1;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;     The data in this file contains enhancments.                    ;;;;;
4;;;                                                                    ;;;;;
5;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
6;;;     All rights reserved                                            ;;;;;
7;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8
9(in-package :maxima)
10
11;;	** (c) Copyright 1982 Massachusetts Institute of Technology **
12
13;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
14;;;                                                                ;;;
15;;;                Miscellaneous Out-of-core Files                 ;;;
16;;;                                                                ;;;
17;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
18
19(macsyma-module outmis)
20
21
22(declare-top (special $exptisolate $labels $dispflag errorsw))
23
24(defmvar $exptisolate nil)
25(defmvar $isolate_wrt_times nil)
26
27(defmfun $isolate (e *xvar)
28  (iso1 e (getopr *xvar)))
29
30(defun iso1 (e *xvar)
31  (cond ((specrepp e) (iso1 (specdisrep e) *xvar))
32	((and (free e 'mplus) (or (null $isolate_wrt_times) (free e 'mtimes))) e)
33	((freeof *xvar e) (mgen2 e))
34	((alike1 *xvar e) *xvar)
35	((member (caar e) '(mplus mtimes) :test #'eq) (iso2 e *xvar))
36	((eq (caar e) 'mexpt)
37	 (cond ((null (atom (cadr e))) (list (car e) (iso1 (cadr e) *xvar) (caddr e)))
38	       ((or (alike1 (cadr e) *xvar) (not $exptisolate)) e)
39	       (t (let ((x ($rat (caddr e) *xvar)) (u 0) (h 0))
40		    (setq u (ratdisrep ($ratnumer x)) x (ratdisrep ($ratdenom x)))
41		    (if (not (equal x 1))
42			(setq u ($multthru (list '(mexpt) x -1) u)))
43		    (if (mplusp u)
44			(setq u ($partition u *xvar) h (cadr u) u (caddr u)))
45		    (setq u (power* (cadr e) (iso1 u *xvar)))
46		    (cond ((not (equal h 0))
47			   (mul2* (mgen2 (power* (cadr e) h)) u))
48			  (t u))))))
49	(t (cons (car e) (mapcar #'(lambda (e1) (iso1 e1 *xvar)) (cdr e))))))
50
51(defun iso2 (e *xvar)
52  (prog (hasit doesnt op)
53     (setq op (ncons (caar e)))
54     (do ((i (cdr e) (cdr i))) ((null i))
55       (cond ((freeof *xvar (car i)) (setq doesnt (cons (car i) doesnt)))
56	     (t (setq hasit (cons (iso1 (car i) *xvar) hasit)))))
57     (cond ((null doesnt) (go ret))
58	   ((and (null (cdr doesnt)) (atom (car doesnt))) (go ret))
59	   ((prog2 (setq doesnt (simplify (cons op doesnt)))
60		(and (free doesnt 'mplus)
61		     (or (null $isolate_wrt_times)
62			 (free doesnt 'mtimes)))))
63	   (t (setq doesnt (mgen2 doesnt))))
64     (setq doesnt (ncons doesnt))
65     ret  (return (simplifya (cons op (nconc hasit doesnt)) nil))))
66
67(defun mgen2 (h)
68  (cond ((memsimilarl h (cdr $labels) (getlabcharn $linechar)))
69	(t (setq h (displine h)) (and $dispflag (mterpri)) h)))
70
71(defun memsimilarl (item list linechar)
72  (cond ((null list) nil)
73	((and (char= (getlabcharn (car list)) linechar)
74	      (boundp (car list))
75	      (memsimilar item (car list) (symbol-value (car list)))))
76	(t (memsimilarl item (cdr list) linechar))))
77
78(defun memsimilar (item1 item2 item2ev)
79  (cond ((equal item2ev 0) nil)
80	((alike1 item1 item2ev) item2)
81	(t (let ((errorsw t) r)
82	     (setq r (catch 'errorsw (div item2ev item1)))
83	     (and (mnump r) (not (zerop1 r)) (div item2 r))))))
84
85(defmfun $pickapart (x lev)
86  (setq x (format1 x))
87  (cond ((not (fixnump lev))
88	 (merror (intl:gettext "pickapart: second argument must be an integer; found: ~M") lev))
89	((or (atom x) (and (eq (caar x) 'mminus) (atom (cadr x)))) x)
90	((= lev 0) (mgen2 x))
91	((and (atom (cdr x)) (cdr x)) x)
92	(t (cons (car x) (mapcar #'(lambda (y) ($pickapart y (1- lev))) (cdr x))))))
93
94(defmfun $reveal (e lev)
95  (setq e (format1 e))
96  (if (and (fixnump lev) (plusp lev))
97      (reveal e 1 lev)
98      (merror (intl:gettext "reveal: second argument must be a positive integer; found: ~M") lev)))
99
100(defun simple (x)
101  (or (atom x) (member (caar x) '(rat bigfloat) :test #'eq)))
102
103(defun reveal (e nn lev)
104  (cond ((simple e) e)
105	((= nn lev)
106	 (cond ((eq (caar e) 'mplus) (cons '(|$Sum| simp) (ncons (length (cdr e)))))
107	       ((eq (caar e) 'mtimes) (cons '(|$Product| simp) (ncons (length (cdr e)))))
108	       ((eq (caar e) 'mexpt) '|$Expt|)
109	       ((eq (caar e) 'mquotient) '|$Quotient|)
110	       ((eq (caar e) 'mminus) '|$Negterm|)
111	       ((eq (caar e) 'mlist)
112	        (cons '(|$List| simp) (ncons (length (cdr e)))))
113	       (t (getop (mop e)))))
114	(t (let ((u (cond ((member 'simp (cdar e) :test #'eq) (car e))
115			  (t (cons (caar e) (cons 'simp (cdar e))))))
116		 (v (mapcar #'(lambda (x) (reveal (format1 x) (1+ nn) lev))
117			    (margs e))))
118	     (cond ((eq (caar e) 'mqapply) (cons u (cons (cadr e) v)))
119		   ((eq (caar e) 'mplus) (cons u (nreverse v)))
120		   (t (cons u v)))))))
121
122(declare-top (special atvars munbound $props $gradefs $features opers
123		      $contexts $activecontexts $aliases))
124
125(defmspec $properties (x)
126  (setq x (getopr (fexprcheck x)))
127  (unless (or (symbolp x) (stringp x))
128    (merror
129      (intl:gettext "properties: argument must be a symbol or a string.")))
130  (let ((u (properties x)) (v (or (safe-get x 'noun) (safe-get x 'verb))))
131    (if v (nconc u (cdr (properties v))) u)))
132
133(defun properties (x)
134  (if (stringp x)
135    ; AT THIS POINT WE MIGHT WANT TO TRY TO TEST ALL CHARS IN STRING ...
136    (if (and (> (length x) 0) (member (char x 0) *alphabet*))
137      '((mlist) $alphabetic)
138      '((mlist)))
139    (do ((y (symbol-plist x) (cddr y))
140	 (l (cons '(mlist simp) (and (boundp x)
141  				   (if (optionp x) (ncons "system value")
142  				       (ncons '$value)))))
143	 (prop))
144	((null y)
145	 (if (member x (cdr $features) :test #'eq) (nconc l (ncons '$feature)))
146	 (if (member x (cdr $contexts) :test #'eq) (nconc l (ncons '$context)))
147	 (if (member x (cdr $activecontexts) :test #'eq)
148  	   (nconc l (ncons '$activecontext)))
149	 (cond  ((null (symbol-plist x))
150  	       (if (fboundp x) (nconc l (list "system function")))))
151	 l)
152
153      ;; TOP-LEVEL PROPERTIES
154      (cond ((setq prop
155                   (assoc (car y)
156                          `((bindtest . $bindtest)
157                            (sp2 . $deftaylor)
158                            (sp2subs . $deftaylor)
159                            (assign . "assign property")
160                            (nonarray . $nonarray)
161                            (grad . $gradef)
162                            (integral . $integral)
163                            (distribute_over . "distributes over bags")
164                            (simplim%function . "limit function")
165                            (conjugate-function . "conjugate function")
166                            (commutes-with-conjugate . "mirror symmetry")
167  			    (risplit-function . "complex characteristic")
168                            (noun . $noun)
169                            (evfun . $evfun)
170                            (evflag . $evflag)
171                            (op . $operator)) :test #'eq))
172  	   (nconc l (ncons (cdr prop))))
173  	  ((setq prop (member (car y) opers :test #'eq))
174  	   (nconc l (list (car prop))))
175  	  ((and (eq (car y) 'operators) (not (or (eq (cadr y) 'simpargs1) (eq (cadr y) nil))))
176  	   (nconc l (list '$rule)))
177  	  ((and (member (car y) '(fexpr fsubr mfexpr*s mfexpr*) :test #'eq)
178  		(nconc l (ncons "special evaluation form"))
179  		nil))
180  	  ((and (or (get (car y) 'mfexpr*) (fboundp x))
181  	        ;; Do not add more than one entry to the list.
182  	        (not (member '$transfun l))
183  	        (not (member '$rule l))
184  		(not (member "system function" l :test #'equal)))
185  	   (nconc l
186  		  (list (cond ((get x 'translated) '$transfun)
187  			      ((mgetl x '($rule ruleof)) '$rule)
188  			      (t "system function")))))
189  	  ((and (eq (car y) 'autoload)
190  	        (not (member "system function" l :test #'equal)))
191  	   (nconc l (ncons (if (member x (cdr $props) :test #'eq)
192  			       "user autoload function"
193  			       "system function"))))
194  	  ((and (eq (car y) 'reversealias)
195  	        (member (car y) (cdr $aliases) :test #'eq))
196  	   (nconc l (ncons '$alias)))
197  	  ((eq (car y) 'data)
198  	   (nconc l (cons "database info" (cdr ($facts x)))))
199  	  ((eq (car y) 'mprops)
200  	   ;; PROPS PROPERTIES
201  	   (do ((y
202  		 (cdadr y)
203  		 (cddr y)))
204  	       ((null y))
205  	     (cond ((setq prop (assoc (car y)
206  				     `((mexpr . $function)
207  				       (mmacro . $macro)
208  				       (hashar . "hashed array")
209  				       (aexpr . "array function")
210  				       (atvalues . $atvalue)
211  				       ($atomgrad . $atomgrad)
212  				       ($numer . $numer)
213  				       (depends . $dependency)
214  				       ($nonscalar . $nonscalar)
215  				       ($scalar . $scalar)
216  				       (matchdeclare . $matchdeclare)
217  				       (mode . $modedeclare)) :test #'eq))
218  		    (nconc l (list (cdr prop))))
219  		   ((eq (car y) 'array)
220  		    (nconc l
221  			   (list (cond ((get x 'array) "complete array")
222  				       (t "declared array")))))
223  		   ((and (eq (car y) '$props) (cdadr y))
224  		    (nconc l
225  			   (do ((y (cdadr y) (cddr y))
226  				(l (list '(mlist) "user properties")))
227  			       ((null y) (list l))
228  			     (nconc l (list (car y)))))))))))))
229
230(defmspec $propvars (x)
231  (setq x (fexprcheck x))
232  (do ((iteml (cdr $props) (cdr iteml)) (propvars (ncons '(mlist))))
233      ((null iteml) propvars)
234    (and (among x (meval (list '($properties) (car iteml))))
235	 (nconc propvars (ncons (car iteml))))))
236
237(defmspec $printprops (r) (setq r (cdr r))
238	  (if (null (cdr r)) (merror (intl:gettext "printprops: requires two arguments.")))
239	  (let ((s (cadr r)))
240	    (setq r (car r))
241	    (setq r (cond ((atom r)
242			   (cond ((eq r '$all)
243				  (cond ((eq s '$gradef) (mapcar 'caar (cdr $gradefs)))
244					(t (cdr (meval (list '($propvars) s))))))
245				 (t (ncons r))))
246			  (t (cdr r))))
247	    (cond ((eq s '$atvalue) (dispatvalues r))
248		  ((eq s '$atomgrad) (dispatomgrads r))
249		  ((eq s '$gradef) (dispgradefs r))
250		  ((eq s '$matchdeclare) (dispmatchdeclares r))
251		  (t (merror (intl:gettext "printprops: unknown property ~:M") s)))))
252
253(defun dispatvalues (l)
254  (do ((l l (cdr l)))
255      ((null l))
256    (do ((ll (mget (car l) 'atvalues) (cdr ll)))
257	((null ll))
258      (mtell-open "~M~%"
259		  (list '(mlabel) nil
260			(list '(mequal)
261			      (atdecode (car l) (caar ll) (cadar ll)) (caddar ll))))))
262  '$done)
263
264(defun atdecode (fun dl vl)
265  (setq vl (copy-list vl))
266  (atvarschk vl)
267  (let ((eqs nil) (nvarl nil))
268    (cond ((not (member nil (mapcar #'(lambda (x) (signp e x)) dl) :test #'eq))
269	   (do ((vl vl (cdr vl)) (varl atvars (cdr varl)))
270	       ((null vl))
271	     (and (eq (car vl) munbound) (rplaca vl (car varl))))
272	   (cons (list fun) vl))
273	  (t (setq fun (cons (list fun)
274			     (do ((n (length vl) (1- n))
275				  (varl atvars (cdr varl))
276				  (l nil (cons (car varl) l)))
277				 ((zerop n) (nreverse l)))))
278	     (do ((vl vl (cdr vl)) (varl atvars (cdr varl)))
279		 ((null vl))
280	       (and (not (eq (car vl) munbound))
281		    (setq eqs (cons (list '(mequal) (car varl) (car vl)) eqs))))
282	     (setq eqs (cons '(mlist) (nreverse eqs)))
283	     (do ((varl atvars (cdr varl)) (dl dl (cdr dl)))
284		 ((null dl) (setq nvarl (nreverse nvarl)))
285	       (and (not (zerop (car dl)))
286		    (setq nvarl (cons (car dl) (cons (car varl) nvarl)))))
287	     (list '(%at) (cons '(%derivative) (cons fun nvarl)) eqs)))))
288
289(defun dispatomgrads (l)
290  (do ((i l (cdr i)))
291      ((null i))
292    (do ((j (mget (car i) '$atomgrad) (cdr j)))
293	((null j))
294      (mtell-open "~M~%"
295		  (list '(mlabel) nil
296			(list '(mequal)
297			      (list '(%derivative) (car i) (caar j) 1) (cdar j))))))
298  '$done)
299
300(defun dispgradefs (l)
301  (do ((i l (cdr i)))
302      ((null i))
303    (setq l (get (car i) 'grad))
304    (do ((j (car l) (cdr j))
305	 (k (cdr l) (cdr k))
306	 (thing (cons (ncons (car i)) (car l))))
307	((or (null k) (null j)))
308      (mtell-open "~M~%"
309		  (list '(mlabel)
310			nil (list '(mequal) (list '(%derivative) thing (car j) 1.) (car k))))))
311  '$done)
312
313(defun dispmatchdeclares (l)
314  (do ((i l (cdr i))
315       (ret))
316      ((null i) (cons '(mlist) ret))
317    (setq l (car (mget (car i) 'matchdeclare)))
318    (setq ret (cons (append (cond ((atom l) (ncons (ncons l))) (t l))
319			    (ncons (car i)))
320		    ret))))
321
322(declare-top (special $programmode *roots *failures varlist genvar $ratfac))
323
324(defmfun $changevar (expr trans nvar ovar)
325  (let ($ratfac)
326    (cond ((or (atom expr) (eq (caar expr) 'rat) (eq (caar expr) 'mrat))
327	   expr)
328	  ((atom trans)
329	   (merror (intl:gettext "changevar: second argument must not be an atom; found: ~M") trans))
330	  ((null (atom nvar))
331	   (merror (intl:gettext "changevar: third argument must be an atom; found: ~M") nvar))
332	  ((null (atom ovar))
333	   (merror (intl:gettext "changevar: fourth argument must be an atom; found: ~M") ovar)))
334    (changevar expr trans nvar ovar)))
335
336(defun solvable (l var &optional (errswitch nil))
337  (let (*roots *failures)
338    (solve l var 1)
339    (cond (*roots
340	   ;; We arbitrarily pick the first root.  Should we be more careful?
341	   ($rhs (car *roots)))
342	  (errswitch (merror (intl:gettext "changevar: failed to solve for ~M in ~M") var l))
343	  (t nil))))
344
345(defun changevar (expr trans nvar ovar)
346  (cond ((atom expr) expr)
347	((or (not (member (caar expr) '(%integrate %sum %product) :test #'eq))
348	     (not (alike1 (caddr expr) ovar)))
349	 (recur-apply (lambda (e) (changevar e trans nvar ovar)) expr))
350	(t
351	 ;; TRANS is the expression that relates old var and new var
352	 ;; and is of the form f(ovar, nvar) = 0. Using TRANS, try to
353	 ;; solve for ovar so that ovar = tfun(nvar), if possible.
354	 (let* ((tfun (solvable (setq trans (meqhk trans)) ovar))
355		(deriv
356		 ;; Compute diff(tfun, nvar) = dovar/dnvar if tfun is
357		 ;; available.  Otherwise, use implicit
358		 ;; differentiation.
359		 (if tfun
360		     (sdiff tfun nvar)
361		     (neg (div (sdiff trans nvar) ;IMPLICIT DIFF.
362			       (sdiff trans ovar)))))
363		(sum-product-p (member (caar expr) '(%sum %product) :test #'eq)))
364
365	   #+nil
366	   (progn
367	     (mformat t "tfun = ~M~%" tfun)
368	     (mformat t "deriv = ~M~%" deriv))
369
370	   ;; For sums and products, we want deriv to be +/-1 because
371	   ;; I think that means that integers will map into integers
372	   ;; (roughly), so that we don't need to express the
373	   ;; summation index or limits in some special way to account
374	   ;; for it.
375	   (when (and (member (caar expr) '(%sum %product) :test #'eq)
376		      (not (or (equal deriv 1)
377			       (equal deriv -1))))
378	     (merror (intl:gettext "changevar: illegal change in summation or product")))
379
380	   (let ((nfun ($radcan	;NIL IF KERNSUBST FAILS
381			      (if tfun
382				  (mul (maxima-substitute tfun ovar (cadr expr))
383				       ;; Don't multiply by deriv
384				       ;; for sums/products because
385				       ;; reversing the order of
386				       ;; limits doesn't change the
387				       ;; sign of the result.
388				       (if sum-product-p 1 deriv))
389				  (kernsubst ($ratsimp (mul (cadr expr)
390							    deriv))
391					     trans ovar)))))
392	     (cond
393	       (nfun
394		;; nfun is basically the result of subtituting ovar
395		;; with tfun in the integratand (summand).
396		(cond
397		  ((cdddr expr)
398		   ;; Handle definite integral, summation, or product.
399		   ;; invfun expresses nvar in terms of ovar so that
400		   ;; we can compute the new lower and upper limits of
401		   ;; the integral (sum).
402		   (let* ((invfun (solvable trans nvar t))
403			  (lo-limit ($limit invfun ovar (cadddr expr) '$plus))
404			  (hi-limit ($limit invfun
405					    ovar
406					    (car (cddddr expr))
407					    '$minus)))
408		     ;; If this is a sum or product and deriv = -1, we
409		     ;; want to reverse the low and high limits.
410		     (when (and sum-product-p (equal deriv -1))
411		       (rotatef lo-limit hi-limit))
412
413		     ;; Construct the new result.
414		     (list (ncons (caar expr))
415			   nfun
416			   nvar
417			   lo-limit
418			   hi-limit)))
419		  (t
420		   ;; Indefinite integral
421		   (list '(%integrate) nfun nvar))))
422	       (t expr)))))))
423
424(defun kernsubst (expr form ovar)
425  (let (varlist genvar nvarlist)
426    (newvar expr)
427    (setq nvarlist (mapcar #'(lambda (x) (if (freeof ovar x) x
428					     (solvable form x)))
429			   varlist))
430    (if (member nil nvarlist :test #'eq) nil
431	(prog2 (setq expr (ratrep* expr)
432		     varlist nvarlist)
433	    (rdis (cdr expr))))))
434
435(declare-top (special $listconstvars facfun))
436
437(defmfun $factorsum (e)
438  (factorsum0 e '$factor))
439
440(defmfun $gfactorsum (e)
441  (factorsum0 e '$gfactor))
442
443(defun factorsum0 (e facfun)
444  (cond ((mplusp (setq e (funcall facfun e)))
445	 (factorsum1 (cdr e)))
446	(t (factorsum2 e))))
447
448(defun factorsum1 (e)
449  (prog (f lv llv lex cl lt c)
450   loop (setq f (car e))
451   (setq lv (cdr ($showratvars f)))
452   (cond ((null lv) (setq cl (cons f cl)) (go skip)))
453   (do ((q llv (cdr q)) (r lex (cdr r)))
454       ((null q))
455     (cond ((intersect (car q) lv)
456	    (rplaca q (union* (car q) lv))
457	    (rplaca r (cons f (car r)))
458	    (return (setq lv nil)))))
459   (or lv (go skip))
460   (setq llv (cons lv llv) lex (cons (ncons f) lex))
461   skip (and (setq e (cdr e)) (go loop))
462   (or cl (go skip2))
463   (do ((q llv (cdr q)) (r lex (cdr r)))
464       ((null q))
465     (cond ((and (null (cdar q)) (cdar r))
466	    (rplaca r (nconc cl (car r)))
467	    (return (setq cl nil)))))
468   skip2 (setq llv nil lv nil)
469   (do ((r lex (cdr r)))
470       ((null r))
471     (cond ((cdar r)
472	    (setq llv
473		  (cons (factorsum2 (funcall facfun (cons '(mplus) (car r))))
474			llv)))
475	   ((or (not (mtimesp (setq f (caar r))))
476		(not (mnump (setq c (cadr f)))))
477	    (setq llv (cons f llv)))
478	   (t (do ((q lt (cdr q)) (s lv (cdr s)))
479		  ((null q))
480		(cond ((alike1 (car s) c)
481		       (rplaca q (cons (dcon f) (car q)))
482		       (return (setq f nil)))))
483	      (and f
484		   (setq lv (cons c lv)
485			 lt (cons (ncons (dcon f)) lt))))))
486   (setq lex
487	 (mapcar #'(lambda (s q)
488		     (simptimes (list '(mtimes) s
489				      (cond ((cdr q)
490					     (cons '(mplus) q))
491					    (t (car q))))
492				1 nil))
493		 lv lt))
494   (return (simplus (cons '(mplus) (nconc cl lex llv)) 1 nil))))
495
496(defun dcon (mt)
497  (cond ((cdddr mt) (cons (car mt) (cddr mt))) (t (caddr mt))))
498
499(defun factorsum2 (e)
500  (cond ((not (mtimesp e)) e)
501	(t (cons '(mtimes)
502		 (mapcar #'(lambda (f)
503			     (cond ((mplusp f)
504				    (factorsum1 (cdr f)))
505				   (t f)))
506			 (cdr e))))))
507
508(declare-top (special $combineflag))
509
510(defmvar $combineflag t)
511
512(defmfun $combine (e)
513  (cond ((or (atom e) (eq (caar e) 'rat)) e)
514	((eq (caar e) 'mplus) (combine (cdr e)))
515	(t (recur-apply #'$combine e))))
516
517(defun combine (e)
518  (prog (term r ld sw nnu d ln xl)
519   again(setq term (car e) e (cdr e))
520   (when (or (not (or (ratnump term) (mtimesp term) (mexptp term)))
521	     (equal (setq d ($denom term)) 1))
522     (setq r (cons term r))
523     (go end))
524   (setq nnu ($num term))
525   (and $combineflag (integerp d) (setq xl (cons term xl)) (go end))
526   (do ((q ld (cdr q)) (p ln (cdr p)))
527       ((null q))
528     (cond ((alike1 (car q) d)
529	    (rplaca p (cons nnu (car p)))
530	    (return (setq sw t)))))
531   (and sw (go skip))
532   (setq ld (cons d ld) ln (cons (ncons nnu) ln))
533   skip (setq sw nil)
534   end  (and e (go again))
535   (and xl (setq xl (cond ((cdr xl) ($xthru (addn xl t)))
536			  (t (car xl)))))
537   (mapc
538    #'(lambda (nu de)
539	(setq r (cons (mul2 (addn nu nil) (power* de -1)) r)))
540    ln ld)
541   (return (addn (if xl (cons xl r) r) nil))))
542
543(defmfun $factorout (e &rest vl)
544  (prog (el fl cl l f x)
545     (when (null vl)
546       (merror (intl:gettext "factorout: at least two arguments required.")))
547     (unless (mplusp e)
548       (return e))
549     (or (null vl) (mplusp e) (return e))
550     (setq e (cdr e))
551     loop	(setq f (car e) e (cdr e))
552     (unless (mtimesp f)
553       (setq f (list '(mtimes) 1 f)))
554     (setq fl nil cl nil)
555     (do ((i (cdr f) (cdr i)))
556	 ((null i))
557       (if (and (not (numberp (car i)))
558		(apply '$freeof (append vl (ncons (car i)))))
559	   (setq fl (cons (car i) fl))
560	   (setq cl (cons (car i) cl))))
561     (when (null fl)
562       (push f el)
563       (go end))
564     (setq fl (if (cdr fl)
565		  (simptimes (cons '(mtimes) fl) 1 nil)
566		  (car fl)))
567     (setq cl (cond ((null cl) 1)
568		    ((cdr cl) (simptimes (cons '(mtimes) cl) 1 t))
569		    (t (car cl))))
570     (setq x t)
571     (do ((i l (cdr i)))
572	 ((null i))
573       (when (alike1 (caar i) fl)
574	 (rplacd (car i) (cons cl (cdar i)))
575	 (setq i nil x nil)))
576     (when x
577       (push (list fl cl) l))
578     end  (when e (go loop))
579     (do ((i l (cdr i)))
580	 ((null i))
581       (push (simptimes (list '(mtimes) (caar i)
582			      ($factorsum (simplus (cons '(mplus) (cdar i)) 1 nil))) 1 nil) el))
583     (return (addn el nil))))
584