IERR )
476      END IF
477*
478      IF( SCALEA ) THEN
479*
480*        Undo scaling for the Schur form of A
481*
482         CALL CLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
483         CALL CCOPY( N, A, LDA+1, W, 1 )
484         IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
485            DUM( 1 ) = RCONDV
486            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
487            RCONDV = DUM( 1 )
488         END IF
489      END IF
490*
491      WORK( 1 ) = MAXWRK
492      RETURN
493*
494*     End of CGEESX
495*
496      END
497