1*> \brief \b SSTEMR
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SSTEMR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstemr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstemr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstemr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
22*                          M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
23*                          IWORK, LIWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          JOBZ, RANGE
27*       LOGICAL            TRYRAC
28*       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
29*       REAL               VL, VU
30*       ..
31*       .. Array Arguments ..
32*       INTEGER            ISUPPZ( * ), IWORK( * )
33*       REAL               D( * ), E( * ), W( * ), WORK( * )
34*       REAL               Z( LDZ, * )
35*       ..
36*
37*
38*> \par Purpose:
39*  =============
40*>
41*> \verbatim
42*>
43*> SSTEMR computes selected eigenvalues and, optionally, eigenvectors
44*> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
45*> a well defined set of pairwise different real eigenvalues, the corresponding
46*> real eigenvectors are pairwise orthogonal.
47*>
48*> The spectrum may be computed either completely or partially by specifying
49*> either an interval (VL,VU] or a range of indices IL:IU for the desired
50*> eigenvalues.
51*>
52*> Depending on the number of desired eigenvalues, these are computed either
53*> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
54*> computed by the use of various suitable L D L^T factorizations near clusters
55*> of close eigenvalues (referred to as RRRs, Relatively Robust
56*> Representations). An informal sketch of the algorithm follows.
57*>
58*> For each unreduced block (submatrix) of T,
59*>    (a) Compute T - sigma I  = L D L^T, so that L and D
60*>        define all the wanted eigenvalues to high relative accuracy.
61*>        This means that small relative changes in the entries of D and L
62*>        cause only small relative changes in the eigenvalues and
63*>        eigenvectors. The standard (unfactored) representation of the
64*>        tridiagonal matrix T does not have this property in general.
65*>    (b) Compute the eigenvalues to suitable accuracy.
66*>        If the eigenvectors are desired, the algorithm attains full
67*>        accuracy of the computed eigenvalues only right before
68*>        the corresponding vectors have to be computed, see steps c) and d).
69*>    (c) For each cluster of close eigenvalues, select a new
70*>        shift close to the cluster, find a new factorization, and refine
71*>        the shifted eigenvalues to suitable accuracy.
72*>    (d) For each eigenvalue with a large enough relative separation compute
73*>        the corresponding eigenvector by forming a rank revealing twisted
74*>        factorization. Go back to (c) for any clusters that remain.
75*>
76*> For more details, see:
77*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
78*>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
79*>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
80*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
81*>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
82*>   2004.  Also LAPACK Working Note 154.
83*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
84*>   tridiagonal eigenvalue/eigenvector problem",
85*>   Computer Science Division Technical Report No. UCB/CSD-97-971,
86*>   UC Berkeley, May 1997.
87*>
88*> Further Details
89*> 1.SSTEMR works only on machines which follow IEEE-754
90*> floating-point standard in their handling of infinities and NaNs.
91*> This permits the use of efficient inner loops avoiding a check for
92*> zero divisors.
93*> \endverbatim
94*
95*  Arguments:
96*  ==========
97*
98*> \param[in] JOBZ
99*> \verbatim
100*>          JOBZ is CHARACTER*1
101*>          = 'N':  Compute eigenvalues only;
102*>          = 'V':  Compute eigenvalues and eigenvectors.
103*> \endverbatim
104*>
105*> \param[in] RANGE
106*> \verbatim
107*>          RANGE is CHARACTER*1
108*>          = 'A': all eigenvalues will be found.
109*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
110*>                 will be found.
111*>          = 'I': the IL-th through IU-th eigenvalues will be found.
112*> \endverbatim
113*>
114*> \param[in] N
115*> \verbatim
116*>          N is INTEGER
117*>          The order of the matrix.  N >= 0.
118*> \endverbatim
119*>
120*> \param[in,out] D
121*> \verbatim
122*>          D is REAL array, dimension (N)
123*>          On entry, the N diagonal elements of the tridiagonal matrix
124*>          T. On exit, D is overwritten.
125*> \endverbatim
126*>
127*> \param[in,out] E
128*> \verbatim
129*>          E is REAL array, dimension (N)
130*>          On entry, the (N-1) subdiagonal elements of the tridiagonal
131*>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
132*>          input, but is used internally as workspace.
133*>          On exit, E is overwritten.
134*> \endverbatim
135*>
136*> \param[in] VL
137*> \verbatim
138*>          VL is REAL
139*>
140*>          If RANGE='V', the lower bound of the interval to
141*>          be searched for eigenvalues. VL < VU.
142*>          Not referenced if RANGE = 'A' or 'I'.
143*> \endverbatim
144*>
145*> \param[in] VU
146*> \verbatim
147*>          VU is REAL
148*>
149*>          If RANGE='V', the upper bound of the interval to
150*>          be searched for eigenvalues. VL < VU.
151*>          Not referenced if RANGE = 'A' or 'I'.
152*> \endverbatim
153*>
154*> \param[in] IL
155*> \verbatim
156*>          IL is INTEGER
157*>
158*>          If RANGE='I', the index of the
159*>          smallest eigenvalue to be returned.
160*>          1 <= IL <= IU <= N, if N > 0.
161*>          Not referenced if RANGE = 'A' or 'V'.
162*> \endverbatim
163*>
164*> \param[in] IU
165*> \verbatim
166*>          IU is INTEGER
167*>
168*>          If RANGE='I', the index of the
169*>          largest eigenvalue to be returned.
170*>          1 <= IL <= IU <= N, if N > 0.
171*>          Not referenced if RANGE = 'A' or 'V'.
172*> \endverbatim
173*>
174*> \param[out] M
175*> \verbatim
176*>          M is INTEGER
177*>          The total number of eigenvalues found.  0 <= M <= N.
178*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
179*> \endverbatim
180*>
181*> \param[out] W
182*> \verbatim
183*>          W is REAL array, dimension (N)
184*>          The first M elements contain the selected eigenvalues in
185*>          ascending order.
186*> \endverbatim
187*>
188*> \param[out] Z
189*> \verbatim
190*>          Z is REAL array, dimension (LDZ, max(1,M) )
191*>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
192*>          contain the orthonormal eigenvectors of the matrix T
193*>          corresponding to the selected eigenvalues, with the i-th
194*>          column of Z holding the eigenvector associated with W(i).
195*>          If JOBZ = 'N', then Z is not referenced.
196*>          Note: the user must ensure that at least max(1,M) columns are
197*>          supplied in the array Z; if RANGE = 'V', the exact value of M
198*>          is not known in advance and can be computed with a workspace
199*>          query by setting NZC = -1, see below.
200*> \endverbatim
201*>
202*> \param[in] LDZ
203*> \verbatim
204*>          LDZ is INTEGER
205*>          The leading dimension of the array Z.  LDZ >= 1, and if
206*>          JOBZ = 'V', then LDZ >= max(1,N).
207*> \endverbatim
208*>
209*> \param[in] NZC
210*> \verbatim
211*>          NZC is INTEGER
212*>          The number of eigenvectors to be held in the array Z.
213*>          If RANGE = 'A', then NZC >= max(1,N).
214*>          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
215*>          If RANGE = 'I', then NZC >= IU-IL+1.
216*>          If NZC = -1, then a workspace query is assumed; the
217*>          routine calculates the number of columns of the array Z that
218*>          are needed to hold the eigenvectors.
219*>          This value is returned as the first entry of the Z array, and
220*>          no error message related to NZC is issued by XERBLA.
221*> \endverbatim
222*>
223*> \param[out] ISUPPZ
224*> \verbatim
225*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
226*>          The support of the eigenvectors in Z, i.e., the indices
227*>          indicating the nonzero elements in Z. The i-th computed eigenvector
228*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
229*>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
230*>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
231*> \endverbatim
232*>
233*> \param[in,out] TRYRAC
234*> \verbatim
235*>          TRYRAC is LOGICAL
236*>          If TRYRAC = .TRUE., indicates that the code should check whether
237*>          the tridiagonal matrix defines its eigenvalues to high relative
238*>          accuracy.  If so, the code uses relative-accuracy preserving
239*>          algorithms that might be (a bit) slower depending on the matrix.
240*>          If the matrix does not define its eigenvalues to high relative
241*>          accuracy, the code can uses possibly faster algorithms.
242*>          If TRYRAC = .FALSE., the code is not required to guarantee
243*>          relatively accurate eigenvalues and can use the fastest possible
244*>          techniques.
245*>          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
246*>          does not define its eigenvalues to high relative accuracy.
247*> \endverbatim
248*>
249*> \param[out] WORK
250*> \verbatim
251*>          WORK is REAL array, dimension (LWORK)
252*>          On exit, if INFO = 0, WORK(1) returns the optimal
253*>          (and minimal) LWORK.
254*> \endverbatim
255*>
256*> \param[in] LWORK
257*> \verbatim
258*>          LWORK is INTEGER
259*>          The dimension of the array WORK. LWORK >= max(1,18*N)
260*>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
261*>          If LWORK = -1, then a workspace query is assumed; the routine
262*>          only calculates the optimal size of the WORK array, returns
263*>          this value as the first entry of the WORK array, and no error
264*>          message related to LWORK is issued by XERBLA.
265*> \endverbatim
266*>
267*> \param[out] IWORK
268*> \verbatim
269*>          IWORK is INTEGER array, dimension (LIWORK)
270*>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
271*> \endverbatim
272*>
273*> \param[in] LIWORK
274*> \verbatim
275*>          LIWORK is INTEGER
276*>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
277*>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
278*>          if only the eigenvalues are to be computed.
279*>          If LIWORK = -1, then a workspace query is assumed; the
280*>          routine only calculates the optimal size of the IWORK array,
281*>          returns this value as the first entry of the IWORK array, and
282*>          no error message related to LIWORK is issued by XERBLA.
283*> \endverbatim
284*>
285*> \param[out] INFO
286*> \verbatim
287*>          INFO is INTEGER
288*>          On exit, INFO
289*>          = 0:  successful exit
290*>          < 0:  if INFO = -i, the i-th argument had an illegal value
291*>          > 0:  if INFO = 1X, internal error in SLARRE,
292*>                if INFO = 2X, internal error in SLARRV.
293*>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
294*>                the nonzero error code returned by SLARRE or
295*>                SLARRV, respectively.
296*> \endverbatim
297*
298*  Authors:
299*  ========
300*
301*> \author Univ. of Tennessee
302*> \author Univ. of California Berkeley
303*> \author Univ. of Colorado Denver
304*> \author NAG Ltd.
305*
306*> \ingroup realOTHERcomputational
307*
308*> \par Contributors:
309*  ==================
310*>
311*> Beresford Parlett, University of California, Berkeley, USA \n
312*> Jim Demmel, University of California, Berkeley, USA \n
313*> Inderjit Dhillon, University of Texas, Austin, USA \n
314*> Osni Marques, LBNL/NERSC, USA \n
315*> Christof Voemel, University of California, Berkeley, USA
316*
317*  =====================================================================
318      SUBROUTINE SSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
319     $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
320     $                   IWORK, LIWORK, INFO )
321*
322*  -- LAPACK computational routine --
323*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
324*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
325*
326*     .. Scalar Arguments ..
327      CHARACTER          JOBZ, RANGE
328      LOGICAL            TRYRAC
329      INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
330      REAL               VL, VU
331*     ..
332*     .. Array Arguments ..
333      INTEGER            ISUPPZ( * ), IWORK( * )
334      REAL               D( * ), E( * ), W( * ), WORK( * )
335      REAL               Z( LDZ, * )
336*     ..
337*
338*  =====================================================================
339*
340*     .. Parameters ..
341      REAL               ZERO, ONE, FOUR, MINRGP
342      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0,
343     $                     FOUR = 4.0E0,
344     $                     MINRGP = 3.0E-3 )
345*     ..
346*     .. Local Scalars ..
347      LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
348      INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
349     $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
350     $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
351     $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
352     $                   NZCMIN, OFFSET, WBEGIN, WEND
353      REAL               BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
354     $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
355     $                   THRESH, TMP, TNRM, WL, WU
356*     ..
357*     ..
358*     .. External Functions ..
359      LOGICAL            LSAME
360      REAL               SLAMCH, SLANST
361      EXTERNAL           LSAME, SLAMCH, SLANST
362*     ..
363*     .. External Subroutines ..
364      EXTERNAL           SCOPY, SLAE2, SLAEV2, SLARRC, SLARRE, SLARRJ,
365     $                   SLARRR, SLARRV, SLASRT, SSCAL, SSWAP, XERBLA
366*     ..
367*     .. Intrinsic Functions ..
368      INTRINSIC          MAX, MIN, SQRT
369*     ..
370*     .. Executable Statements ..
371*
372*     Test the input parameters.
373*
374      WANTZ = LSAME( JOBZ, 'V' )
375      ALLEIG = LSAME( RANGE, 'A' )
376      VALEIG = LSAME( RANGE, 'V' )
377      INDEIG = LSAME( RANGE, 'I' )
378*
379      LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
380      ZQUERY = ( NZC.EQ.-1 )
381
382*     SSTEMR needs WORK of size 6*N, IWORK of size 3*N.
383*     In addition, SLARRE needs WORK of size 6*N, IWORK of size 5*N.
384*     Furthermore, SLARRV needs WORK of size 12*N, IWORK of size 7*N.
385      IF( WANTZ ) THEN
386         LWMIN = 18*N
387         LIWMIN = 10*N
388      ELSE
389*        need less workspace if only the eigenvalues are wanted
390         LWMIN = 12*N
391         LIWMIN = 8*N
392      ENDIF
393
394      WL = ZERO
395      WU = ZERO
396      IIL = 0
397      IIU = 0
398      NSPLIT = 0
399
400      IF( VALEIG ) THEN
401*        We do not reference VL, VU in the cases RANGE = 'I','A'
402*        The interval (WL, WU] contains all the wanted eigenvalues.
403*        It is either given by the user or computed in SLARRE.
404         WL = VL
405         WU = VU
406      ELSEIF( INDEIG ) THEN
407*        We do not reference IL, IU in the cases RANGE = 'V','A'
408         IIL = IL
409         IIU = IU
410      ENDIF
411*
412      INFO = 0
413      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
414         INFO = -1
415      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
416         INFO = -2
417      ELSE IF( N.LT.0 ) THEN
418         INFO = -3
419      ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
420         INFO = -7
421      ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
422         INFO = -8
423      ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
424         INFO = -9
425      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
426         INFO = -13
427      ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
428         INFO = -17
429      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
430         INFO = -19
431      END IF
432*
433*     Get machine constants.
434*
435      SAFMIN = SLAMCH( 'Safe minimum' )
436      EPS = SLAMCH( 'Precision' )
437      SMLNUM = SAFMIN / EPS
438      BIGNUM = ONE / SMLNUM
439      RMIN = SQRT( SMLNUM )
440      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
441*
442      IF( INFO.EQ.0 ) THEN
443         WORK( 1 ) = LWMIN
444         IWORK( 1 ) = LIWMIN
445*
446         IF( WANTZ .AND. ALLEIG ) THEN
447            NZCMIN = N
448         ELSE IF( WANTZ .AND. VALEIG ) THEN
449            CALL SLARRC( 'T', N, VL, VU, D, E, SAFMIN,
450     $                            NZCMIN, ITMP, ITMP2, INFO )
451         ELSE IF( WANTZ .AND. INDEIG ) THEN
452            NZCMIN = IIU-IIL+1
453         ELSE
454*           WANTZ .EQ. FALSE.
455            NZCMIN = 0
456         ENDIF
457         IF( ZQUERY .AND. INFO.EQ.0 ) THEN
458            Z( 1,1 ) = NZCMIN
459         ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
460            INFO = -14
461         END IF
462      END IF
463
464      IF( INFO.NE.0 ) THEN
465*
466         CALL XERBLA( 'SSTEMR', -INFO )
467*
468         RETURN
469      ELSE IF( LQUERY .OR. ZQUERY ) THEN
470         RETURN
471      END IF
472*
473*     Handle N = 0, 1, and 2 cases immediately
474*
475      M = 0
476      IF( N.EQ.0 )
477     $   RETURN
478*
479      IF( N.EQ.1 ) THEN
480         IF( ALLEIG .OR. INDEIG ) THEN
481            M = 1
482            W( 1 ) = D( 1 )
483         ELSE
484            IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
485               M = 1
486               W( 1 ) = D( 1 )
487            END IF
488         END IF
489         IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
490            Z( 1, 1 ) = ONE
491            ISUPPZ(1) = 1
492            ISUPPZ(2) = 1
493         END IF
494         RETURN
495      END IF
496*
497      IF( N.EQ.2 ) THEN
498         IF( .NOT.WANTZ ) THEN
499            CALL SLAE2( D(1), E(1), D(2), R1, R2 )
500         ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
501            CALL SLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
502         END IF
503         IF( ALLEIG.OR.
504     $      (VALEIG.AND.(R2.GT.WL).AND.
505     $                  (R2.LE.WU)).OR.
506     $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
507            M = M+1
508            W( M ) = R2
509            IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
510               Z( 1, M ) = -SN
511               Z( 2, M ) = CS
512*              Note: At most one of SN and CS can be zero.
513               IF (SN.NE.ZERO) THEN
514                  IF (CS.NE.ZERO) THEN
515                     ISUPPZ(2*M-1) = 1
516                     ISUPPZ(2*M) = 2
517                  ELSE
518                     ISUPPZ(2*M-1) = 1
519                     ISUPPZ(2*M) = 1
520                  END IF
521               ELSE
522                  ISUPPZ(2*M-1) = 2
523                  ISUPPZ(2*M) = 2
524               END IF
525            ENDIF
526         ENDIF
527         IF( ALLEIG.OR.
528     $      (VALEIG.AND.(R1.GT.WL).AND.
529     $                  (R1.LE.WU)).OR.
530     $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
531            M = M+1
532            W( M ) = R1
533            IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
534               Z( 1, M ) = CS
535               Z( 2, M ) = SN
536*              Note: At most one of SN and CS can be zero.
537               IF (SN.NE.ZERO) THEN
538                  IF (CS.NE.ZERO) THEN
539                     ISUPPZ(2*M-1) = 1
540                     ISUPPZ(2*M) = 2
541                  ELSE
542                     ISUPPZ(2*M-1) = 1
543                     ISUPPZ(2*M) = 1
544                  END IF
545               ELSE
546                  ISUPPZ(2*M-1) = 2
547                  ISUPPZ(2*M) = 2
548               END IF
549            ENDIF
550         ENDIF
551      ELSE
552
553*     Continue with general N
554
555         INDGRS = 1
556         INDERR = 2*N + 1
557         INDGP = 3*N + 1
558         INDD = 4*N + 1
559         INDE2 = 5*N + 1
560         INDWRK = 6*N + 1
561*
562         IINSPL = 1
563         IINDBL = N + 1
564         IINDW = 2*N + 1
565         IINDWK = 3*N + 1
566*
567*        Scale matrix to allowable range, if necessary.
568*        The allowable range is related to the PIVMIN parameter; see the
569*        comments in SLARRD.  The preference for scaling small values
570*        up is heuristic; we expect users' matrices not to be close to the
571*        RMAX threshold.
572*
573         SCALE = ONE
574         TNRM = SLANST( 'M', N, D, E )
575         IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
576            SCALE = RMIN / TNRM
577         ELSE IF( TNRM.GT.RMAX ) THEN
578            SCALE = RMAX / TNRM
579         END IF
580         IF( SCALE.NE.ONE ) THEN
581            CALL SSCAL( N, SCALE, D, 1 )
582            CALL SSCAL( N-1, SCALE, E, 1 )
583            TNRM = TNRM*SCALE
584            IF( VALEIG ) THEN
585*              If eigenvalues in interval have to be found,
586*              scale (WL, WU] accordingly
587               WL = WL*SCALE
588               WU = WU*SCALE
589            ENDIF
590         END IF
591*
592*        Compute the desired eigenvalues of the tridiagonal after splitting
593*        into smaller subblocks if the corresponding off-diagonal elements
594*        are small
595*        THRESH is the splitting parameter for SLARRE
596*        A negative THRESH forces the old splitting criterion based on the
597*        size of the off-diagonal. A positive THRESH switches to splitting
598*        which preserves relative accuracy.
599*
600         IF( TRYRAC ) THEN
601*           Test whether the matrix warrants the more expensive relative approach.
602            CALL SLARRR( N, D, E, IINFO )
603         ELSE
604*           The user does not care about relative accurately eigenvalues
605            IINFO = -1
606         ENDIF
607*        Set the splitting criterion
608         IF (IINFO.EQ.0) THEN
609            THRESH = EPS
610         ELSE
611            THRESH = -EPS
612*           relative accuracy is desired but T does not guarantee it
613            TRYRAC = .FALSE.
614         ENDIF
615*
616         IF( TRYRAC ) THEN
617*           Copy original diagonal, needed to guarantee relative accuracy
618            CALL SCOPY(N,D,1,WORK(INDD),1)
619         ENDIF
620*        Store the squares of the offdiagonal values of T
621         DO 5 J = 1, N-1
622            WORK( INDE2+J-1 ) = E(J)**2
623 5    CONTINUE
624
625*        Set the tolerance parameters for bisection
626         IF( .NOT.WANTZ ) THEN
627*           SLARRE computes the eigenvalues to full precision.
628            RTOL1 = FOUR * EPS
629            RTOL2 = FOUR * EPS
630         ELSE
631*           SLARRE computes the eigenvalues to less than full precision.
632*           SLARRV will refine the eigenvalue approximations, and we can
633*           need less accurate initial bisection in SLARRE.
634*           Note: these settings do only affect the subset case and SLARRE
635            RTOL1 = MAX( SQRT(EPS)*5.0E-2, FOUR * EPS )
636            RTOL2 = MAX( SQRT(EPS)*5.0E-3, FOUR * EPS )
637         ENDIF
638         CALL SLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
639     $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
640     $             IWORK( IINSPL ), M, W, WORK( INDERR ),
641     $             WORK( INDGP ), IWORK( IINDBL ),
642     $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
643     $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
644         IF( IINFO.NE.0 ) THEN
645            INFO = 10 + ABS( IINFO )
646            RETURN
647         END IF
648*        Note that if RANGE .NE. 'V', SLARRE computes bounds on the desired
649*        part of the spectrum. All desired eigenvalues are contained in
650*        (WL,WU]
651
652
653         IF( WANTZ ) THEN
654*
655*           Compute the desired eigenvectors corresponding to the computed
656*           eigenvalues
657*
658            CALL SLARRV( N, WL, WU, D, E,
659     $                PIVMIN, IWORK( IINSPL ), M,
660     $                1, M, MINRGP, RTOL1, RTOL2,
661     $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
662     $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
663     $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
664            IF( IINFO.NE.0 ) THEN
665               INFO = 20 + ABS( IINFO )
666               RETURN
667            END IF
668         ELSE
669*           SLARRE computes eigenvalues of the (shifted) root representation
670*           SLARRV returns the eigenvalues of the unshifted matrix.
671*           However, if the eigenvectors are not desired by the user, we need
672*           to apply the corresponding shifts from SLARRE to obtain the
673*           eigenvalues of the original matrix.
674            DO 20 J = 1, M
675               ITMP = IWORK( IINDBL+J-1 )
676               W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
677 20      CONTINUE
678         END IF
679*
680
681         IF ( TRYRAC ) THEN
682*           Refine computed eigenvalues so that they are relatively accurate
683*           with respect to the original matrix T.
684            IBEGIN = 1
685            WBEGIN = 1
686            DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
687               IEND = IWORK( IINSPL+JBLK-1 )
688               IN = IEND - IBEGIN + 1
689               WEND = WBEGIN - 1
690*              check if any eigenvalues have to be refined in this block
691 36         CONTINUE
692               IF( WEND.LT.M ) THEN
693                  IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
694                     WEND = WEND + 1
695                     GO TO 36
696                  END IF
697               END IF
698               IF( WEND.LT.WBEGIN ) THEN
699                  IBEGIN = IEND + 1
700                  GO TO 39
701               END IF
702
703               OFFSET = IWORK(IINDW+WBEGIN-1)-1
704               IFIRST = IWORK(IINDW+WBEGIN-1)
705               ILAST = IWORK(IINDW+WEND-1)
706               RTOL2 = FOUR * EPS
707               CALL SLARRJ( IN,
708     $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
709     $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
710     $                   WORK( INDERR+WBEGIN-1 ),
711     $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
712     $                   TNRM, IINFO )
713               IBEGIN = IEND + 1
714               WBEGIN = WEND + 1
715 39      CONTINUE
716         ENDIF
717*
718*        If matrix was scaled, then rescale eigenvalues appropriately.
719*
720         IF( SCALE.NE.ONE ) THEN
721            CALL SSCAL( M, ONE / SCALE, W, 1 )
722         END IF
723      END IF
724*
725*     If eigenvalues are not in increasing order, then sort them,
726*     possibly along with eigenvectors.
727*
728      IF( NSPLIT.GT.1 .OR. N.EQ.2 ) THEN
729         IF( .NOT. WANTZ ) THEN
730            CALL SLASRT( 'I', M, W, IINFO )
731            IF( IINFO.NE.0 ) THEN
732               INFO = 3
733               RETURN
734            END IF
735         ELSE
736            DO 60 J = 1, M - 1
737               I = 0
738               TMP = W( J )
739               DO 50 JJ = J + 1, M
740                  IF( W( JJ ).LT.TMP ) THEN
741                     I = JJ
742                     TMP = W( JJ )
743                  END IF
744 50            CONTINUE
745               IF( I.NE.0 ) THEN
746                  W( I ) = W( J )
747                  W( J ) = TMP
748                  IF( WANTZ ) THEN
749                     CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
750                     ITMP = ISUPPZ( 2*I-1 )
751                     ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
752                     ISUPPZ( 2*J-1 ) = ITMP
753                     ITMP = ISUPPZ( 2*I )
754                     ISUPPZ( 2*I ) = ISUPPZ( 2*J )
755                     ISUPPZ( 2*J ) = ITMP
756                  END IF
757               END IF
758 60         CONTINUE
759         END IF
760      ENDIF
761*
762*
763      WORK( 1 ) = LWMIN
764      IWORK( 1 ) = LIWMIN
765      RETURN
766*
767*     End of SSTEMR
768*
769      END
770