1=head1 NAME
2
3Math::NumberCruncher - Collection of useful math-related functions.
4
5=head1 SYNOPSIS
6
7It should be noted that as of v4.0, there is now an OO interface to Math::NumberCruncher. For backwards compatibility, however, the previous, functional style will always be supported.
8
9# OO Style
10
11use Math::NumberCruncher;
12
13$ref = Math::NumberCruncher->new();
14
15# From this point on, all of the subroutines shown below will be available
16# through $ref (i.e., ( $high,$low ) = $ref->Range( \@array )). For the sake
17# of brevity, consult the functional documentation (below) for the use
18# of specific functions.
19
20# Functional Style
21
22use Math::NumberCruncher;
23
24($high, $low) = Math::NumberCruncher::Range(\@array);
25
26$mean = Math::NumberCruncher::Mean(\@array);
27
28$median = Math::NumberCruncher::Median(\@array [, $decimal_places]);
29
30$odd_median = Math::NumberCruncher::OddMedian(\@array);
31
32$mode = Math::NumberCruncher::Mode(\@array);
33
34$covariance = Math::NumberCruncher::Covariance(\@array1, \@array2);
35
36$correlation = Math::NumberCruncher::Correlation(\@array1, \@array2);
37
38($slope, $y_intercept) = Math::NumberCruncher::BestFit(\@array1, \@array2 [, $decimal_places]);
39
40$distance = Math::NumberCruncher::Distance($x1,$y1,$z1,$x2,$y2,$z2 [, $decimal_places]);
41
42$distance = Math::NumberCruncher::Distance($x1,$y1,$x1,$x2 [, $decimal_places]);
43
44$distance = Math::NumberCruncher::ManhattanDistance($x1,$y1,$x2,$y2);
45
46$probAll = Math::NumberCruncher::AllOf('0.3','0.25','0.91','0.002');
47
48$probNone = Math::NumberCruncher::NoneOf('0.4','0.5772','0.212');
49
50$probSome = Math::NumberCruncher::SomeOf('0.11','0.56','0.3275');
51
52$factorial = Math::NumberCruncher::Factorial($some_number);
53
54$permutations = Math::NumberCruncher::Permutation($n);
55
56$permutations = Math::NumberCruncher::Permutation($n,$k);
57
58$roll = Math::NumberCruncher::Dice(3,12,4);
59
60$randInt = Math::NumberCruncher::RandInt(10,50);
61
62$randomElement = Math::NumberCruncher::RandomElement(\@array);
63
64Math::NumberCruncher::ShuffleArray(\@array);
65
66@unique = Math::NumberCruncher::Unique(\@array);
67
68@a_only = Math::NumberCruncher::Compare(\@a,\@b);
69
70@union = Math::NumberCruncher::Union(\@a,\@b);
71
72@intersection = Math::NumberCruncher::Intersection(\@a,\@b);
73
74@difference = Math::NumberCruncher::Difference(\@a,\@b);
75
76$gaussianRand = Math::NumberCruncher::GaussianRand();
77
78$ways = Math::NumberCruncher::Choose($n,$k);
79
80$binomial = Math::NumberCruncher::Binomial($attempts,$successes,$probability);
81
82$gaussianDist = Math::NumberCruncher::GaussianDist($x,$mean,$variance);
83
84$StdDev = Math::NumberCruncher::StandardDeviation(\@array [, $decimal_places]);
85
86$variance = Math::NumberCruncher::Variance(\@array [, $decimal_places]);
87
88@scores = Math::NumberCruncher::StandardScores(\@array [, $decimal_places]);
89
90$confidence = Math::NumberCruncher::SignSignificance($trials,$hits,$probability);
91
92$e = Math::Numbercruncher::EMC2( "m512", "miles" [, $decimal_places] );
93
94$m = Math::NumberCruncher::EMC2( "e987432" "km" [, $decimal_places] );
95
96$force = Math::NumberCruncher::FMA( "m12", "a73.5" [, $decimal_places] );
97
98$mass = Math::NumberCruncher::FMA( "a43", "f1324" [, $decimal_places] );
99
100$acceleration = Math::NumberCruncher::FMA( "f53512", "m356" [, $decimal_places] );
101
102$predicted_value = Math::NubmerCruncher::Predict( $slope, $y_intercept, $proposed_x [, $decimal_places] );
103
104$area = Math::NumberCruncher::TriangleHeron( $a, $b, $c [, $decimal_places] );
105
106$area = Math::NumberCruncher::TriangleHeron( 1,3, 5,7, 8,2 [, $decimal_places] );
107
108$perimeter = Math::NumberCruncher::PolygonPerimeter( $x0,$y0, $x1,$y1, $x2,$y2, ... [, p$decimal_places]);
109
110$direction = Math::NumberCruncher::Clockwise( $x0,$y0, $x1,$y1, $x2,$y2 );
111
112$collision = Math::NumberCruncher::InPolygon( $x, $y, @xy );
113
114@points = Math::NumberCruncher::BoundingBox_Points( $d, @p );
115
116$in_triangle = Math::NumberCruncher::InTriangle( $x,$y, $x0,$y0, $x1,$y1, $x2,$y2 );
117
118$area = Math::NumberCruncher::PolygonArea( 0, 1, 1, 0, 2, 0, 3, 2, 2, 3 [, p$decimal_places] );
119
120$area = Math::NumberCruncher::CircleArea( $diameter [, $decimal_places] );
121
122$circumference = Math::NumberCruncher::Circumference( $diameter [, $decimal_places] );
123
124$volume = Math::NumberCruncher::SphereVolume( $radius [, $decimal_places] );
125
126$surface_area = Math::NumberCruncher::SphereSurface( $radius [, $decimal_places] );
127
128$years = Math::NumberCruncher::RuleOf72( $interest_rate [, $decimal_places] );
129
130$volume = Math::NumberCruncher::CylinderVolume( $radius, $height [, $decimal_places] );
131
132$volume = Math::NumberCruncher::ConeVolume( $lowerBaseArea, $height [, $decimal_places] );
133
134$radians = Math::NumberCruncher::deg2rad( $degrees [, $decimal_places] );
135
136$degrees = Math::NumberCruncher::rad2deg( $radians [, $decimal_places] );
137
138$Fahrenheit = Math::NumberCruncher::C2F( $Celsius [, $decimal_places] );
139
140$Celsius = Math::NumberCruncher::F2C( $Fahrenheit [, $decimal_places] );
141
142$cm = Math::NumberCruncher::in2cm( $inches [, $decimal_places] );
143
144$inches = Math::NumberCruncher::cm2in( $cm [, $decimal_places] );
145
146$ft = Math::NumberCruncher::m2ft( $m [, $decimal_places] );
147
148$m = Math::NumberCruncher::ft2m( $ft [, $decimal_places] );
149
150$miles = Math::NumberCruncher::km2miles( $km [, $decimal_places] );
151
152$km = Math::NumberCruncher::miles2km( $miles [, $decimal_places] );
153
154$lb = Math::NumberCruncher::kg2lb( $kg [, $decimal_places] );
155
156$kg = Math::NumberCruncher::lb2kg( $lb [, $decimal_places] );
157
158$RelativeStride = Math::NumberCruncher::RelativeStride( $stride_length, $leg_length [, $decimal_places] );
159
160$RelativeStride = Math::NumberCruncher::RelativeStride_2( $DimensionlessSpeed [, $decimal_places] );
161
162$DimensionlessSpeed = Math::NumberCruncher::DimensionlessSpeed( $RelativeStride [, $decimal_places] );
163
164$DimensionlessSpeed = Math::NumberCruncher::DimensionlessSpeed_2( $ActualSpeed, $leg_length [, $decimal_places]);
165
166$ActualSpeed = Math::NumberCruncher::ActualSpeed( $leg_length, $DimensionlessSpeed [, $decimal_places] );
167
168$eccentricity = Math::NumberCruncher::Eccentricity( $half_major_axis, $half_minor_axis [, $decimal_places] );
169
170$LatusRectum = Math::NumberCruncher::LatusRectum( $half_major_axis, $half_minor_axis [, $decimal_places] );
171
172$EllipseArea = Math::NumberCruncher::EllipseArea( $half_major_axis, $half_minor_axis [, $decimal_places] );
173
174$OrbitalVelocity = Math::NumberCruncher::OrbitalVelocity( $r, $a, $M [, $decimal_places] );
175
176$sine = Math::NumberCruncher::sin( $x [, $decimal_places] );
177
178$cosine = Math::NumberCruncher::cos( $x [, $decimal_places] );
179
180$tangent = Math::NumberCruncher::tan( $x [, $decimal_places] );
181
182$arcsin = Math::NumberCruncher::asin( $x [, $decimal_places] );
183
184$arccos = Math::NumberCruncher::acos( $x [, $decimal_places] );
185
186$arctan = Math::NumberCruncher::atan( $x [, $decimal_places] );
187
188$cotangent = Math::NumberCruncher::cot( $x [, $decimal_places] );
189
190$arccot = Math::NumberCruncher::acot( $x [, $decimal_places] );
191
192$secant = Math::NumberCruncher::sec( $x [, $decimal_places] );
193
194$arcsec = Math::NumberCruncher::asec( $x [, $decimal_places] );
195
196$cosecant = Math::NumberCruncher::csc( $x [, $decimal_places] );
197
198$arccosecant = Math::NumberCruncher::acsc( $x [, $decimal_places] );
199
200$exsecant = Math::NumberCruncher::exsec( $x [, $decimal_places] );
201
202$versine = Math::NumberCruncher::vers( $x [, $decimal_places] );
203
204$coversine = Math::NumberCruncher::covers( $x [, $decimal_places] );
205
206$haversine = Math::NumberCruncher::hav( $x [, $decimal_places] );
207
208$grouped = Math::NumberCruncher::Commas( $number );
209
210$SqrRoot = Math::NumberCruncher::SqrRoot( $number [, $decimal_places] );
211
212$square_root = Math::NumberCruncher::sqrt( $x  [, $decimal_places] );
213
214$root = Math::NumberCruncher::Root( 55, 3 [, $decimal_places] );
215
216$root = Math::NumberCruncher::Root2( 55, 3 [, $decimal_places] );
217
218$log = Math::NumberCruncher::Ln( 100 [, $decimal_places] );
219
220$log = Math::NumberCruncher::log( $num [, $decimal_places] );
221
222$num = Math::NumberCruncher::Exp( 0.111 [, $decimal_places] );
223
224$num = Math::NumberCruncher::exp( $log [, $decimal_places] );
225
226$Pi = Math::NumberCruncher::PICONST( $decimal_places );
227
228$E = Math::NumberCruncher::ECONST( $decimal_places );
229
230( $A, $B, $C ) = Math::NumberCruncher::PythagTriples( $x, $y [, $decimal_places] );
231
232$z = Math::NumberCruncher::PythagTriplesSeq( $x, $y [, $decimal_places] );
233
234@nums = Math::NumberCruncher::SIS( [$start, $numbers, $increment] );
235
236$inverse = Math::NumberCruncher::Inverse( $number [, $decimal_places] );
237
238@constants = Math::NumberCruncher::CONSTANTS( 'all' [, $decimal_places] );
239
240$bernoulli = Math::NumberCruncher::Bernoulli( $num [, $decimal_places] );
241
242@bernoulli = Math::NumberCruncher::Bernoulli( $num );
243
244=head1 DESCRIPTION
245
246This module is a collection of commonly needed number-related functions, including numerous standard statistical,
247geometric, and probability functions. Some of these functions are taken directly from _Mastering Algorithms with Perl_,
248by Jon Orwant, Jarkko Hietaniemi, and John Macdonald, and others are adapted heavily from same. The remainder are
249either original functions written by the author, or original adaptations of standard algorithms. Some of the functions
250are fairly obvious, others are explained in greater detail below. For all calculations involving pi, the value of pi is
251taken out to 2000 places. Overkill? Probably, but it is better, in my opinion, to have too much accuracy as opposed to
252not enough. I've also included the value of Euler's e, g (Newton's gravitational constant), and the natural log of 2
253out to 2000 places. These are available for export as $PI, $_e_, $_g_, and $_ln2_, respectively. In addition, via the
254CONSTANT() routine, the Golden Mean, Catalan constant, Apery constant, Landau-Ramanujan constant, Khintchine constant,
255Sierpinski constant, Wilbraham-Gibbs constant, Euler's gamma, square root of 2, square root of 3, and square root of 5
256are pre-calculated to 2000 decimal places and are constructed only as requested by the user. See below for further
257details. Additionally, sqrt, sin, cos, log, and exp are suitable as drop-in replacements for the built-in functions of
258the same name. Usage is exactly the same, the only difference being the number of default decimal places is 20, and
259can be changed on the fly with each call. Further details below.
260
261The default number of decimal places throughout is 20. This can be modified either by changing the value of $DECIMALS
262at the top of the NumberCruncher.pm file itself, or it can be changed for the duration of a given script by modifying
263$Math::NumberCruncher::DECIMALS. Or, where noted, you can specify a number of decimal places on a given call. For
264example, if you want the square root of two taken out to the default 20 decimal places, you can simply use: "$root =
265Math::NumberCruncher::SqrRoot( 2 )". However, if you want to take the square root of two out to, say, 100 decimal
266places, you can use: "$root = Math::NumberCruncher::SqrRoot( 2, 100 )".
267
268The following functions are available for export: sqrt, sin, asin, cos, acos, tan, atan, cot, acot, sec, asec, csc,
269acsc, vers, covers, hav, log, exp. Where there is a function of the same name as a built-in function, the
270Math::NumberCruncher version is suitable as a drop-in replacement, allowing for a greater degree of accuracy. It should
271be noted, however, that the functions are potentially a good deal slower than the built-in functions, depending upon
272the complexity of the call. For a simple call, like the square root of 1111 taken out to 50 decimal places, the result
273is reasonably fast.  For something like the 20th root of 123456789.9876543210000001, expect it to take substantially
274longer.
275
276=head1 EXAMPLES
277
278=head2 ($high,$low) = B<Math::NumberCruncher::Range>(\@array);
279
280Returns the largest and smallest elements in an array.
281
282=head2 $mean = B<Math::NumberCruncher::Mean>(\@array);
283
284Returns the mean, or average, of an array.
285
286=head2 $median = B<Math::NumberCruncher::Median>(\@array [, $decimal_places]);
287
288Returns the median, or the middle, of an array.  The median may or may not be an element of the array itself.
289
290=head2 $odd_median = B<Math::NumberCruncher::OddMedian>(\@array);
291
292Returns the odd median, which, unlike the median, *is* an element of the array.  In all other respects it is similar to the median.
293
294=head2 $mode = B<Math::NumberCruncher::Mode>(\@array);
295
296Returns the mode, or most frequently occurring item, of @array.
297
298=head2 $covariance = B<Math::NumberCruncher::Covariance>(\@array1,\@array2);
299
300Returns the covariance, which is a measurement of the correlation of two variables.
301
302=head2 $correlation = B<Math::NumberCruncher::Correlation>(\@array1,\@array2);
303
304Returns the correlation of two variables. Correlation ranges from 1 to -1, with a correlation of zero meaning no correlation exists between the two variables.
305
306=head2 ($slope,$y_intercept ) = B<Math::NumberCruncher::BestFit>(\@array1,\@array2 [, $decimal_places]);
307
308Returns the slope and y-intercept of the line of best fit for the data in question.
309
310=head2 $distance = B<Math::NumberCruncher::Distance>($x1,$y1,$x1,$x2 [, $decimal_places]);
311
312Returns the Euclidian distance between two points.  The above example demonstrates the use in two dimensions. For three dimensions, usage would be $distance = B<Math::NumberCruncher::Distance>($x1,$y1,$z1,$x2,$y2,$z2);>
313
314=head2 $distance = B<Math::NumberCruncher::ManhattanDistance>($x1,$y1,$x2,$y2);
315
316Modified two-dimensional distance between two points. As stated in _Mastering Algorithms with Perl_, "Helicopter pilots tend to think in Euclidian distance, good New York cabbies tend to think in Manhattan distance." Rather than distance "as the crow flies," this is distance based on a rigid grid, or network of streets, like those found in Manhattan.
317
318=head2 $probAll = B<Math::NumberCruncher::AllOf>('0.3','0.25','0.91','0.002');
319
320The probability that B<all> of the probabilities in question will be satisfied. (i.e., the probability that the Steelers will win the SuperBowl B<and> that David Tua will win the World Heavyweight Title in boxing.)
321
322=head2 $probNone = B<Math::NumberCruncher::NoneOf>('0.4','0.5772','0.212');
323
324The probability that B<none> of the probabilities in question will be satisfied. (i.e., the probability that the Steelers will not win the SuperBowl and that David Tua will not win the World Heavyweight Title in boxing.)
325
326=head2 $probSome = B<Math::NumberCruncher::SomeOf>('0.11','0.56','0.3275');
327
328The probability that at least one of the probabilities in question will be satisfied. (i.e., the probability that either the Steelers will win the SuperBowl B<or> David Tua will win the World Heavyweight Title in boxing.)
329
330=head2 $factorial = B<Math::NumberCruncher::Factorial>($some_number);
331
332The number of possible orderings of $factorial items. The factorial n! gives the number of ways in which n objects can be permuted.
333
334=head2 $permutations = B<Math::NumberCruncher::Permutation>($n);
335
336The number of permutations of $n elements.
337
338=head2 $permutations = B<Math::NumberCruncher::Permutation>($n,$k);
339
340The number of permutations of $k elements drawn from a set of $n elements.
341
342=head2 $roll = B<Math::NumberCruncher::Dice>($number,$sides,$plus);
343
344The obligatory dice rolling routine. Returns the result after passing the number of rolls of the die, the number of sides of the die, and any additional points to be added to the roll. As commonly seen in role playing games, 4d12+5 would be expressed as B<Dice(4,12,5)>.  The function defaults to a single 6-sided die rolled once without any points added.
345
346=head2 $randInt = B<Math::NumberCruncher::RandInt>(10,50);
347
348Returns a random integer between the two number passed to the function, inclusive. With no parameters passed, the function returns either 0 or 1.
349
350=head2 $randomElement = B<Math::NumberCruncher::RandomElement>(\@array);
351
352Returns a random element from @array.
353
354=head2 B<Math::NumberCruncher::ShuffleArray>(\@array);
355
356Shuffles the elements of @array and returns them.
357
358=head2 @unique = B<Math::NumberCruncher::Unique>(\@array);
359
360Returns an array of the unique items in an array.
361
362=head2 @a_only = B<Math::NumberCruncher::Compare>(\@a,\@b);
363
364Returns an array of elements that appear only in the first array passed. Any elements that appear in both arrays, or appear only in the second array, are discarded.
365
366=head2 @union = B<Math::NumberCruncher::Union>(\@a,\@b);
367
368Returns an array of the unique elements produced from the joining of the two arrays.
369
370=head2 @intersection = B<Math::NumberCruncher::Intersection>(\@a,\@b);
371
372Returns an array of the elements that appear in both arrays.
373
374=head2 @difference = B<Math::NumberCruncher::Difference>(\@a,\@b);
375
376Returns an array of the symmetric difference of the two arrays. For example, in the words of _Mastering Algorithms in Perl_, "show me the web documents that talk about Perl B<or> about sets B<but not> those that talk about B<both>.
377
378=head2 $gaussianRand = B<Math::NumberCruncher::GaussianRand>();
379
380Returns one or two floating point numbers based on the Gaussian Distribution, based upon whether the call wants an array or a scalar value.
381
382=head2 $ways = B<Math::NumberCruncher::Choose>($n,$k);
383
384The number of ways to choose $k elements from a set of $n elements, when the order of selection is irrelevant.
385
386=head2 $binomial = B<Math::NumberCruncher::Binomial>($n,$k,$p);
387
388Returns the probability of $k successes in $n tries, given a probability of $p. (i.e., if the probability of being struck by lightning is 1 in 75,000, in 100 days, the probability of being struck by lightning exactly twice would be expressed as B<Binomial('100','2','0.0000133')>)
389
390=head2 $probability = B<Math::NumberCruncher::GaussianDist>($x,$mean,$variance);
391
392Returns the probability, based on Gaussian Distribution, of our random variable, $x, given the $mean and $variance.
393
394=head2 $StdDev = B<Math::NumberCruncher::StandardDeviation>(\@array [, $decimal_places]);
395
396Returns the Standard Deviation of @array, which is a measurement of how diverse your data is.
397
398=head2 $variance = B<Math::NumberCruncher::Variance>(\@array [, $decimal_places]);
399
400Returns the variance for @array, which is the square of the standard deviation.  Or think of standard deviation as the square root of the variance.  Variance is another indicator of the diversity of your data.
401
402=head2 @scores = B<Math::NumberCruncher::StandardScores>(\@array [, $decimal_places]);
403
404Returns an array of the number of standard deviations above the mean for @array.
405
406=head2 $confidence = B<Math::NumberCruncher::SignSignificance>($trials,$hits,$probability);
407
408Returns the probability of how likely it is that your data is due to chance.  The lower the confidence, the less likely your data is due to chance.
409
410=head2 $e = B<Math::NumberCruncher::EMC2>( "m36", "km" [, $decimal_places] );
411
412Implementation of Einstein's E=MC**2.  Given either energy or mass, the function returns the other. When passing mass, the value must be preceeded by a "m," which may be either upper or lower case.  When passing energy, the value must be preceeded by a "e," which may be either upper or lower case. The second argument is whether you wish to use kilometers per second or miles per second for the speed of light. Case is irrelevant. EMC2() keys off of the first letter of the second argument, so all that is necessary to pass is either "k" or "m".
413
414=head2 $force = B<Math::NumberCruncher::FMA>( "m97", "a53" [, $decimal_places] );
415
416Implementation of the stadard force = mass * acceleration formula.  Given two of the three variables (i.e., mass and force, mass and acceleration, or acceleration and force), the function returns the third.  When passing the values, mass must be preceeded by a "m," force must be preceeded by a "f," and acceleration must be preceeded by an "a."  Case is irrelevant.
417
418=head2 $predicted = B<Math::NumberCruncher::Predict>( $slope, $y_intercept, $proposed_x [, $decimal_places] );
419
420Useful for predicting values based on data trends, as calculated by BestFit(). Given the slope and y-intercept, and a proposed value of x, returns corresponding y.
421
422=head2 $area = B<Math::NumberCruncher::TriangleHeron>( $a, $b, $c [, $decimal_places] );
423
424Calculates the area of a triangle, using Heron's formula.  TriangleHeron() can be passed either the lengths of the three sides of the triangle, or the (x,y) coordinates of the three verticies.
425
426=head2 $perimeter = B<Math::NumberCruncher::PolygonPerimeter>( $x0,$y0, $x1,$y1, $x2,$y2, ... [, p$decimal_places]);
427
428Calculates the length of the perimeter of a given polygon. The final argument specifies the number of decimal places you want. To specify a number other than the default (see above), the number must be preceeded by the letter "p". For example: Math::NumberCruncher::PolygonPerimeter( 1, 1, 2, 3, 4, 5, p75 );
429
430=head2 $direction = B<Math::NumberCruncher::Clockwise>( $x0,$y0, $x1,$y1, $x2,$y2 );
431
432Given three pairs of points, returns a positive number if you must turn clockwise when moving from p1 to p2 to p3, returns a negative number if you must turn counter-clockwise when moving from p1 to p2 to p3, and a zero if the three points lie on the same line.
433
434=head2 $collision = B<Math::NumberCruncher::InPolygon>( $x, $y, @xy );
435
436Given a set of xy pairs (@xy) that define the perimeter of a polygon, returns a 1 if point ($x,$y) is inside the polygon and returns 0 if the point ($x,$y) is outside the polygon.
437
438=head2 @points = B<Math::NumberCruncher::BoundingBox_Points>( $d, @p );
439
440Given a set of @p points and $d dimensions, returns two points that define the upper left and lower right corners of the bounding box for set of points @p.
441
442=head2 $in_triangle = B<Math::NumberCruncher::InTriangle>( $x,$y, $x0,$y0, $x1,$y1, $x2,$y2 );
443
444Returns true if point $x,$y is inside the triangle defined by points ($x0,$y0), ($x1,$y1), and ($x2,$y2)
445
446=head2 $area = B<Math::NumberCruncher::PolygonArea>( 0, 1, 1, 0, 3, 2, 2, 3, 0, 2  [, p$decimal_places]);
447
448Calculates the area of a polygon using determinants. As with PolygonPerimeter(), the final argument specified the number of decimal places you want.  See PolygonPerimeter(), above, for details.
449
450=head2 $area = B<Math::NumberCruncher::CircleArea>( $diameter [, $decimal_places] );
451
452Calculates the area of a circle, given the diameter.
453
454=head2 $circumference = B<Math::NumberCruncher::Circumference>( $diameter [, $decimal_places] );
455
456Calculates the circumference of a circle, given the diameter.
457
458=head2 $volume = B<Math::NumberCruncher::SphereVolume>( $radius [, $decimal_places] );
459
460Calculates the volume of a sphere, given the radius.
461
462=head2 $surface_area = B<Math::NumberCruncher::SphereSurface>( $radius [, $decimal_places] );
463
464Calculates the surface area of a sphere, given the radius.
465
466=head2 $years = B<Math::NumberCruncher::RuleOf72>( $interest_rate [, $decimal_places] );
467
468A very simple financial formula. It calculates how many years, at a given interest rate, it will take to double your money, provided that the money and all interest is left in the account.
469
470=head2 $volume = B<Math::NumberCruncher::CylinderVolume>( $radius, $height [, $decimal_places] );
471
472Calculates the volume of a cylinder given the radius and the height.
473
474=head2 $volume = B<Math::NumberCruncher::ConeVolume>( $lowerBaseArea, $height [, $decimal_places] );
475
476Calculates the volume of a cone given the lower base area and the height.
477
478=head2 $radians = B<Math::NumberCruncher::deg2rad>( $degrees [, $decimal_places] );
479
480Converts degrees to radians.
481
482=head2 $degrees = B<Math::NumberCruncher::rad2deg>( $radians [, $decimal_places] );
483
484Converts radians to degrees.
485
486=head2 $Fahrenheit = B<Math::NumberCruncher::C2F>( $Celsius [, $decimal_places] );
487
488Converts Celsius to Fahrenheit.
489
490=head2 $Celsius = B<Math::NumberCruncher::F2C>( $Fahrenheit [, $decimal_places] );
491
492Converts Fahrenheit to Celsius.
493
494=head2 $cm = B<Math::NumberCruncher::in2cm>( $inches [, $decimal_places] );
495
496Converts inches to centimeters.
497
498=head2 $inches = B<Math::NumberCruncher::cm2in>( $cm [, $decimal_places] );
499
500Converts centimeters to inches.
501
502=head2 $ft = B<Math::NumberCruncher::m2ft>( $m [, $decimal_places] );
503
504Converts meters to feet.
505
506=head2 $m = B<Math::NumberCruncher::ft2m>( $ft [, $decimal_places] );
507
508Converts feet to meters.
509
510=head2 $miles = B<Math::NumberCruncher::km2miles>( $km [, $decimal_places] );
511
512Converts kilometers to miles.
513
514=head2 $km = B<Math::NumberCruncher::miles2km>( $miles [, $decimal_places] );
515
516Converst miles to kilometers.
517
518=head2 $lb = B<Math::NumberCruncher::kg2lb>( $kg [, $decimal_places] );
519
520Converts kilograms to pounds.
521
522=head2 $kg = B<Math::NumberCruncher::lb2kg>( $lb [, $decimal_places] );
523
524Converts pounds to kilograms.
525
526=head2 $RelativeStride = B<Math::NumberCruncher::RelativeStride>( $stride_length, $leg_length [, $decimal_places] );
527
528Welcome to the world of ichnology. This was originally for a dinosaur simulation I have been working on. This and the following four routines are all part of determining the speed of a dinosaur (or any other animal, including people), based on leg measurements and stride measurements. Ichnology is study of trace fossils (i.e., nests, eggs, fossilized dung...seriously, that's not a joke), and in this case, fossilized footprints, or trackways. RelativeStride() is for determining the relative stride of the animal given stride length and leg length.
529
530=head2 $RelativeStride = B<Math::NumberCruncher::RelativeStride_2>( $DimensionlessSpeed [, $decimal_places] );
531
532This differs from the previous routine in that it calculates relative stride based on dimensionless speed, rather than stride and leg length.
533
534=head2 $DimensionlessSpeed = B<Math::NumberCruncher::DimensionlessSpeed>( $RelativeStride [, $decimal_places] );
535
536Dimensionless speed is a calculated value that relates the speed of an animal to leg length and stride length.
537
538=head2 $DimensionlessSpeed = B<Math::NumberCruncher::DimensionlessSpeed_2>( $speed, $legLength [, $decimal_places] );
539
540This differs from the previous routine in that it calculates dimensionless speed based on actual speed and leg length.
541
542=head2 $ActualSpeed = B<Math::NumberCruncher::ActualSpeed>( $leg_length, $DimensionlessSpeed [, $decimal_places] );
543
544This is the really interesting one. Given leg length and dimensionless speed, it returns the actual speed (or absolute speed) of the animal in question in distance per second. There is no unit of measure conversion performed, so if you pass it measurements in meters, the answer is in meters per second. If you pass it measurements in inches, it returns inches per second, and so on.
545
546=head2 $eccentricity = B<Math::NumberCruncher::Eccentricity>( $half_major_axis, $half_minor_axis [, $decimal_places] );
547
548Calculates the eccentricity of an ellipse, given the semi-major axis and the semi-minor axis.
549
550=head2 $LatusRectum = B<Math::NumberCruncher::LatusRectum>( $half_major_axis, $half_minor_axis [, $decimal_places] );
551
552Calculates the latus rectum of an ellipse, given the semi-major axis and the semi-minor axis.
553
554=head2 $EllipseArea = B<Math::NumberCruncher::EllipseArea>( $half_major_axis, $half_minor_axis [, $decimal_places] );
555
556Calculates the area of an ellipse, given the semi-major axis and the semi-minor axis.
557
558=head2 $OrbitalVelocity = B<Math::NumberCruncher::OrbitalVelocity>( $r, $a, $M [, $decimal_places] );
559
560Calculates orbital velocity of an object given the radial distance at a given point on an elliptical orbit, the mean distance of the central object, and the mass of the central object.
561
562=head2 $SqrRoot = B<Math::NumberCruncher::SqrRoot>( $number [, $decimal_places] );
563
564Calculates the square root of a number out to an arbitrary number of decimal places. It should be noted that this method is potentially substantially slower than the built-in sqrt() function. However, especially with large numbers, this method is far more accurate.
565
566=head2 $sqrt = B<Math::NumberCruncher::sqrt>( $number [, $decimal_places] );
567
568An alias for SqrRoot. This is exportable and is suitable as a drop-in replacement for the built-in sqrt() function.
569
570=head2 $root = B<Math::NumberCruncher::Root>( 55, 3 [, $decimal_places] );
571
572Calculates the N-th root of a given number using Newton's Method. In the above example, $root is the cube root of 55. Root() tends to be faster than Root2() when dealing with integers, or numbers with few decimal places.
573
574=head2 $root = B<Math::NumberCruncher::Root2>( 55, 3 [, $decimal_places] );
575
576Calculates the N=th root of a given number using logarithms. In the above example, $root is the cube root of 55. Root2() tends to be faster than Root() when dealing with numbers containing multiple decimal places.
577
578=head2 $sin = B<Math::NumberCruncher::sin>( $x [, $decimal_places] );
579
580Calculates the sine. This is available for export and is suitable as a drop-in replacement for the built-in sin() function.
581
582=head2 $cos = B<Math::NumberCruncher::cos>( $x [, $decimal_places] );
583
584Calculates the cosine. This is available for export and is suitable as a drop-in replacement for the built-in cos() function.
585
586=head2 $tan = B<Math::NumberCruncher::tan>( $x [, $decimal_places] );
587
588Calculates the tangent.
589
590=head2 $arcsin = B<Math::NumberCruncher::asin>( $x [, $decimal_places] );
591
592Calculates the inverse sine.
593
594=head2 $arccos = B<Math::NumberCruncher::acos>( $x [, $decimal_places] );
595
596Calculates the inverse cosine.
597
598=head2 $arctan = B<Math::NumberCruncher::atan>( $x [, $decimal_places] );
599
600Calculates the inverse tangent.
601
602=head2 $secant = B<Math::NumberCruncher::sec>( $x [, $decimal_places] );
603
604Calculates the secant.
605
606=head2 $arcsec = B<Math::NumberCruncher::asec>( $x [, $decimal_places] );
607
608Calculates the inverse secant.
609
610=head2 $cosecant = B<Math::NumberCruncher::csc>( $x [, $decimal_places] );
611
612Calculates the cosecant.
613
614=head2 $arccosecant = B<Math::NumberCruncher::acsc>( $x [, $decimal_places] );
615
616Calculates the inverse of the cosecant.
617
618=head2 $exsecant = B<Math::NumberCruncher::exsec>( $x [, $decimal_places] );
619
620Calculates the exsecant.
621
622=head2 $cotangent = B<Math::NumberCruncher::cot>( $x [, $decimal_places] );
623
624Calculates the cotangent.
625
626=head2 $arccot = B<Math::NumberCruncher::acot>( $x [, $decimal_places] );
627
628Calculates the inverse cotangent.
629
630=head2 $versine = B<Math::NumberCruncher::vers>( $x [, $decimal_places] );
631
632Calculates the versine.
633
634=head2 $coversine = B<Math::NumberCruncher::covers>( $x [, $decimal_places] );
635
636Calculates the coversine.
637
638=head2 $haversine = B<Math::NumberCruncher::hav>( $x [, $decimal_places] );
639
640Calculates the haversine.
641
642=head2 $grouped = B<Math::NumberCruncher::Commas>( $number );
643
644Performs digit grouping, making large number more visually pleasing.
645
646=head2 $log = B<Math::NumberCruncher::Ln>( 100 [, $decimal_places] );
647
648Calculates the natural log of a given number to a given number of decimal places.
649
650=head2 $log = B<Math::NumberCruncher::log>( $num [, $decimal_places] );
651
652An alias for Log(). This is exportable and is suitable as a drop-in replacement for the built-in log() function.
653
654=head2 $num = B<Math::NumberCruncher::Exp>( $log [, $decimal_places] );
655
656Performs the inverse of Ln().
657
658=head2 $num = B<Math::NumberCruncher::exp>( $log [, $decimal_places] );
659
660An alias for Exp(). This is exportable and is suitable as a drop-in replacement for the built-in exp() function.
661
662=head2 $Pi = B<Math::NumberCruncher::PICONST>( $decimal_places );
663
664Calculates Pi out to an arbitrary number of decimal places. Math::NumberCruncher has Pi pre-calculated out to 2000 decimal places. If you want more decimal places than 2000, be advised that this can take a non-trivial length of time.
665
666=head2 $E = B<Math::NumberCruncher::ECONST>( $decimal_Places );
667
668Calculaes Euler's number e out to an arbitrary number of decimal places. Math::NumberCruncher has e pre-calculated out to 2000 decimal places. If you want more decimal places than 2000, be advised that this can take a non-trivial length of time.
669
670=head2 ( $A, $B, $C ) = B<Math::NumberCruncher::PythagTriples>( 5, 7 [, $decimal_places] );
671
672Calculates Pythagorian Triples based on the two numbers passed. Remember Pythagorian Triples are three numbers where the sum of the squares of the first two numbers is equal to the square of the third.
673
674=head2 $z = B<Math::NumberCruncher::PythagTriplesSeq>( 55, 32 [, $decimal_places] );
675
676Completes the Pythagorian Triple sequence based on the two numbers passed.
677
678=head2 @nums = B<Math::NumberCruncher::SIS>( [$start, $numbers, $increment] );
679
680Returns an array of numbers in a super-increasing sequence. All parameters are optional. You can pass the number with which you want the sequence to start, the quantity numbers you want returned, and by how much you want to increase the next number over the sum of all of the previous numbers. By default, start is 1, numbers returned is 50, and increment is 1.
681
682=head2 $inverse = B<Math::NumberCruncher::Inverse>( $num [, $decimal_places] );
683
684Returns the inverse of a given number.
685
686=head2 @constants = B<Math::NumberCruncher::CONSTANTS>( 'all' [, $decimal_places] );
687
688A variety of relatively common constants pre-calculated out to 2000 decimal places. For backwards compatibility, $PI, $_e_, and $_g_ will always be available without invoking CONSTANTS(), but all future pre-calculated constants will be available through here. The constants can be called individually by name, or you can specify 'all' and have all available constants returned as an array. The available constant names are '_gm_' (Golden Mean); '_catalan_' (Catalan constant); '_apery_' (Apery constant); '_landau_' or '_ramanujan_' (Landau-Ramanujan constant); '_khintchine_' (Kintchine constant); '_sierpinski_' (Sierpinski constant); '_wilbraham_' or '_gibbs_' (Wilbraham-Gibbs constant); '_gamma_' (Euler's constant, gamma); '_sqrt2_' (square root of 2); '_sqrt3_'(square root of 3); '_sqrt5_' (square root of 5). For example: $gamma = Math::NumberCruncher::CONSTANT( '_gamma_', 75 ) will return Euler's constant, gamma, out to 75 decimal places.
689
690=head2 $bernoulli = B<Math::NumberCruncher::Bernoulli>( $num [, $decimal_places] );
691
692Bernoulli numbers according to the modern definition, sometimes called the "even-index" Bernoulli numbers. The first 498 Bernoulli numbers are cached. Only even numbers can be passed to Bernoulli(). Odd numbers, negative numbers, or numbers less than 2 return undef. Bernoulli() can be called in either scalar or list context. In scalar context, it returns the value. In list context, it returns the two numbers which, when the first is divided by the second, yields the same value as that given in scalar context.
693
694=head1 AUTHOR
695
696Kurt Kincaid, sifukurt@yahoo.com
697
698=head1 COPYRIGHT
699
700Copyright (c) 2002, Kurt Kincaid.  All rights reserved. This code is free software; you can redistribute it and/or
701modify it under the same terms as Perl itself.  Several of the algorithms contained herein are adapted from _Mastering
702Algorithms with Perl_, by Jon Orwant, Jarkko Hietaniemi, and John Macdonald. Copyright (c) 1999 O-Reilly & Associates,
703Inc.
704
705=head1 SPECIAL THANKS
706
707Thanks to Douglas Wilson for allowing me to borrow his code for Ln(), Exp(), Root2(), and the various other supporting
708functions. Mr. Wilson's code is based on an algorithm described at L<http://www.geocities.com/zabrodskyvlada/aat/>
709
710I would also like to thank the folks at L<http://www.perlmonks.org> for their input on optimizing B<Root()>.
711
712=head1 SEE ALSO
713
714perl(1).
715
716=cut
717