1# This file was automatically generated by SWIG (http://www.swig.org).
2# Version 4.0.1
3#
4# Do not make changes to this file unless you know what you are doing--modify
5# the SWIG interface file instead.
6
7package Math::GSL::Linalg;
8use base qw(Exporter);
9use base qw(DynaLoader);
10package Math::GSL::Linalgc;
11bootstrap Math::GSL::Linalg;
12package Math::GSL::Linalg;
13@EXPORT = qw();
14
15# ---------- BASE METHODS -------------
16
17package Math::GSL::Linalg;
18
19sub TIEHASH {
20    my ($classname,$obj) = @_;
21    return bless $obj, $classname;
22}
23
24sub CLEAR { }
25
26sub FIRSTKEY { }
27
28sub NEXTKEY { }
29
30sub FETCH {
31    my ($self,$field) = @_;
32    my $member_func = "swig_${field}_get";
33    $self->$member_func();
34}
35
36sub STORE {
37    my ($self,$field,$newval) = @_;
38    my $member_func = "swig_${field}_set";
39    $self->$member_func($newval);
40}
41
42sub this {
43    my $ptr = shift;
44    return tied(%$ptr);
45}
46
47
48# ------- FUNCTION WRAPPERS --------
49
50package Math::GSL::Linalg;
51
52*gsl_error = *Math::GSL::Linalgc::gsl_error;
53*gsl_stream_printf = *Math::GSL::Linalgc::gsl_stream_printf;
54*gsl_strerror = *Math::GSL::Linalgc::gsl_strerror;
55*gsl_set_error_handler = *Math::GSL::Linalgc::gsl_set_error_handler;
56*gsl_set_error_handler_off = *Math::GSL::Linalgc::gsl_set_error_handler_off;
57*gsl_set_stream_handler = *Math::GSL::Linalgc::gsl_set_stream_handler;
58*gsl_set_stream = *Math::GSL::Linalgc::gsl_set_stream;
59*gsl_linalg_matmult = *Math::GSL::Linalgc::gsl_linalg_matmult;
60*gsl_linalg_matmult_mod = *Math::GSL::Linalgc::gsl_linalg_matmult_mod;
61*gsl_linalg_exponential_ss = *Math::GSL::Linalgc::gsl_linalg_exponential_ss;
62*gsl_linalg_householder_transform = *Math::GSL::Linalgc::gsl_linalg_householder_transform;
63*gsl_linalg_complex_householder_transform = *Math::GSL::Linalgc::gsl_linalg_complex_householder_transform;
64*gsl_linalg_householder_hm = *Math::GSL::Linalgc::gsl_linalg_householder_hm;
65*gsl_linalg_householder_mh = *Math::GSL::Linalgc::gsl_linalg_householder_mh;
66*gsl_linalg_householder_hv = *Math::GSL::Linalgc::gsl_linalg_householder_hv;
67*gsl_linalg_householder_hm1 = *Math::GSL::Linalgc::gsl_linalg_householder_hm1;
68*gsl_linalg_complex_householder_hm = *Math::GSL::Linalgc::gsl_linalg_complex_householder_hm;
69*gsl_linalg_complex_householder_mh = *Math::GSL::Linalgc::gsl_linalg_complex_householder_mh;
70*gsl_linalg_complex_householder_hv = *Math::GSL::Linalgc::gsl_linalg_complex_householder_hv;
71*gsl_linalg_hessenberg_decomp = *Math::GSL::Linalgc::gsl_linalg_hessenberg_decomp;
72*gsl_linalg_hessenberg_unpack = *Math::GSL::Linalgc::gsl_linalg_hessenberg_unpack;
73*gsl_linalg_hessenberg_unpack_accum = *Math::GSL::Linalgc::gsl_linalg_hessenberg_unpack_accum;
74*gsl_linalg_hessenberg_set_zero = *Math::GSL::Linalgc::gsl_linalg_hessenberg_set_zero;
75*gsl_linalg_hessenberg_submatrix = *Math::GSL::Linalgc::gsl_linalg_hessenberg_submatrix;
76*gsl_linalg_hesstri_decomp = *Math::GSL::Linalgc::gsl_linalg_hesstri_decomp;
77*gsl_linalg_SV_decomp = *Math::GSL::Linalgc::gsl_linalg_SV_decomp;
78*gsl_linalg_SV_decomp_mod = *Math::GSL::Linalgc::gsl_linalg_SV_decomp_mod;
79*gsl_linalg_SV_decomp_jacobi = *Math::GSL::Linalgc::gsl_linalg_SV_decomp_jacobi;
80*gsl_linalg_SV_solve = *Math::GSL::Linalgc::gsl_linalg_SV_solve;
81*gsl_linalg_SV_leverage = *Math::GSL::Linalgc::gsl_linalg_SV_leverage;
82*gsl_linalg_LU_decomp = *Math::GSL::Linalgc::gsl_linalg_LU_decomp;
83*gsl_linalg_LU_solve = *Math::GSL::Linalgc::gsl_linalg_LU_solve;
84*gsl_linalg_LU_svx = *Math::GSL::Linalgc::gsl_linalg_LU_svx;
85*gsl_linalg_LU_refine = *Math::GSL::Linalgc::gsl_linalg_LU_refine;
86*gsl_linalg_LU_invert = *Math::GSL::Linalgc::gsl_linalg_LU_invert;
87*gsl_linalg_LU_det = *Math::GSL::Linalgc::gsl_linalg_LU_det;
88*gsl_linalg_LU_lndet = *Math::GSL::Linalgc::gsl_linalg_LU_lndet;
89*gsl_linalg_LU_sgndet = *Math::GSL::Linalgc::gsl_linalg_LU_sgndet;
90*gsl_linalg_complex_LU_decomp = *Math::GSL::Linalgc::gsl_linalg_complex_LU_decomp;
91*gsl_linalg_complex_LU_solve = *Math::GSL::Linalgc::gsl_linalg_complex_LU_solve;
92*gsl_linalg_complex_LU_svx = *Math::GSL::Linalgc::gsl_linalg_complex_LU_svx;
93*gsl_linalg_complex_LU_refine = *Math::GSL::Linalgc::gsl_linalg_complex_LU_refine;
94*gsl_linalg_complex_LU_invert = *Math::GSL::Linalgc::gsl_linalg_complex_LU_invert;
95*gsl_linalg_complex_LU_det = *Math::GSL::Linalgc::gsl_linalg_complex_LU_det;
96*gsl_linalg_complex_LU_lndet = *Math::GSL::Linalgc::gsl_linalg_complex_LU_lndet;
97*gsl_linalg_complex_LU_sgndet = *Math::GSL::Linalgc::gsl_linalg_complex_LU_sgndet;
98*gsl_linalg_QR_decomp = *Math::GSL::Linalgc::gsl_linalg_QR_decomp;
99*gsl_linalg_QR_solve = *Math::GSL::Linalgc::gsl_linalg_QR_solve;
100*gsl_linalg_QR_svx = *Math::GSL::Linalgc::gsl_linalg_QR_svx;
101*gsl_linalg_QR_lssolve = *Math::GSL::Linalgc::gsl_linalg_QR_lssolve;
102*gsl_linalg_QR_QRsolve = *Math::GSL::Linalgc::gsl_linalg_QR_QRsolve;
103*gsl_linalg_QR_Rsolve = *Math::GSL::Linalgc::gsl_linalg_QR_Rsolve;
104*gsl_linalg_QR_Rsvx = *Math::GSL::Linalgc::gsl_linalg_QR_Rsvx;
105*gsl_linalg_QR_update = *Math::GSL::Linalgc::gsl_linalg_QR_update;
106*gsl_linalg_QR_QTvec = *Math::GSL::Linalgc::gsl_linalg_QR_QTvec;
107*gsl_linalg_QR_Qvec = *Math::GSL::Linalgc::gsl_linalg_QR_Qvec;
108*gsl_linalg_QR_QTmat = *Math::GSL::Linalgc::gsl_linalg_QR_QTmat;
109*gsl_linalg_QR_matQ = *Math::GSL::Linalgc::gsl_linalg_QR_matQ;
110*gsl_linalg_QR_unpack = *Math::GSL::Linalgc::gsl_linalg_QR_unpack;
111*gsl_linalg_R_solve = *Math::GSL::Linalgc::gsl_linalg_R_solve;
112*gsl_linalg_R_svx = *Math::GSL::Linalgc::gsl_linalg_R_svx;
113*gsl_linalg_QRPT_decomp = *Math::GSL::Linalgc::gsl_linalg_QRPT_decomp;
114*gsl_linalg_QRPT_decomp2 = *Math::GSL::Linalgc::gsl_linalg_QRPT_decomp2;
115*gsl_linalg_QRPT_solve = *Math::GSL::Linalgc::gsl_linalg_QRPT_solve;
116*gsl_linalg_QRPT_lssolve = *Math::GSL::Linalgc::gsl_linalg_QRPT_lssolve;
117*gsl_linalg_QRPT_lssolve2 = *Math::GSL::Linalgc::gsl_linalg_QRPT_lssolve2;
118*gsl_linalg_QRPT_svx = *Math::GSL::Linalgc::gsl_linalg_QRPT_svx;
119*gsl_linalg_QRPT_QRsolve = *Math::GSL::Linalgc::gsl_linalg_QRPT_QRsolve;
120*gsl_linalg_QRPT_Rsolve = *Math::GSL::Linalgc::gsl_linalg_QRPT_Rsolve;
121*gsl_linalg_QRPT_Rsvx = *Math::GSL::Linalgc::gsl_linalg_QRPT_Rsvx;
122*gsl_linalg_QRPT_update = *Math::GSL::Linalgc::gsl_linalg_QRPT_update;
123*gsl_linalg_QRPT_rank = *Math::GSL::Linalgc::gsl_linalg_QRPT_rank;
124*gsl_linalg_QRPT_rcond = *Math::GSL::Linalgc::gsl_linalg_QRPT_rcond;
125*gsl_linalg_COD_decomp = *Math::GSL::Linalgc::gsl_linalg_COD_decomp;
126*gsl_linalg_COD_decomp_e = *Math::GSL::Linalgc::gsl_linalg_COD_decomp_e;
127*gsl_linalg_COD_lssolve = *Math::GSL::Linalgc::gsl_linalg_COD_lssolve;
128*gsl_linalg_COD_unpack = *Math::GSL::Linalgc::gsl_linalg_COD_unpack;
129*gsl_linalg_COD_matZ = *Math::GSL::Linalgc::gsl_linalg_COD_matZ;
130*gsl_linalg_LQ_decomp = *Math::GSL::Linalgc::gsl_linalg_LQ_decomp;
131*gsl_linalg_LQ_solve_T = *Math::GSL::Linalgc::gsl_linalg_LQ_solve_T;
132*gsl_linalg_LQ_svx_T = *Math::GSL::Linalgc::gsl_linalg_LQ_svx_T;
133*gsl_linalg_LQ_lssolve_T = *Math::GSL::Linalgc::gsl_linalg_LQ_lssolve_T;
134*gsl_linalg_LQ_Lsolve_T = *Math::GSL::Linalgc::gsl_linalg_LQ_Lsolve_T;
135*gsl_linalg_LQ_Lsvx_T = *Math::GSL::Linalgc::gsl_linalg_LQ_Lsvx_T;
136*gsl_linalg_L_solve_T = *Math::GSL::Linalgc::gsl_linalg_L_solve_T;
137*gsl_linalg_LQ_vecQ = *Math::GSL::Linalgc::gsl_linalg_LQ_vecQ;
138*gsl_linalg_LQ_vecQT = *Math::GSL::Linalgc::gsl_linalg_LQ_vecQT;
139*gsl_linalg_LQ_unpack = *Math::GSL::Linalgc::gsl_linalg_LQ_unpack;
140*gsl_linalg_LQ_update = *Math::GSL::Linalgc::gsl_linalg_LQ_update;
141*gsl_linalg_LQ_LQsolve = *Math::GSL::Linalgc::gsl_linalg_LQ_LQsolve;
142*gsl_linalg_PTLQ_decomp = *Math::GSL::Linalgc::gsl_linalg_PTLQ_decomp;
143*gsl_linalg_PTLQ_decomp2 = *Math::GSL::Linalgc::gsl_linalg_PTLQ_decomp2;
144*gsl_linalg_PTLQ_solve_T = *Math::GSL::Linalgc::gsl_linalg_PTLQ_solve_T;
145*gsl_linalg_PTLQ_svx_T = *Math::GSL::Linalgc::gsl_linalg_PTLQ_svx_T;
146*gsl_linalg_PTLQ_LQsolve_T = *Math::GSL::Linalgc::gsl_linalg_PTLQ_LQsolve_T;
147*gsl_linalg_PTLQ_Lsolve_T = *Math::GSL::Linalgc::gsl_linalg_PTLQ_Lsolve_T;
148*gsl_linalg_PTLQ_Lsvx_T = *Math::GSL::Linalgc::gsl_linalg_PTLQ_Lsvx_T;
149*gsl_linalg_PTLQ_update = *Math::GSL::Linalgc::gsl_linalg_PTLQ_update;
150*gsl_linalg_cholesky_decomp = *Math::GSL::Linalgc::gsl_linalg_cholesky_decomp;
151*gsl_linalg_cholesky_decomp1 = *Math::GSL::Linalgc::gsl_linalg_cholesky_decomp1;
152*gsl_linalg_cholesky_solve = *Math::GSL::Linalgc::gsl_linalg_cholesky_solve;
153*gsl_linalg_cholesky_svx = *Math::GSL::Linalgc::gsl_linalg_cholesky_svx;
154*gsl_linalg_cholesky_invert = *Math::GSL::Linalgc::gsl_linalg_cholesky_invert;
155*gsl_linalg_cholesky_decomp_unit = *Math::GSL::Linalgc::gsl_linalg_cholesky_decomp_unit;
156*gsl_linalg_cholesky_scale = *Math::GSL::Linalgc::gsl_linalg_cholesky_scale;
157*gsl_linalg_cholesky_scale_apply = *Math::GSL::Linalgc::gsl_linalg_cholesky_scale_apply;
158*gsl_linalg_cholesky_decomp2 = *Math::GSL::Linalgc::gsl_linalg_cholesky_decomp2;
159*gsl_linalg_cholesky_svx2 = *Math::GSL::Linalgc::gsl_linalg_cholesky_svx2;
160*gsl_linalg_cholesky_solve2 = *Math::GSL::Linalgc::gsl_linalg_cholesky_solve2;
161*gsl_linalg_cholesky_rcond = *Math::GSL::Linalgc::gsl_linalg_cholesky_rcond;
162*gsl_linalg_complex_cholesky_decomp = *Math::GSL::Linalgc::gsl_linalg_complex_cholesky_decomp;
163*gsl_linalg_complex_cholesky_solve = *Math::GSL::Linalgc::gsl_linalg_complex_cholesky_solve;
164*gsl_linalg_complex_cholesky_svx = *Math::GSL::Linalgc::gsl_linalg_complex_cholesky_svx;
165*gsl_linalg_complex_cholesky_invert = *Math::GSL::Linalgc::gsl_linalg_complex_cholesky_invert;
166*gsl_linalg_pcholesky_decomp = *Math::GSL::Linalgc::gsl_linalg_pcholesky_decomp;
167*gsl_linalg_pcholesky_solve = *Math::GSL::Linalgc::gsl_linalg_pcholesky_solve;
168*gsl_linalg_pcholesky_svx = *Math::GSL::Linalgc::gsl_linalg_pcholesky_svx;
169*gsl_linalg_pcholesky_decomp2 = *Math::GSL::Linalgc::gsl_linalg_pcholesky_decomp2;
170*gsl_linalg_pcholesky_solve2 = *Math::GSL::Linalgc::gsl_linalg_pcholesky_solve2;
171*gsl_linalg_pcholesky_svx2 = *Math::GSL::Linalgc::gsl_linalg_pcholesky_svx2;
172*gsl_linalg_pcholesky_invert = *Math::GSL::Linalgc::gsl_linalg_pcholesky_invert;
173*gsl_linalg_pcholesky_rcond = *Math::GSL::Linalgc::gsl_linalg_pcholesky_rcond;
174*gsl_linalg_mcholesky_decomp = *Math::GSL::Linalgc::gsl_linalg_mcholesky_decomp;
175*gsl_linalg_mcholesky_solve = *Math::GSL::Linalgc::gsl_linalg_mcholesky_solve;
176*gsl_linalg_mcholesky_svx = *Math::GSL::Linalgc::gsl_linalg_mcholesky_svx;
177*gsl_linalg_mcholesky_rcond = *Math::GSL::Linalgc::gsl_linalg_mcholesky_rcond;
178*gsl_linalg_mcholesky_invert = *Math::GSL::Linalgc::gsl_linalg_mcholesky_invert;
179*gsl_linalg_symmtd_decomp = *Math::GSL::Linalgc::gsl_linalg_symmtd_decomp;
180*gsl_linalg_symmtd_unpack = *Math::GSL::Linalgc::gsl_linalg_symmtd_unpack;
181*gsl_linalg_symmtd_unpack_T = *Math::GSL::Linalgc::gsl_linalg_symmtd_unpack_T;
182*gsl_linalg_hermtd_decomp = *Math::GSL::Linalgc::gsl_linalg_hermtd_decomp;
183*gsl_linalg_hermtd_unpack = *Math::GSL::Linalgc::gsl_linalg_hermtd_unpack;
184*gsl_linalg_hermtd_unpack_T = *Math::GSL::Linalgc::gsl_linalg_hermtd_unpack_T;
185*gsl_linalg_HH_solve = *Math::GSL::Linalgc::gsl_linalg_HH_solve;
186*gsl_linalg_HH_svx = *Math::GSL::Linalgc::gsl_linalg_HH_svx;
187*gsl_linalg_solve_symm_tridiag = *Math::GSL::Linalgc::gsl_linalg_solve_symm_tridiag;
188*gsl_linalg_solve_tridiag = *Math::GSL::Linalgc::gsl_linalg_solve_tridiag;
189*gsl_linalg_solve_symm_cyc_tridiag = *Math::GSL::Linalgc::gsl_linalg_solve_symm_cyc_tridiag;
190*gsl_linalg_solve_cyc_tridiag = *Math::GSL::Linalgc::gsl_linalg_solve_cyc_tridiag;
191*gsl_linalg_bidiag_decomp = *Math::GSL::Linalgc::gsl_linalg_bidiag_decomp;
192*gsl_linalg_bidiag_unpack = *Math::GSL::Linalgc::gsl_linalg_bidiag_unpack;
193*gsl_linalg_bidiag_unpack2 = *Math::GSL::Linalgc::gsl_linalg_bidiag_unpack2;
194*gsl_linalg_bidiag_unpack_B = *Math::GSL::Linalgc::gsl_linalg_bidiag_unpack_B;
195*gsl_linalg_balance_matrix = *Math::GSL::Linalgc::gsl_linalg_balance_matrix;
196*gsl_linalg_balance_accum = *Math::GSL::Linalgc::gsl_linalg_balance_accum;
197*gsl_linalg_balance_columns = *Math::GSL::Linalgc::gsl_linalg_balance_columns;
198*gsl_linalg_tri_upper_rcond = *Math::GSL::Linalgc::gsl_linalg_tri_upper_rcond;
199*gsl_linalg_tri_lower_rcond = *Math::GSL::Linalgc::gsl_linalg_tri_lower_rcond;
200*gsl_linalg_invnorm1 = *Math::GSL::Linalgc::gsl_linalg_invnorm1;
201*gsl_linalg_tri_upper_invert = *Math::GSL::Linalgc::gsl_linalg_tri_upper_invert;
202*gsl_linalg_tri_lower_invert = *Math::GSL::Linalgc::gsl_linalg_tri_lower_invert;
203*gsl_linalg_tri_upper_unit_invert = *Math::GSL::Linalgc::gsl_linalg_tri_upper_unit_invert;
204*gsl_linalg_tri_lower_unit_invert = *Math::GSL::Linalgc::gsl_linalg_tri_lower_unit_invert;
205*gsl_linalg_givens = *Math::GSL::Linalgc::gsl_linalg_givens;
206*gsl_linalg_givens_gv = *Math::GSL::Linalgc::gsl_linalg_givens_gv;
207*gsl_permutation_alloc = *Math::GSL::Linalgc::gsl_permutation_alloc;
208*gsl_permutation_calloc = *Math::GSL::Linalgc::gsl_permutation_calloc;
209*gsl_permutation_init = *Math::GSL::Linalgc::gsl_permutation_init;
210*gsl_permutation_free = *Math::GSL::Linalgc::gsl_permutation_free;
211*gsl_permutation_memcpy = *Math::GSL::Linalgc::gsl_permutation_memcpy;
212*gsl_permutation_fread = *Math::GSL::Linalgc::gsl_permutation_fread;
213*gsl_permutation_fwrite = *Math::GSL::Linalgc::gsl_permutation_fwrite;
214*gsl_permutation_fscanf = *Math::GSL::Linalgc::gsl_permutation_fscanf;
215*gsl_permutation_fprintf = *Math::GSL::Linalgc::gsl_permutation_fprintf;
216*gsl_permutation_size = *Math::GSL::Linalgc::gsl_permutation_size;
217*gsl_permutation_data = *Math::GSL::Linalgc::gsl_permutation_data;
218*gsl_permutation_swap = *Math::GSL::Linalgc::gsl_permutation_swap;
219*gsl_permutation_valid = *Math::GSL::Linalgc::gsl_permutation_valid;
220*gsl_permutation_reverse = *Math::GSL::Linalgc::gsl_permutation_reverse;
221*gsl_permutation_inverse = *Math::GSL::Linalgc::gsl_permutation_inverse;
222*gsl_permutation_next = *Math::GSL::Linalgc::gsl_permutation_next;
223*gsl_permutation_prev = *Math::GSL::Linalgc::gsl_permutation_prev;
224*gsl_permutation_mul = *Math::GSL::Linalgc::gsl_permutation_mul;
225*gsl_permutation_linear_to_canonical = *Math::GSL::Linalgc::gsl_permutation_linear_to_canonical;
226*gsl_permutation_canonical_to_linear = *Math::GSL::Linalgc::gsl_permutation_canonical_to_linear;
227*gsl_permutation_inversions = *Math::GSL::Linalgc::gsl_permutation_inversions;
228*gsl_permutation_linear_cycles = *Math::GSL::Linalgc::gsl_permutation_linear_cycles;
229*gsl_permutation_canonical_cycles = *Math::GSL::Linalgc::gsl_permutation_canonical_cycles;
230*gsl_permutation_get = *Math::GSL::Linalgc::gsl_permutation_get;
231*gsl_complex_polar = *Math::GSL::Linalgc::gsl_complex_polar;
232*gsl_complex_rect = *Math::GSL::Linalgc::gsl_complex_rect;
233*gsl_complex_arg = *Math::GSL::Linalgc::gsl_complex_arg;
234*gsl_complex_abs = *Math::GSL::Linalgc::gsl_complex_abs;
235*gsl_complex_abs2 = *Math::GSL::Linalgc::gsl_complex_abs2;
236*gsl_complex_logabs = *Math::GSL::Linalgc::gsl_complex_logabs;
237*gsl_complex_add = *Math::GSL::Linalgc::gsl_complex_add;
238*gsl_complex_sub = *Math::GSL::Linalgc::gsl_complex_sub;
239*gsl_complex_mul = *Math::GSL::Linalgc::gsl_complex_mul;
240*gsl_complex_div = *Math::GSL::Linalgc::gsl_complex_div;
241*gsl_complex_add_real = *Math::GSL::Linalgc::gsl_complex_add_real;
242*gsl_complex_sub_real = *Math::GSL::Linalgc::gsl_complex_sub_real;
243*gsl_complex_mul_real = *Math::GSL::Linalgc::gsl_complex_mul_real;
244*gsl_complex_div_real = *Math::GSL::Linalgc::gsl_complex_div_real;
245*gsl_complex_add_imag = *Math::GSL::Linalgc::gsl_complex_add_imag;
246*gsl_complex_sub_imag = *Math::GSL::Linalgc::gsl_complex_sub_imag;
247*gsl_complex_mul_imag = *Math::GSL::Linalgc::gsl_complex_mul_imag;
248*gsl_complex_div_imag = *Math::GSL::Linalgc::gsl_complex_div_imag;
249*gsl_complex_conjugate = *Math::GSL::Linalgc::gsl_complex_conjugate;
250*gsl_complex_inverse = *Math::GSL::Linalgc::gsl_complex_inverse;
251*gsl_complex_negative = *Math::GSL::Linalgc::gsl_complex_negative;
252*gsl_complex_sqrt = *Math::GSL::Linalgc::gsl_complex_sqrt;
253*gsl_complex_sqrt_real = *Math::GSL::Linalgc::gsl_complex_sqrt_real;
254*gsl_complex_pow = *Math::GSL::Linalgc::gsl_complex_pow;
255*gsl_complex_pow_real = *Math::GSL::Linalgc::gsl_complex_pow_real;
256*gsl_complex_exp = *Math::GSL::Linalgc::gsl_complex_exp;
257*gsl_complex_log = *Math::GSL::Linalgc::gsl_complex_log;
258*gsl_complex_log10 = *Math::GSL::Linalgc::gsl_complex_log10;
259*gsl_complex_log_b = *Math::GSL::Linalgc::gsl_complex_log_b;
260*gsl_complex_sin = *Math::GSL::Linalgc::gsl_complex_sin;
261*gsl_complex_cos = *Math::GSL::Linalgc::gsl_complex_cos;
262*gsl_complex_sec = *Math::GSL::Linalgc::gsl_complex_sec;
263*gsl_complex_csc = *Math::GSL::Linalgc::gsl_complex_csc;
264*gsl_complex_tan = *Math::GSL::Linalgc::gsl_complex_tan;
265*gsl_complex_cot = *Math::GSL::Linalgc::gsl_complex_cot;
266*gsl_complex_arcsin = *Math::GSL::Linalgc::gsl_complex_arcsin;
267*gsl_complex_arcsin_real = *Math::GSL::Linalgc::gsl_complex_arcsin_real;
268*gsl_complex_arccos = *Math::GSL::Linalgc::gsl_complex_arccos;
269*gsl_complex_arccos_real = *Math::GSL::Linalgc::gsl_complex_arccos_real;
270*gsl_complex_arcsec = *Math::GSL::Linalgc::gsl_complex_arcsec;
271*gsl_complex_arcsec_real = *Math::GSL::Linalgc::gsl_complex_arcsec_real;
272*gsl_complex_arccsc = *Math::GSL::Linalgc::gsl_complex_arccsc;
273*gsl_complex_arccsc_real = *Math::GSL::Linalgc::gsl_complex_arccsc_real;
274*gsl_complex_arctan = *Math::GSL::Linalgc::gsl_complex_arctan;
275*gsl_complex_arccot = *Math::GSL::Linalgc::gsl_complex_arccot;
276*gsl_complex_sinh = *Math::GSL::Linalgc::gsl_complex_sinh;
277*gsl_complex_cosh = *Math::GSL::Linalgc::gsl_complex_cosh;
278*gsl_complex_sech = *Math::GSL::Linalgc::gsl_complex_sech;
279*gsl_complex_csch = *Math::GSL::Linalgc::gsl_complex_csch;
280*gsl_complex_tanh = *Math::GSL::Linalgc::gsl_complex_tanh;
281*gsl_complex_coth = *Math::GSL::Linalgc::gsl_complex_coth;
282*gsl_complex_arcsinh = *Math::GSL::Linalgc::gsl_complex_arcsinh;
283*gsl_complex_arccosh = *Math::GSL::Linalgc::gsl_complex_arccosh;
284*gsl_complex_arccosh_real = *Math::GSL::Linalgc::gsl_complex_arccosh_real;
285*gsl_complex_arcsech = *Math::GSL::Linalgc::gsl_complex_arcsech;
286*gsl_complex_arccsch = *Math::GSL::Linalgc::gsl_complex_arccsch;
287*gsl_complex_arctanh = *Math::GSL::Linalgc::gsl_complex_arctanh;
288*gsl_complex_arctanh_real = *Math::GSL::Linalgc::gsl_complex_arctanh_real;
289*gsl_complex_arccoth = *Math::GSL::Linalgc::gsl_complex_arccoth;
290
291############# Class : Math::GSL::Linalg::gsl_permutation_struct ##############
292
293package Math::GSL::Linalg::gsl_permutation_struct;
294use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
295@ISA = qw( Math::GSL::Linalg );
296%OWNER = ();
297%ITERATORS = ();
298*swig_size_get = *Math::GSL::Linalgc::gsl_permutation_struct_size_get;
299*swig_size_set = *Math::GSL::Linalgc::gsl_permutation_struct_size_set;
300*swig_data_get = *Math::GSL::Linalgc::gsl_permutation_struct_data_get;
301*swig_data_set = *Math::GSL::Linalgc::gsl_permutation_struct_data_set;
302sub new {
303    my $pkg = shift;
304    my $self = Math::GSL::Linalgc::new_gsl_permutation_struct(@_);
305    bless $self, $pkg if defined($self);
306}
307
308sub DESTROY {
309    return unless $_[0]->isa('HASH');
310    my $self = tied(%{$_[0]});
311    return unless defined $self;
312    delete $ITERATORS{$self};
313    if (exists $OWNER{$self}) {
314        Math::GSL::Linalgc::delete_gsl_permutation_struct($self);
315        delete $OWNER{$self};
316    }
317}
318
319sub DISOWN {
320    my $self = shift;
321    my $ptr = tied(%$self);
322    delete $OWNER{$ptr};
323}
324
325sub ACQUIRE {
326    my $self = shift;
327    my $ptr = tied(%$self);
328    $OWNER{$ptr} = 1;
329}
330
331
332############# Class : Math::GSL::Linalg::gsl_complex ##############
333
334package Math::GSL::Linalg::gsl_complex;
335use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
336@ISA = qw( Math::GSL::Linalg );
337%OWNER = ();
338%ITERATORS = ();
339*swig_dat_get = *Math::GSL::Linalgc::gsl_complex_dat_get;
340*swig_dat_set = *Math::GSL::Linalgc::gsl_complex_dat_set;
341sub new {
342    my $pkg = shift;
343    my $self = Math::GSL::Linalgc::new_gsl_complex(@_);
344    bless $self, $pkg if defined($self);
345}
346
347sub DESTROY {
348    return unless $_[0]->isa('HASH');
349    my $self = tied(%{$_[0]});
350    return unless defined $self;
351    delete $ITERATORS{$self};
352    if (exists $OWNER{$self}) {
353        Math::GSL::Linalgc::delete_gsl_complex($self);
354        delete $OWNER{$self};
355    }
356}
357
358sub DISOWN {
359    my $self = shift;
360    my $ptr = tied(%$self);
361    delete $OWNER{$ptr};
362}
363
364sub ACQUIRE {
365    my $self = shift;
366    my $ptr = tied(%$self);
367    $OWNER{$ptr} = 1;
368}
369
370
371############# Class : Math::GSL::Linalg::gsl_complex_long_double ##############
372
373package Math::GSL::Linalg::gsl_complex_long_double;
374use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
375@ISA = qw( Math::GSL::Linalg );
376%OWNER = ();
377%ITERATORS = ();
378*swig_dat_get = *Math::GSL::Linalgc::gsl_complex_long_double_dat_get;
379*swig_dat_set = *Math::GSL::Linalgc::gsl_complex_long_double_dat_set;
380sub new {
381    my $pkg = shift;
382    my $self = Math::GSL::Linalgc::new_gsl_complex_long_double(@_);
383    bless $self, $pkg if defined($self);
384}
385
386sub DESTROY {
387    return unless $_[0]->isa('HASH');
388    my $self = tied(%{$_[0]});
389    return unless defined $self;
390    delete $ITERATORS{$self};
391    if (exists $OWNER{$self}) {
392        Math::GSL::Linalgc::delete_gsl_complex_long_double($self);
393        delete $OWNER{$self};
394    }
395}
396
397sub DISOWN {
398    my $self = shift;
399    my $ptr = tied(%$self);
400    delete $OWNER{$ptr};
401}
402
403sub ACQUIRE {
404    my $self = shift;
405    my $ptr = tied(%$self);
406    $OWNER{$ptr} = 1;
407}
408
409
410############# Class : Math::GSL::Linalg::gsl_complex_float ##############
411
412package Math::GSL::Linalg::gsl_complex_float;
413use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
414@ISA = qw( Math::GSL::Linalg );
415%OWNER = ();
416%ITERATORS = ();
417*swig_dat_get = *Math::GSL::Linalgc::gsl_complex_float_dat_get;
418*swig_dat_set = *Math::GSL::Linalgc::gsl_complex_float_dat_set;
419sub new {
420    my $pkg = shift;
421    my $self = Math::GSL::Linalgc::new_gsl_complex_float(@_);
422    bless $self, $pkg if defined($self);
423}
424
425sub DESTROY {
426    return unless $_[0]->isa('HASH');
427    my $self = tied(%{$_[0]});
428    return unless defined $self;
429    delete $ITERATORS{$self};
430    if (exists $OWNER{$self}) {
431        Math::GSL::Linalgc::delete_gsl_complex_float($self);
432        delete $OWNER{$self};
433    }
434}
435
436sub DISOWN {
437    my $self = shift;
438    my $ptr = tied(%$self);
439    delete $OWNER{$ptr};
440}
441
442sub ACQUIRE {
443    my $self = shift;
444    my $ptr = tied(%$self);
445    $OWNER{$ptr} = 1;
446}
447
448
449# ------- VARIABLE STUBS --------
450
451package Math::GSL::Linalg;
452
453*GSL_VERSION = *Math::GSL::Linalgc::GSL_VERSION;
454*GSL_MAJOR_VERSION = *Math::GSL::Linalgc::GSL_MAJOR_VERSION;
455*GSL_MINOR_VERSION = *Math::GSL::Linalgc::GSL_MINOR_VERSION;
456*GSL_POSZERO = *Math::GSL::Linalgc::GSL_POSZERO;
457*GSL_NEGZERO = *Math::GSL::Linalgc::GSL_NEGZERO;
458*GSL_SUCCESS = *Math::GSL::Linalgc::GSL_SUCCESS;
459*GSL_FAILURE = *Math::GSL::Linalgc::GSL_FAILURE;
460*GSL_CONTINUE = *Math::GSL::Linalgc::GSL_CONTINUE;
461*GSL_EDOM = *Math::GSL::Linalgc::GSL_EDOM;
462*GSL_ERANGE = *Math::GSL::Linalgc::GSL_ERANGE;
463*GSL_EFAULT = *Math::GSL::Linalgc::GSL_EFAULT;
464*GSL_EINVAL = *Math::GSL::Linalgc::GSL_EINVAL;
465*GSL_EFAILED = *Math::GSL::Linalgc::GSL_EFAILED;
466*GSL_EFACTOR = *Math::GSL::Linalgc::GSL_EFACTOR;
467*GSL_ESANITY = *Math::GSL::Linalgc::GSL_ESANITY;
468*GSL_ENOMEM = *Math::GSL::Linalgc::GSL_ENOMEM;
469*GSL_EBADFUNC = *Math::GSL::Linalgc::GSL_EBADFUNC;
470*GSL_ERUNAWAY = *Math::GSL::Linalgc::GSL_ERUNAWAY;
471*GSL_EMAXITER = *Math::GSL::Linalgc::GSL_EMAXITER;
472*GSL_EZERODIV = *Math::GSL::Linalgc::GSL_EZERODIV;
473*GSL_EBADTOL = *Math::GSL::Linalgc::GSL_EBADTOL;
474*GSL_ETOL = *Math::GSL::Linalgc::GSL_ETOL;
475*GSL_EUNDRFLW = *Math::GSL::Linalgc::GSL_EUNDRFLW;
476*GSL_EOVRFLW = *Math::GSL::Linalgc::GSL_EOVRFLW;
477*GSL_ELOSS = *Math::GSL::Linalgc::GSL_ELOSS;
478*GSL_EROUND = *Math::GSL::Linalgc::GSL_EROUND;
479*GSL_EBADLEN = *Math::GSL::Linalgc::GSL_EBADLEN;
480*GSL_ENOTSQR = *Math::GSL::Linalgc::GSL_ENOTSQR;
481*GSL_ESING = *Math::GSL::Linalgc::GSL_ESING;
482*GSL_EDIVERGE = *Math::GSL::Linalgc::GSL_EDIVERGE;
483*GSL_EUNSUP = *Math::GSL::Linalgc::GSL_EUNSUP;
484*GSL_EUNIMPL = *Math::GSL::Linalgc::GSL_EUNIMPL;
485*GSL_ECACHE = *Math::GSL::Linalgc::GSL_ECACHE;
486*GSL_ETABLE = *Math::GSL::Linalgc::GSL_ETABLE;
487*GSL_ENOPROG = *Math::GSL::Linalgc::GSL_ENOPROG;
488*GSL_ENOPROGJ = *Math::GSL::Linalgc::GSL_ENOPROGJ;
489*GSL_ETOLF = *Math::GSL::Linalgc::GSL_ETOLF;
490*GSL_ETOLX = *Math::GSL::Linalgc::GSL_ETOLX;
491*GSL_ETOLG = *Math::GSL::Linalgc::GSL_ETOLG;
492*GSL_EOF = *Math::GSL::Linalgc::GSL_EOF;
493*GSL_LINALG_MOD_NONE = *Math::GSL::Linalgc::GSL_LINALG_MOD_NONE;
494*GSL_LINALG_MOD_TRANSPOSE = *Math::GSL::Linalgc::GSL_LINALG_MOD_TRANSPOSE;
495*GSL_LINALG_MOD_CONJUGATE = *Math::GSL::Linalgc::GSL_LINALG_MOD_CONJUGATE;
496
497@EXPORT_OK = qw/$GSL_LINALG_MOD_NONE $GSL_LINALG_MOD_TRANSPOSE $GSL_LINALG_MOD_CONJUGATE
498                gsl_linalg_matmult gsl_linalg_matmult_mod
499                gsl_linalg_exponential_ss
500                gsl_linalg_householder_transform
501                gsl_linalg_complex_householder_transform
502                gsl_linalg_householder_hm
503                gsl_linalg_householder_mh
504                gsl_linalg_householder_hv
505                gsl_linalg_householder_hm1
506                gsl_linalg_complex_householder_hm
507                gsl_linalg_complex_householder_mh
508                gsl_linalg_complex_householder_hv
509                gsl_linalg_hessenberg_decomp
510                gsl_linalg_hessenberg_unpack
511                gsl_linalg_hessenberg_unpack_accum
512                gsl_linalg_hessenberg_set_zero
513                gsl_linalg_hessenberg_submatrix
514                gsl_linalg_hessenberg
515                gsl_linalg_hesstri_decomp
516                gsl_linalg_SV_decomp
517                gsl_linalg_SV_decomp_mod
518                gsl_linalg_SV_decomp_jacobi
519                gsl_linalg_SV_solve
520                gsl_linalg_LU_decomp
521                gsl_linalg_LU_solve
522                gsl_linalg_LU_svx
523                gsl_linalg_LU_refine
524                gsl_linalg_LU_invert
525                gsl_linalg_LU_det
526                gsl_linalg_LU_lndet
527                gsl_linalg_LU_sgndet
528                gsl_linalg_complex_LU_decomp
529                gsl_linalg_complex_LU_solve
530                gsl_linalg_complex_LU_svx
531                gsl_linalg_complex_LU_refine
532                gsl_linalg_complex_LU_invert
533                gsl_linalg_complex_LU_det
534                gsl_linalg_complex_LU_lndet
535                gsl_linalg_complex_LU_sgndet
536                gsl_linalg_QR_decomp
537                gsl_linalg_QR_solve
538                gsl_linalg_QR_svx
539                gsl_linalg_QR_lssolve
540                gsl_linalg_QR_QRsolve
541                gsl_linalg_QR_Rsolve
542                gsl_linalg_QR_Rsvx
543                gsl_linalg_QR_update
544                gsl_linalg_QR_QTvec
545                gsl_linalg_QR_Qvec
546                gsl_linalg_QR_QTmat
547                gsl_linalg_QR_unpack
548                gsl_linalg_R_solve
549                gsl_linalg_R_svx
550                gsl_linalg_QRPT_decomp
551                gsl_linalg_QRPT_decomp2
552                gsl_linalg_QRPT_solve
553                gsl_linalg_QRPT_svx
554                gsl_linalg_QRPT_QRsolve
555                gsl_linalg_QRPT_Rsolve
556                gsl_linalg_QRPT_Rsvx
557                gsl_linalg_QRPT_update
558                gsl_linalg_LQ_decomp
559                gsl_linalg_LQ_solve_T
560                gsl_linalg_LQ_svx_T
561                gsl_linalg_LQ_lssolve_T
562                gsl_linalg_LQ_Lsolve_T
563                gsl_linalg_LQ_Lsvx_T
564                gsl_linalg_L_solve_T
565                gsl_linalg_LQ_vecQ
566                gsl_linalg_LQ_vecQT
567                gsl_linalg_LQ_unpack
568                gsl_linalg_LQ_update
569                gsl_linalg_LQ_LQsolve
570                gsl_linalg_PTLQ_decomp
571                gsl_linalg_PTLQ_decomp2
572                gsl_linalg_PTLQ_solve_T
573                gsl_linalg_PTLQ_svx_T
574                gsl_linalg_PTLQ_LQsolve_T
575                gsl_linalg_PTLQ_Lsolve_T
576                gsl_linalg_PTLQ_Lsvx_T
577                gsl_linalg_PTLQ_update
578                gsl_linalg_cholesky_decomp
579                gsl_linalg_cholesky_solve
580                gsl_linalg_cholesky_svx
581                gsl_linalg_cholesky_decomp_unit
582                gsl_linalg_complex_cholesky_decomp
583                gsl_linalg_complex_cholesky_solve
584                gsl_linalg_complex_cholesky_svx
585                gsl_linalg_symmtd_decomp
586                gsl_linalg_symmtd_unpack
587                gsl_linalg_symmtd_unpack_T
588                gsl_linalg_hermtd_decomp
589                gsl_linalg_hermtd_unpack
590                gsl_linalg_hermtd_unpack_T
591                gsl_linalg_HH_solve
592                gsl_linalg_HH_svx
593                gsl_linalg_solve_symm_tridiag
594                gsl_linalg_solve_tridiag
595                gsl_linalg_solve_symm_cyc_tridiag
596                gsl_linalg_solve_cyc_tridiag
597                gsl_linalg_bidiag_decomp
598                gsl_linalg_bidiag_unpack
599                gsl_linalg_bidiag_unpack2
600                gsl_linalg_bidiag_unpack_B
601                gsl_linalg_balance_matrix
602                gsl_linalg_balance_accum
603                gsl_linalg_balance_columns
604                gsl_linalg_givens gsl_linalg_givens_gv
605       /;
606%EXPORT_TAGS = ( all =>[ @EXPORT_OK ] );
607
608__END__
609
610=encoding utf8
611
612=head1 NAME
613
614Math::GSL::Linalg - Functions for solving linear systems
615
616=head1 SYNOPSIS
617
618    use Math::GSL::Linalg qw/:all/;
619
620=head1 DESCRIPTION
621
622
623Here is a list of all the functions included in this module :
624
625=over
626
627=item gsl_linalg_matmult
628
629=item gsl_linalg_matmult_mod
630
631=item gsl_linalg_exponential_ss
632
633=item gsl_linalg_householder_transform
634
635=item gsl_linalg_complex_householder_transform
636
637=item gsl_linalg_householder_hm($tau, $v, $A) - This function applies the Householder matrix P defined by the scalar $tau and the vector $v to the left-hand side of the matrix $A. On output the result P A is stored in $A. The function returns 0 if it succeded, 1 otherwise.
638
639=item gsl_linalg_householder_mh($tau, $v, $A) - This function applies the Householder matrix P defined by the scalar $tau and the vector $v to the right-hand side of the matrix $A. On output the result A P is stored in $A.
640
641=item gsl_linalg_householder_hv($tau, $v, $w) - This function applies the Householder transformation P defined by the scalar $tau and the vector $v to the vector $w. On output the result P w is stored in $w.
642
643=item gsl_linalg_householder_hm1
644
645=item gsl_linalg_givens($a,$b,$c,$s)
646
647Performs a Givens rotation on the vector ($a,$b) and stores the answer in $c and $s.
648
649=item gsl_linalg_givens_gv($v, $i,$j, $c, $s)
650
651Performs a Givens rotation on the $i and $j-th elements of $v, storing them in $c and $s.
652
653=item gsl_linalg_complex_householder_hm($tau, $v, $A) - Does the same operation than gsl_linalg_householder_hm but with the complex matrix $A, the complex value $tau and the complex vector $v.
654
655=item gsl_linalg_complex_householder_mh($tau, $v, $A) - Does the same operation than gsl_linalg_householder_mh but with the complex matrix $A, the complex value $tau and the complex vector $v.
656
657=item gsl_linalg_complex_householder_hv($tau, $v, $w) - Does the same operation than gsl_linalg_householder_hv but with the complex value $tau and the complex vectors $v and $w.
658
659=item gsl_linalg_hessenberg_decomp($A, $tau) - This function computes the Hessenberg decomposition of the matrix $A by applying the similarity transformation H = U^T A U. On output, H is stored in the upper portion of $A. The information required to construct the matrix U is stored in the lower triangular portion of $A. U is a product of N - 2 Householder matrices. The Householder vectors are stored in the lower portion of $A (below the subdiagonal) and the Householder coefficients are stored in the vector $tau. tau must be of length N. The function returns 0 if it succeded, 1 otherwise.
660
661=item gsl_linalg_hessenberg_unpack($H, $tau, $U) - This function constructs the orthogonal matrix $U from the information stored in the Hessenberg matrix $H along with the vector $tau. $H and $tau are outputs from gsl_linalg_hessenberg_decomp.
662
663=item gsl_linalg_hessenberg_unpack_accum($H, $tau, $V) - This function is similar to gsl_linalg_hessenberg_unpack, except it accumulates the matrix U into $V, so that V' = VU. The matrix $V must be initialized prior to calling this function. Setting $V to the identity matrix provides the same result as gsl_linalg_hessenberg_unpack. If $H is order N, then $V must have N columns but may have any number of rows.
664
665=item gsl_linalg_hessenberg_set_zero($H) - This function sets the lower triangular portion of $H, below the subdiagonal, to zero. It is useful for clearing out the Householder vectors after calling gsl_linalg_hessenberg_decomp.
666
667=item gsl_linalg_hessenberg_submatrix
668
669=item gsl_linalg_hessenberg
670
671=item gsl_linalg_hesstri_decomp($A, $B, $U, $V, $work) - This function computes the Hessenberg-Triangular decomposition of the matrix pair ($A, $B). On output, H is stored in $A, and R is stored in $B. If $U and $V are provided (they may be null), the similarity transformations are stored in them. Additional workspace of length N is needed in the vector $work.
672
673=item gsl_linalg_SV_decomp($A, $V, $S, $work) - This function factorizes the M-by-N matrix $A into the singular value decomposition A = U S V^T for M >= N. On output the matrix $A is replaced by U. The diagonal elements of the singular value matrix S are stored in the vector $S. The singular values are non-negative and form a non-increasing sequence from S_1 to S_N. The matrix $V contains the elements of V in untransposed form. To form the product U S V^T it is necessary to take the transpose of V. A workspace of length N is required in vector $work. This routine uses the Golub-Reinsch SVD algorithm.
674
675=item gsl_linalg_SV_decomp_mod($A, $X, $V, $S, $work) - This function computes the SVD using the modified Golub-Reinsch algorithm, which is faster for M>>N. It requires the vector $work of length N and the N-by-N matrix $X as additional working space. $A and $V are matrices while $S is a vector.
676
677=item gsl_linalg_SV_decomp_jacobi($A, $V, $S) - This function computes the SVD of the M-by-N matrix $A using one-sided Jacobi orthogonalization for M >= N. The Jacobi method can compute singular values to higher relative accuracy than Golub-Reinsch algorithms. $V is a matrix while $S is a vector.
678
679=item gsl_linalg_SV_solve($U, $V, $S, $b, $x) - This function solves the system A x = b using the singular value decomposition ($U, $S, $V) of A given by gsl_linalg_SV_decomp. Only non-zero singular values are used in computing the solution. The parts of the solution corresponding to singular values of zero are ignored. Other singular values can be edited out by setting them to zero before calling this function. In the over-determined case where A has more rows than columns the system is solved in the least squares sense, returning the solution x which minimizes ||A x - b||_2.
680
681=item gsl_linalg_LU_decomp($a, $p) - factorize the matrix $a into the LU decomposition PA = LU. On output the diagonal and upper triangular part of the input matrix A contain the matrix U. The lower triangular part of the input matrix (excluding the diagonal) contains L. The diagonal elements of L are unity, and are not stored. The function returns two value, the first is 0 if the operation succeeded, 1 otherwise, and the second is the sign of the permutation.
682
683=item gsl_linalg_LU_solve($LU, $p, $b, $x) - This function solves the square system A x = b using the LU decomposition of the matrix A into (LU, p) given by gsl_linalg_LU_decomp. $LU is a matrix, $p a permutation and $b and $x are vectors. The function returns 1 if the operation succeded, 0 otherwise.
684
685=item gsl_linalg_LU_svx($LU, $p, $x) - This function solves the square system A x = b in-place using the LU decomposition of A into (LU,p). On input $x should contain the right-hand side b, which is replaced by the solution on output. $LU is a matrix, $p a permutation and $x is a vector. The function returns 1 if the operation succeded, 0 otherwise.
686
687=item gsl_linalg_LU_refine($A, $LU, $p, $b, $x, $residual) - This function apply an iterative improvement to $x, the solution of $A $x = $b, using the LU decomposition of $A into ($LU,$p). The initial residual $r = $A $x - $b (where $x and $b are vectors) is also computed and stored in the vector $residual.
688
689=item gsl_linalg_LU_invert($LU, $p, $inverse) - This function computes the inverse of a matrix A from its LU decomposition stored in the matrix $LU and the permutation $p, storing the result in the matrix $inverse.
690
691=item gsl_linalg_LU_det($LU, $signum) - This function returns the determinant of a matrix A from its LU decomposition stored in the $LU matrix. It needs the integer $signum which is the sign of the permutation returned by gsl_linalg_LU_decomp.
692
693=item gsl_linalg_LU_lndet($LU) - This function returns the logarithm of the absolute value of the determinant of a matrix A, from its LU decomposition stored in the $LU matrix.
694
695=item gsl_linalg_LU_sgndet($LU, $signum) - This functions computes the sign or phase factor of the determinant of a matrix A, det(A)/|det(A)|, from its LU decomposition, $LU.
696
697=item gsl_linalg_complex_LU_decomp($A, $p) - Does the same operation than gsl_linalg_LU_decomp but on the complex matrix $A.
698
699=item gsl_linalg_complex_LU_solve($LU, $p, $b, $x) - This functions solve the square system A x = b using the LU decomposition of A into ($LU, $p) given by  gsl_linalg_complex_LU_decomp.
700
701=item gsl_linalg_complex_LU_svx($LU, $p, $x) - Does the same operation than gsl_linalg_LU_svx but on the complex matrix $LU and the complex vector $x.
702
703=item gsl_linalg_complex_LU_refine($A, $LU, $p, $b, $x, $residual) - Does the same operation than gsl_linalg_LU_refine but on the complex matrices $A and $LU and with the complex vectors $b, $x and $residual.
704
705=item gsl_linalg_complex_LU_invert($LU, $p, $inverse) - Does the same operation than gsl_linalg_LU_invert but on the complex matrces $LU and $inverse.
706
707=item gsl_linalg_complex_LU_det($LU, $signum) - Does the same operation than gsl_linalg_LU_det but on the complex matrix $LU.
708
709=item gsl_linalg_complex_LU_lndet($LU) - Does the same operation than gsl_linalg_LU_det but on the complex matrix $LU.
710
711=item gsl_linalg_complex_LU_sgndet($LU, $signum) - Does the same operation than gsl_linalg_LU_sgndet but on the complex matrix $LU.
712
713=item gsl_linalg_QR_decomp($a, $tau) - factorize the M-by-N matrix A into the QR decomposition A = Q R. On output the diagonal and upper triangular part of the input matrix $a contain the matrix R. The vector $tau and the columns of the lower triangular part of the matrix $a contain the Householder coefficients and Householder vectors which encode the orthogonal matrix Q. The vector tau must be of length k= min(M,N).
714
715=item gsl_linalg_QR_solve($QR, $tau, $b, $x) - This function solves the square system A x = b using the QR decomposition of A into (QR, tau) given by gsl_linalg_QR_decomp. $QR is matrix, and $tau, $b and $x are vectors.
716
717=item gsl_linalg_QR_svx($QR, $tau, $x) - This function solves the square system A x = b in-place using the QR decomposition of A into the matrix $QR and the vector $tau given by gsl_linalg_QR_decomp. On input, the vector $x should contain the right-hand side b, which is replaced by the solution on output.
718
719=item gsl_linalg_QR_lssolve($QR, $tau, $b, $x, $residual) - This function finds the least squares solution to the overdetermined system $A $x = $b where the matrix $A has more rows than columns. The least squares solution minimizes the Euclidean norm of the residual, ||Ax - b||.The routine uses the $QR decomposition of $A into ($QR, $tau) given by gsl_linalg_QR_decomp. The solution is returned in $x. The residual is computed as a by-product and stored in residual. The function returns 0 if it succeded, 1 otherwise.
720
721=item gsl_linalg_QR_QRsolve($Q, $R, $b, $x) - This function solves the system $R $x = $Q**T $b for $x. It can be used when the $QR decomposition of a matrix is available in unpacked form as ($Q, $R). The function returns 0 if it succeded, 1 otherwise.
722
723=item gsl_linalg_QR_Rsolve($QR, $b, $x) - This function solves the triangular system R $x = $b for $x. It may be useful if the product b' = Q^T b has already been computed using gsl_linalg_QR_QTvec.
724
725=item gsl_linalg_QR_Rsvx($QR, $x) - This function solves the triangular system R $x = b for $x in-place. On input $x should contain the right-hand side b and is replaced by the solution on output. This function may be useful if the product b' = Q^T b has already been computed using gsl_linalg_QR_QTvec. The function returns 0 if it succeded, 1 otherwise.
726
727=item gsl_linalg_QR_update($Q, $R, $b, $x) - This function performs a rank-1 update $w $v**T of the QR decomposition ($Q, $R). The update is given by Q'R' = Q R + w v^T where the output matrices Q' and R' are also orthogonal and right triangular. Note that w is destroyed by the update. The function returns 0 if it succeded, 1 otherwise.
728
729=item gsl_linalg_QR_QTvec($QR, $tau, $v) - This function applies the matrix Q^T encoded in the decomposition ($QR,$tau) to the vector $v, storing the result Q^T v in $v. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q^T. The function returns 0 if it succeded, 1 otherwise.
730
731=item gsl_linalg_QR_Qvec($QR, $tau, $v) - This function applies the matrix Q encoded in the decomposition ($QR,$tau) to the vector $v, storing the result Q v in $v. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q. The function returns 0 if it succeded, 1 otherwise.
732
733=item gsl_linalg_QR_QTmat($QR, $tau, $A) - This function applies the matrix Q^T encoded in the decomposition ($QR,$tau) to the matrix $A, storing the result Q^T A in $A. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q^T. The function returns 0 if it succeded, 1 otherwise.
734
735=item gsl_linalg_QR_unpack($QR, $tau, $Q, $R) - This function unpacks the encoded QR decomposition ($QR,$tau) into the matrices $Q and $R, where $Q is M-by-M and $R is M-by-N. The function returns 0 if it succeded, 1 otherwise.
736
737=item gsl_linalg_R_solve($R, $b, $x) - This function solves the triangular system $R $x = $b for the N-by-N matrix $R. The function returns 0 if it succeded, 1 otherwise.
738
739=item gsl_linalg_R_svx($R, $x) - This function solves the triangular system $R $x = b in-place. On input $x should contain the right-hand side b, which is replaced by the solution on output. The function returns 0 if it succeded, 1 otherwise.
740
741=item gsl_linalg_QRPT_decomp($A, $tau, $p, $norm) - This function factorizes the M-by-N matrix $A into the QRP^T decomposition A = Q R P^T. On output the diagonal and upper triangular part of the input matrix contain the matrix R. The permutation matrix P is stored in the permutation $p. There's two value returned by this function : the first is 0 if the operation succeeded, 1 otherwise. The second is sign of the permutation. It has the value (-1)^n, where n is the number of interchanges in the permutation. The vector $tau and the columns of the lower triangular part of the matrix $A contain the Householder coefficients and vectors which encode the orthogonal matrix Q. The vector tau must be of length k=\min(M,N). The matrix Q is related to these components by, Q = Q_k ... Q_2 Q_1 where Q_i = I - \tau_i v_i v_i^T and v_i is the Householder vector v_i = (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme as used by lapack. The vector norm is a workspace of length N used for column pivoting. The algorithm used to perform the decomposition is Householder QR with column pivoting (Golub & Van Loan, Matrix Computations, Algorithm 5.4.1).
742
743=item gsl_linalg_QRPT_decomp2($A, $q, $r, $tau, $p, $norm)  - This function factorizes the matrix $A into the decomposition A = Q R P^T without modifying $A itself and storing the output in the separate matrices $q and $r. For the rest, it operates exactly like gsl_linalg_QRPT_decomp
744
745=item gsl_linalg_QRPT_solve
746
747=item gsl_linalg_QRPT_svx
748
749=item gsl_linalg_QRPT_QRsolve
750
751=item gsl_linalg_QRPT_Rsolve
752
753=item gsl_linalg_QRPT_Rsvx
754
755=item gsl_linalg_QRPT_update
756
757=item gsl_linalg_LQ_decomp
758
759=item gsl_linalg_LQ_solve_T
760
761=item gsl_linalg_LQ_svx_T
762
763=item gsl_linalg_LQ_lssolve_T
764
765=item gsl_linalg_LQ_Lsolve_T
766
767=item gsl_linalg_LQ_Lsvx_T
768
769=item gsl_linalg_L_solve_T
770
771=item gsl_linalg_LQ_vecQ
772
773=item gsl_linalg_LQ_vecQT
774
775=item gsl_linalg_LQ_unpack
776
777=item gsl_linalg_LQ_update
778
779=item gsl_linalg_LQ_LQsolve
780
781=item gsl_linalg_PTLQ_decomp
782
783=item gsl_linalg_PTLQ_decomp2
784
785=item gsl_linalg_PTLQ_solve_T
786
787=item gsl_linalg_PTLQ_svx_T
788
789=item gsl_linalg_PTLQ_LQsolve_T
790
791=item gsl_linalg_PTLQ_Lsolve_T
792
793=item gsl_linalg_PTLQ_Lsvx_T
794
795=item gsl_linalg_PTLQ_update
796
797=item gsl_linalg_cholesky_decomp($A) - Factorize the symmetric, positive-definite square matrix $A into the Cholesky decomposition A = L L^T and stores it into the matrix $A. The function returns 0 if the operation succeeded, 0 otherwise.
798
799=item gsl_linalg_cholesky_solve($cholesky, $b, $x) - This function solves the system A x = b using the Cholesky decomposition of A into the matrix $cholesky given by gsl_linalg_cholesky_decomp. $b and $x are vectors. The function returns 0 if the operation succeeded, 0 otherwise.
800
801=item gsl_linalg_cholesky_svx($cholesky, $x) - This function solves the system A x = b in-place using the Cholesky decomposition of A into the matrix $cholesky given by gsl_linalg_cholesky_decomp. On input the vector $x should contain the right-hand side b, which is replaced by the solution on output. The function returns 0 if the operation succeeded, 0 otherwise.
802
803=item gsl_linalg_cholesky_decomp_unit
804
805=item gsl_linalg_complex_cholesky_decomp($A) - Factorize the symmetric, positive-definite square matrix $A which contains complex numbers into the Cholesky decomposition A = L L^T and stores it into the matrix $A. The function returns 0 if the operation succeeded, 0 otherwise.
806
807=item gsl_linalg_complex_cholesky_solve($cholesky, $b, $x) - This function solves the system A x = b using the Cholesky decomposition of A into the matrix $cholesky given by gsl_linalg_complex_cholesky_decomp. $b and $x are vectors. The function returns 0 if the operation succeeded, 0 otherwise.
808
809=item gsl_linalg_complex_cholesky_svx($cholesky, $x) - This function solves the system A x = b in-place using the Cholesky decomposition of A into the matrix $cholesky given by gsl_linalg_complex_cholesky_decomp. On input the vector $x should contain the right-hand side b, which is replaced by the solution on output. The function returns 0 if the operation succeeded, 0 otherwise.
810
811=item gsl_linalg_symmtd_decomp($A, $tau) - This function factorizes the symmetric square matrix $A into the symmetric tridiagonal decomposition Q T Q^T. On output the diagonal and subdiagonal part of the input matrix $A contain the tridiagonal matrix T. The remaining lower triangular part of the input matrix contains the Householder vectors which, together with the Householder coefficients $tau, encode the orthogonal matrix Q. This storage scheme is the same as used by lapack. The upper triangular part of $A is not referenced. $tau is a vector.
812
813=item gsl_linalg_symmtd_unpack($A, $tau, $Q, $diag, $subdiag) - This function unpacks the encoded symmetric tridiagonal decomposition ($A, $tau) obtained from gsl_linalg_symmtd_decomp into the orthogonal matrix $Q, the vector of diagonal elements $diag and the vector of subdiagonal elements $subdiag.
814
815=item gsl_linalg_symmtd_unpack_T($A, $diag, $subdiag) - This function unpacks the diagonal and subdiagonal of the encoded symmetric tridiagonal decomposition ($A, $tau) obtained from gsl_linalg_symmtd_decomp into the vectors $diag and $subdiag.
816
817=item gsl_linalg_hermtd_decomp($A, $tau) - This function factorizes the hermitian matrix $A into the symmetric tridiagonal decomposition U T U^T. On output the real parts of the diagonal and subdiagonal part of the input matrix $A contain the tridiagonal matrix T. The remaining lower triangular part of the input matrix contains the Householder vectors which, together with the Householder coefficients $tau, encode the orthogonal matrix Q. This storage scheme is the same as used by lapack. The upper triangular part of $A and imaginary parts of the diagonal are not referenced. $A is a complex matrix and $tau a complex vector.
818
819=item gsl_linalg_hermtd_unpack($A, $tau, $U, $diag, $subdiag) - This function unpacks the encoded tridiagonal decomposition ($A, $tau) obtained from gsl_linalg_hermtd_decomp into the unitary complex  matrix $U, the real vector of diagonal elements $diag and the real vector of subdiagonal elements $subdiag.
820
821=item gsl_linalg_hermtd_unpack_T($A, $diag, $subdiag) - This function unpacks the diagonal and subdiagonal of the encoded tridiagonal decomposition (A, tau) obtained from the gsl_linalg_hermtd_decomp into the real vectors $diag and $subdiag.
822
823=item gsl_linalg_HH_solve($a, $b, $x) - This function solves the system $A $x = $b directly using Householder transformations where $A is a matrix, $b and $x vectors. On output the solution is stored in $x and $b is not modified. $A is destroyed by the Householder transformations.
824
825=item gsl_linalg_HH_svx($A, $x) - This function solves the system $A $x = b in-place using Householder transformations where $A is a matrix, $b is a vector. On input $x should contain the right-hand side b, which is replaced by the solution on output. The matrix $A is destroyed by the Householder transformations.
826
827=item gsl_linalg_solve_symm_tridiag
828
829=item gsl_linalg_solve_tridiag
830
831=item gsl_linalg_solve_symm_cyc_tridiag
832
833=item gsl_linalg_solve_cyc_tridiag
834
835=item gsl_linalg_bidiag_decomp
836
837=item gsl_linalg_bidiag_unpack
838
839=item gsl_linalg_bidiag_unpack2
840
841=item gsl_linalg_bidiag_unpack_B
842
843=item gsl_linalg_balance_matrix
844
845=item gsl_linalg_balance_accum
846
847=item gsl_linalg_balance_columns
848
849
850 You have to add the functions you want to use inside the qw /put_function_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all available functions of the module.
851
852For more informations on the functions, we refer you to the GSL official documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
853
854
855=back
856
857=head1 EXAMPLES
858
859This example shows how to compute the determinant of a matrix with the LU decomposition:
860
861 use Math::GSL::Matrix qw/:all/;
862 use Math::GSL::Permutation qw/:all/;
863 use Math::GSL::Linalg qw/:all/;
864
865 my $Matrix = gsl_matrix_alloc(4,4);
866 map { gsl_matrix_set($Matrix, 0, $_, $_+1) } (0..3);
867
868 gsl_matrix_set($Matrix,1, 0, 2);
869 gsl_matrix_set($Matrix, 1, 1, 3);
870 gsl_matrix_set($Matrix, 1, 2, 4);
871 gsl_matrix_set($Matrix, 1, 3, 1);
872
873 gsl_matrix_set($Matrix, 2, 0, 3);
874 gsl_matrix_set($Matrix, 2, 1, 4);
875 gsl_matrix_set($Matrix, 2, 2, 1);
876 gsl_matrix_set($Matrix, 2, 3, 2);
877
878 gsl_matrix_set($Matrix, 3, 0, 4);
879 gsl_matrix_set($Matrix, 3, 1, 1);
880 gsl_matrix_set($Matrix, 3, 2, 2);
881 gsl_matrix_set($Matrix, 3, 3, 3);
882
883 my $permutation = gsl_permutation_alloc(4);
884 gsl_permutation_init($permutation);
885 my ($result, $signum) = gsl_linalg_LU_decomp($Matrix, $permutation);
886 my $det = gsl_linalg_LU_det($Matrix, $signum);
887 print "The value of the determinant of the matrix is $det \n";
888
889=head1 AUTHORS
890
891Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
892
893=head1 COPYRIGHT AND LICENSE
894
895Copyright (C) 2008-2021 Jonathan "Duke" Leto and Thierry Moisan
896
897This program is free software; you can redistribute it and/or modify it
898under the same terms as Perl itself.
899
900=cut
9011;
902