1*> \brief \b ZBDSQR
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZBDSQR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
22*                          LDU, C, LDC, RWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          UPLO
26*       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
27*       ..
28*       .. Array Arguments ..
29*       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
30*       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*> ZBDSQR computes the singular values and, optionally, the right and/or
40*> left singular vectors from the singular value decomposition (SVD) of
41*> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
42*> zero-shift QR algorithm.  The SVD of B has the form
43*>
44*>    B = Q * S * P**H
45*>
46*> where S is the diagonal matrix of singular values, Q is an orthogonal
47*> matrix of left singular vectors, and P is an orthogonal matrix of
48*> right singular vectors.  If left singular vectors are requested, this
49*> subroutine actually returns U*Q instead of Q, and, if right singular
50*> vectors are requested, this subroutine returns P**H*VT instead of
51*> P**H, for given complex input matrices U and VT.  When U and VT are
52*> the unitary matrices that reduce a general matrix A to bidiagonal
53*> form: A = U*B*VT, as computed by ZGEBRD, then
54*>
55*>    A = (U*Q) * S * (P**H*VT)
56*>
57*> is the SVD of A.  Optionally, the subroutine may also compute Q**H*C
58*> for a given complex input matrix C.
59*>
60*> See "Computing  Small Singular Values of Bidiagonal Matrices With
61*> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
62*> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
63*> no. 5, pp. 873-912, Sept 1990) and
64*> "Accurate singular values and differential qd algorithms," by
65*> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
66*> Department, University of California at Berkeley, July 1992
67*> for a detailed description of the algorithm.
68*> \endverbatim
69*
70*  Arguments:
71*  ==========
72*
73*> \param[in] UPLO
74*> \verbatim
75*>          UPLO is CHARACTER*1
76*>          = 'U':  B is upper bidiagonal;
77*>          = 'L':  B is lower bidiagonal.
78*> \endverbatim
79*>
80*> \param[in] N
81*> \verbatim
82*>          N is INTEGER
83*>          The order of the matrix B.  N >= 0.
84*> \endverbatim
85*>
86*> \param[in] NCVT
87*> \verbatim
88*>          NCVT is INTEGER
89*>          The number of columns of the matrix VT. NCVT >= 0.
90*> \endverbatim
91*>
92*> \param[in] NRU
93*> \verbatim
94*>          NRU is INTEGER
95*>          The number of rows of the matrix U. NRU >= 0.
96*> \endverbatim
97*>
98*> \param[in] NCC
99*> \verbatim
100*>          NCC is INTEGER
101*>          The number of columns of the matrix C. NCC >= 0.
102*> \endverbatim
103*>
104*> \param[in,out] D
105*> \verbatim
106*>          D is DOUBLE PRECISION array, dimension (N)
107*>          On entry, the n diagonal elements of the bidiagonal matrix B.
108*>          On exit, if INFO=0, the singular values of B in decreasing
109*>          order.
110*> \endverbatim
111*>
112*> \param[in,out] E
113*> \verbatim
114*>          E is DOUBLE PRECISION array, dimension (N-1)
115*>          On entry, the N-1 offdiagonal elements of the bidiagonal
116*>          matrix B.
117*>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
118*>          will contain the diagonal and superdiagonal elements of a
119*>          bidiagonal matrix orthogonally equivalent to the one given
120*>          as input.
121*> \endverbatim
122*>
123*> \param[in,out] VT
124*> \verbatim
125*>          VT is COMPLEX*16 array, dimension (LDVT, NCVT)
126*>          On entry, an N-by-NCVT matrix VT.
127*>          On exit, VT is overwritten by P**H * VT.
128*>          Not referenced if NCVT = 0.
129*> \endverbatim
130*>
131*> \param[in] LDVT
132*> \verbatim
133*>          LDVT is INTEGER
134*>          The leading dimension of the array VT.
135*>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
136*> \endverbatim
137*>
138*> \param[in,out] U
139*> \verbatim
140*>          U is COMPLEX*16 array, dimension (LDU, N)
141*>          On entry, an NRU-by-N matrix U.
142*>          On exit, U is overwritten by U * Q.
143*>          Not referenced if NRU = 0.
144*> \endverbatim
145*>
146*> \param[in] LDU
147*> \verbatim
148*>          LDU is INTEGER
149*>          The leading dimension of the array U.  LDU >= max(1,NRU).
150*> \endverbatim
151*>
152*> \param[in,out] C
153*> \verbatim
154*>          C is COMPLEX*16 array, dimension (LDC, NCC)
155*>          On entry, an N-by-NCC matrix C.
156*>          On exit, C is overwritten by Q**H * C.
157*>          Not referenced if NCC = 0.
158*> \endverbatim
159*>
160*> \param[in] LDC
161*> \verbatim
162*>          LDC is INTEGER
163*>          The leading dimension of the array C.
164*>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
165*> \endverbatim
166*>
167*> \param[out] RWORK
168*> \verbatim
169*>          RWORK is DOUBLE PRECISION array, dimension (4*N)
170*> \endverbatim
171*>
172*> \param[out] INFO
173*> \verbatim
174*>          INFO is INTEGER
175*>          = 0:  successful exit
176*>          < 0:  If INFO = -i, the i-th argument had an illegal value
177*>          > 0:  the algorithm did not converge; D and E contain the
178*>                elements of a bidiagonal matrix which is orthogonally
179*>                similar to the input matrix B;  if INFO = i, i
180*>                elements of E have not converged to zero.
181*> \endverbatim
182*
183*> \par Internal Parameters:
184*  =========================
185*>
186*> \verbatim
187*>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
188*>          TOLMUL controls the convergence criterion of the QR loop.
189*>          If it is positive, TOLMUL*EPS is the desired relative
190*>             precision in the computed singular values.
191*>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
192*>             desired absolute accuracy in the computed singular
193*>             values (corresponds to relative accuracy
194*>             abs(TOLMUL*EPS) in the largest singular value.
195*>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
196*>             between 10 (for fast convergence) and .1/EPS
197*>             (for there to be some accuracy in the results).
198*>          Default is to lose at either one eighth or 2 of the
199*>             available decimal digits in each computed singular value
200*>             (whichever is smaller).
201*>
202*>  MAXITR  INTEGER, default = 6
203*>          MAXITR controls the maximum number of passes of the
204*>          algorithm through its inner loop. The algorithms stops
205*>          (and so fails to converge) if the number of passes
206*>          through the inner loop exceeds MAXITR*N**2.
207*> \endverbatim
208*
209*  Authors:
210*  ========
211*
212*> \author Univ. of Tennessee
213*> \author Univ. of California Berkeley
214*> \author Univ. of Colorado Denver
215*> \author NAG Ltd.
216*
217*> \ingroup complex16OTHERcomputational
218*
219*  =====================================================================
220      SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
221     $                   LDU, C, LDC, RWORK, INFO )
222*
223*  -- LAPACK computational routine --
224*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
225*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
226*
227*     .. Scalar Arguments ..
228      CHARACTER          UPLO
229      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
230*     ..
231*     .. Array Arguments ..
232      DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
233      COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
234*     ..
235*
236*  =====================================================================
237*
238*     .. Parameters ..
239      DOUBLE PRECISION   ZERO
240      PARAMETER          ( ZERO = 0.0D0 )
241      DOUBLE PRECISION   ONE
242      PARAMETER          ( ONE = 1.0D0 )
243      DOUBLE PRECISION   NEGONE
244      PARAMETER          ( NEGONE = -1.0D0 )
245      DOUBLE PRECISION   HNDRTH
246      PARAMETER          ( HNDRTH = 0.01D0 )
247      DOUBLE PRECISION   TEN
248      PARAMETER          ( TEN = 10.0D0 )
249      DOUBLE PRECISION   HNDRD
250      PARAMETER          ( HNDRD = 100.0D0 )
251      DOUBLE PRECISION   MEIGTH
252      PARAMETER          ( MEIGTH = -0.125D0 )
253      INTEGER            MAXITR
254      PARAMETER          ( MAXITR = 6 )
255*     ..
256*     .. Local Scalars ..
257      LOGICAL            LOWER, ROTATE
258      INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
259     $                   NM12, NM13, OLDLL, OLDM
260      DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
261     $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
262     $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
263     $                   SN, THRESH, TOL, TOLMUL, UNFL
264*     ..
265*     .. External Functions ..
266      LOGICAL            LSAME
267      DOUBLE PRECISION   DLAMCH
268      EXTERNAL           LSAME, DLAMCH
269*     ..
270*     .. External Subroutines ..
271      EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASV2, XERBLA, ZDROT,
272     $                   ZDSCAL, ZLASR, ZSWAP
273*     ..
274*     .. Intrinsic Functions ..
275      INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
276*     ..
277*     .. Executable Statements ..
278*
279*     Test the input parameters.
280*
281      INFO = 0
282      LOWER = LSAME( UPLO, 'L' )
283      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
284         INFO = -1
285      ELSE IF( N.LT.0 ) THEN
286         INFO = -2
287      ELSE IF( NCVT.LT.0 ) THEN
288         INFO = -3
289      ELSE IF( NRU.LT.0 ) THEN
290         INFO = -4
291      ELSE IF( NCC.LT.0 ) THEN
292         INFO = -5
293      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
294     $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
295         INFO = -9
296      ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
297         INFO = -11
298      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
299     $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
300         INFO = -13
301      END IF
302      IF( INFO.NE.0 ) THEN
303         CALL XERBLA( 'ZBDSQR', -INFO )
304         RETURN
305      END IF
306      IF( N.EQ.0 )
307     $   RETURN
308      IF( N.EQ.1 )
309     $   GO TO 160
310*
311*     ROTATE is true if any singular vectors desired, false otherwise
312*
313      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
314*
315*     If no singular vectors desired, use qd algorithm
316*
317      IF( .NOT.ROTATE ) THEN
318         CALL DLASQ1( N, D, E, RWORK, INFO )
319*
320*     If INFO equals 2, dqds didn't finish, try to finish
321*
322         IF( INFO .NE. 2 ) RETURN
323         INFO = 0
324      END IF
325*
326      NM1 = N - 1
327      NM12 = NM1 + NM1
328      NM13 = NM12 + NM1
329      IDIR = 0
330*
331*     Get machine constants
332*
333      EPS = DLAMCH( 'Epsilon' )
334      UNFL = DLAMCH( 'Safe minimum' )
335*
336*     If matrix lower bidiagonal, rotate to be upper bidiagonal
337*     by applying Givens rotations on the left
338*
339      IF( LOWER ) THEN
340         DO 10 I = 1, N - 1
341            CALL DLARTG( D( I ), E( I ), CS, SN, R )
342            D( I ) = R
343            E( I ) = SN*D( I+1 )
344            D( I+1 ) = CS*D( I+1 )
345            RWORK( I ) = CS
346            RWORK( NM1+I ) = SN
347   10    CONTINUE
348*
349*        Update singular vectors if desired
350*
351         IF( NRU.GT.0 )
352     $      CALL ZLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ),
353     $                  U, LDU )
354         IF( NCC.GT.0 )
355     $      CALL ZLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ),
356     $                  C, LDC )
357      END IF
358*
359*     Compute singular values to relative accuracy TOL
360*     (By setting TOL to be negative, algorithm will compute
361*     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
362*
363      TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
364      TOL = TOLMUL*EPS
365*
366*     Compute approximate maximum, minimum singular values
367*
368      SMAX = ZERO
369      DO 20 I = 1, N
370         SMAX = MAX( SMAX, ABS( D( I ) ) )
371   20 CONTINUE
372      DO 30 I = 1, N - 1
373         SMAX = MAX( SMAX, ABS( E( I ) ) )
374   30 CONTINUE
375      SMINL = ZERO
376      IF( TOL.GE.ZERO ) THEN
377*
378*        Relative accuracy desired
379*
380         SMINOA = ABS( D( 1 ) )
381         IF( SMINOA.EQ.ZERO )
382     $      GO TO 50
383         MU = SMINOA
384         DO 40 I = 2, N
385            MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
386            SMINOA = MIN( SMINOA, MU )
387            IF( SMINOA.EQ.ZERO )
388     $         GO TO 50
389   40    CONTINUE
390   50    CONTINUE
391         SMINOA = SMINOA / SQRT( DBLE( N ) )
392         THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
393      ELSE
394*
395*        Absolute accuracy desired
396*
397         THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
398      END IF
399*
400*     Prepare for main iteration loop for the singular values
401*     (MAXIT is the maximum number of passes through the inner
402*     loop permitted before nonconvergence signalled.)
403*
404      MAXIT = MAXITR*N*N
405      ITER = 0
406      OLDLL = -1
407      OLDM = -1
408*
409*     M points to last element of unconverged part of matrix
410*
411      M = N
412*
413*     Begin main iteration loop
414*
415   60 CONTINUE
416*
417*     Check for convergence or exceeding iteration count
418*
419      IF( M.LE.1 )
420     $   GO TO 160
421      IF( ITER.GT.MAXIT )
422     $   GO TO 200
423*
424*     Find diagonal block of matrix to work on
425*
426      IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
427     $   D( M ) = ZERO
428      SMAX = ABS( D( M ) )
429      SMIN = SMAX
430      DO 70 LLL = 1, M - 1
431         LL = M - LLL
432         ABSS = ABS( D( LL ) )
433         ABSE = ABS( E( LL ) )
434         IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
435     $      D( LL ) = ZERO
436         IF( ABSE.LE.THRESH )
437     $      GO TO 80
438         SMIN = MIN( SMIN, ABSS )
439         SMAX = MAX( SMAX, ABSS, ABSE )
440   70 CONTINUE
441      LL = 0
442      GO TO 90
443   80 CONTINUE
444      E( LL ) = ZERO
445*
446*     Matrix splits since E(LL) = 0
447*
448      IF( LL.EQ.M-1 ) THEN
449*
450*        Convergence of bottom singular value, return to top of loop
451*
452         M = M - 1
453         GO TO 60
454      END IF
455   90 CONTINUE
456      LL = LL + 1
457*
458*     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
459*
460      IF( LL.EQ.M-1 ) THEN
461*
462*        2 by 2 block, handle separately
463*
464         CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
465     $                COSR, SINL, COSL )
466         D( M-1 ) = SIGMX
467         E( M-1 ) = ZERO
468         D( M ) = SIGMN
469*
470*        Compute singular vectors, if desired
471*
472         IF( NCVT.GT.0 )
473     $      CALL ZDROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT,
474     $                  COSR, SINR )
475         IF( NRU.GT.0 )
476     $      CALL ZDROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
477         IF( NCC.GT.0 )
478     $      CALL ZDROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
479     $                  SINL )
480         M = M - 2
481         GO TO 60
482      END IF
483*
484*     If working on new submatrix, choose shift direction
485*     (from larger end diagonal element towards smaller)
486*
487      IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
488         IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
489*
490*           Chase bulge from top (big end) to bottom (small end)
491*
492            IDIR = 1
493         ELSE
494*
495*           Chase bulge from bottom (big end) to top (small end)
496*
497            IDIR = 2
498         END IF
499      END IF
500*
501*     Apply convergence tests
502*
503      IF( IDIR.EQ.1 ) THEN
504*
505*        Run convergence test in forward direction
506*        First apply standard test to bottom of matrix
507*
508         IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
509     $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
510            E( M-1 ) = ZERO
511            GO TO 60
512         END IF
513*
514         IF( TOL.GE.ZERO ) THEN
515*
516*           If relative accuracy desired,
517*           apply convergence criterion forward
518*
519            MU = ABS( D( LL ) )
520            SMINL = MU
521            DO 100 LLL = LL, M - 1
522               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
523                  E( LLL ) = ZERO
524                  GO TO 60
525               END IF
526               MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
527               SMINL = MIN( SMINL, MU )
528  100       CONTINUE
529         END IF
530*
531      ELSE
532*
533*        Run convergence test in backward direction
534*        First apply standard test to top of matrix
535*
536         IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
537     $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
538            E( LL ) = ZERO
539            GO TO 60
540         END IF
541*
542         IF( TOL.GE.ZERO ) THEN
543*
544*           If relative accuracy desired,
545*           apply convergence criterion backward
546*
547            MU = ABS( D( M ) )
548            SMINL = MU
549            DO 110 LLL = M - 1, LL, -1
550               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
551                  E( LLL ) = ZERO
552                  GO TO 60
553               END IF
554               MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
555               SMINL = MIN( SMINL, MU )
556  110       CONTINUE
557         END IF
558      END IF
559      OLDLL = LL
560      OLDM = M
561*
562*     Compute shift.  First, test if shifting would ruin relative
563*     accuracy, and if so set the shift to zero.
564*
565      IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
566     $    MAX( EPS, HNDRTH*TOL ) ) THEN
567*
568*        Use a zero shift to avoid loss of relative accuracy
569*
570         SHIFT = ZERO
571      ELSE
572*
573*        Compute the shift from 2-by-2 block at end of matrix
574*
575         IF( IDIR.EQ.1 ) THEN
576            SLL = ABS( D( LL ) )
577            CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
578         ELSE
579            SLL = ABS( D( M ) )
580            CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
581         END IF
582*
583*        Test if shift negligible, and if so set to zero
584*
585         IF( SLL.GT.ZERO ) THEN
586            IF( ( SHIFT / SLL )**2.LT.EPS )
587     $         SHIFT = ZERO
588         END IF
589      END IF
590*
591*     Increment iteration count
592*
593      ITER = ITER + M - LL
594*
595*     If SHIFT = 0, do simplified QR iteration
596*
597      IF( SHIFT.EQ.ZERO ) THEN
598         IF( IDIR.EQ.1 ) THEN
599*
600*           Chase bulge from top to bottom
601*           Save cosines and sines for later singular vector updates
602*
603            CS = ONE
604            OLDCS = ONE
605            DO 120 I = LL, M - 1
606               CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
607               IF( I.GT.LL )
608     $            E( I-1 ) = OLDSN*R
609               CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
610               RWORK( I-LL+1 ) = CS
611               RWORK( I-LL+1+NM1 ) = SN
612               RWORK( I-LL+1+NM12 ) = OLDCS
613               RWORK( I-LL+1+NM13 ) = OLDSN
614  120       CONTINUE
615            H = D( M )*CS
616            D( M ) = H*OLDCS
617            E( M-1 ) = H*OLDSN
618*
619*           Update singular vectors
620*
621            IF( NCVT.GT.0 )
622     $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
623     $                     RWORK( N ), VT( LL, 1 ), LDVT )
624            IF( NRU.GT.0 )
625     $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
626     $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
627            IF( NCC.GT.0 )
628     $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
629     $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
630*
631*           Test convergence
632*
633            IF( ABS( E( M-1 ) ).LE.THRESH )
634     $         E( M-1 ) = ZERO
635*
636         ELSE
637*
638*           Chase bulge from bottom to top
639*           Save cosines and sines for later singular vector updates
640*
641            CS = ONE
642            OLDCS = ONE
643            DO 130 I = M, LL + 1, -1
644               CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
645               IF( I.LT.M )
646     $            E( I ) = OLDSN*R
647               CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
648               RWORK( I-LL ) = CS
649               RWORK( I-LL+NM1 ) = -SN
650               RWORK( I-LL+NM12 ) = OLDCS
651               RWORK( I-LL+NM13 ) = -OLDSN
652  130       CONTINUE
653            H = D( LL )*CS
654            D( LL ) = H*OLDCS
655            E( LL ) = H*OLDSN
656*
657*           Update singular vectors
658*
659            IF( NCVT.GT.0 )
660     $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
661     $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
662            IF( NRU.GT.0 )
663     $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
664     $                     RWORK( N ), U( 1, LL ), LDU )
665            IF( NCC.GT.0 )
666     $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
667     $                     RWORK( N ), C( LL, 1 ), LDC )
668*
669*           Test convergence
670*
671            IF( ABS( E( LL ) ).LE.THRESH )
672     $         E( LL ) = ZERO
673         END IF
674      ELSE
675*
676*        Use nonzero shift
677*
678         IF( IDIR.EQ.1 ) THEN
679*
680*           Chase bulge from top to bottom
681*           Save cosines and sines for later singular vector updates
682*
683            F = ( ABS( D( LL ) )-SHIFT )*
684     $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
685            G = E( LL )
686            DO 140 I = LL, M - 1
687               CALL DLARTG( F, G, COSR, SINR, R )
688               IF( I.GT.LL )
689     $            E( I-1 ) = R
690               F = COSR*D( I ) + SINR*E( I )
691               E( I ) = COSR*E( I ) - SINR*D( I )
692               G = SINR*D( I+1 )
693               D( I+1 ) = COSR*D( I+1 )
694               CALL DLARTG( F, G, COSL, SINL, R )
695               D( I ) = R
696               F = COSL*E( I ) + SINL*D( I+1 )
697               D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
698               IF( I.LT.M-1 ) THEN
699                  G = SINL*E( I+1 )
700                  E( I+1 ) = COSL*E( I+1 )
701               END IF
702               RWORK( I-LL+1 ) = COSR
703               RWORK( I-LL+1+NM1 ) = SINR
704               RWORK( I-LL+1+NM12 ) = COSL
705               RWORK( I-LL+1+NM13 ) = SINL
706  140       CONTINUE
707            E( M-1 ) = F
708*
709*           Update singular vectors
710*
711            IF( NCVT.GT.0 )
712     $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
713     $                     RWORK( N ), VT( LL, 1 ), LDVT )
714            IF( NRU.GT.0 )
715     $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
716     $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
717            IF( NCC.GT.0 )
718     $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
719     $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
720*
721*           Test convergence
722*
723            IF( ABS( E( M-1 ) ).LE.THRESH )
724     $         E( M-1 ) = ZERO
725*
726         ELSE
727*
728*           Chase bulge from bottom to top
729*           Save cosines and sines for later singular vector updates
730*
731            F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
732     $          D( M ) )
733            G = E( M-1 )
734            DO 150 I = M, LL + 1, -1
735               CALL DLARTG( F, G, COSR, SINR, R )
736               IF( I.LT.M )
737     $            E( I ) = R
738               F = COSR*D( I ) + SINR*E( I-1 )
739               E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
740               G = SINR*D( I-1 )
741               D( I-1 ) = COSR*D( I-1 )
742               CALL DLARTG( F, G, COSL, SINL, R )
743               D( I ) = R
744               F = COSL*E( I-1 ) + SINL*D( I-1 )
745               D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
746               IF( I.GT.LL+1 ) THEN
747                  G = SINL*E( I-2 )
748                  E( I-2 ) = COSL*E( I-2 )
749               END IF
750               RWORK( I-LL ) = COSR
751               RWORK( I-LL+NM1 ) = -SINR
752               RWORK( I-LL+NM12 ) = COSL
753               RWORK( I-LL+NM13 ) = -SINL
754  150       CONTINUE
755            E( LL ) = F
756*
757*           Test convergence
758*
759            IF( ABS( E( LL ) ).LE.THRESH )
760     $         E( LL ) = ZERO
761*
762*           Update singular vectors if desired
763*
764            IF( NCVT.GT.0 )
765     $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
766     $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
767            IF( NRU.GT.0 )
768     $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
769     $                     RWORK( N ), U( 1, LL ), LDU )
770            IF( NCC.GT.0 )
771     $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
772     $                     RWORK( N ), C( LL, 1 ), LDC )
773         END IF
774      END IF
775*
776*     QR iteration finished, go back and check convergence
777*
778      GO TO 60
779*
780*     All singular values converged, so make them positive
781*
782  160 CONTINUE
783      DO 170 I = 1, N
784         IF( D( I ).LT.ZERO ) THEN
785            D( I ) = -D( I )
786*
787*           Change sign of singular vectors, if desired
788*
789            IF( NCVT.GT.0 )
790     $         CALL ZDSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
791         END IF
792  170 CONTINUE
793*
794*     Sort the singular values into decreasing order (insertion sort on
795*     singular values, but only one transposition per singular vector)
796*
797      DO 190 I = 1, N - 1
798*
799*        Scan for smallest D(I)
800*
801         ISUB = 1
802         SMIN = D( 1 )
803         DO 180 J = 2, N + 1 - I
804            IF( D( J ).LE.SMIN ) THEN
805               ISUB = J
806               SMIN = D( J )
807            END IF
808  180    CONTINUE
809         IF( ISUB.NE.N+1-I ) THEN
810*
811*           Swap singular values and vectors
812*
813            D( ISUB ) = D( N+1-I )
814            D( N+1-I ) = SMIN
815            IF( NCVT.GT.0 )
816     $         CALL ZSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
817     $                     LDVT )
818            IF( NRU.GT.0 )
819     $         CALL ZSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
820            IF( NCC.GT.0 )
821     $         CALL ZSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
822         END IF
823  190 CONTINUE
824      GO TO 220
825*
826*     Maximum number of iterations exceeded, failure to converge
827*
828  200 CONTINUE
829      INFO = 0
830      DO 210 I = 1, N - 1
831         IF( E( I ).NE.ZERO )
832     $      INFO = INFO + 1
833  210 CONTINUE
834  220 CONTINUE
835      RETURN
836*
837*     End of ZBDSQR
838*
839      END
840