1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <math.h>
5 
6 /*****************************************************************************
7  *
8  * Prime counts using the extended Lagarias-Miller-Odlyzko combinatorial method.
9  *
10  * Copyright (c) 2013-2014 Dana Jacobsen (dana@acm.org)
11  * This is free software; you can redistribute it and/or modify it under
12  * the same terms as the Perl 5 programming language system itself.
13  *
14  * This file is part of the Math::Prime::Util Perl module, but it should
15  * not be difficult to turn it into standalone code.
16  *
17  * The structure of the main routine is based on Christian Bau's earlier work.
18  *
19  * References:
20  *  - Christian Bau's paper and example implementation, 2003, Christian Bau
21  *    This was of immense help.  References to "step #" refer to this preprint.
22  *  - "Computing Pi(x): the combinatorial method", 2006, Tomás Oliveira e Silva
23  *  - "Computing Pi(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko Method"
24  *    1996, Deléglise and Rivat.
25  *
26  * Comparisons to the other prime counting implementations in this package:
27  *
28  * Sieve:   Segmented, single threaded, thread-safe.  Small table enhanced,
29  *          fastest for n < 60M.  Bad growth rate (like all sieves will have).
30  * Legendre:Simple.  Recursive caching phi.
31  * Meissel: Simple.  Non-recursive phi, lots of memory.
32  * Lehmer:  Non-recursive phi, tries to restrict memory.
33  * LMOS:    Simple.  Non-recursive phi, less memory than Lehmer above.
34  * LMO:     Sieve phi.  Much faster and less memory than the others.
35  *
36  * Timing below is single core Haswell 4770K using Math::Prime::Util.
37  *
38  *  |   n   | Legendre |  Meissel |  Lehmer  |   LMOS   |    LMO    |
39  *  +-------+----------+----------+----------+----------+-----------+
40  *  | 10^19 |          |          |          |          | 2493.4    |
41  *  | 10^18 |          |          |          |          |  498.16   |
42  *  | 10^17 |10459.3   | 4348.3   | 6109.7   | 3478.0   |  103.03   |
43  *  | 10^16 | 1354.6   |  510.8   |  758.6   |  458.4   |   21.64   |
44  *  | 10^15 |  171.2   |   97.1   |  106.4   |   68.11  |    4.707  |
45  *  | 10^14 |   23.56  |   18.59  |   16.51  |   10.44  |    1.032  |
46  *  | 10^13 |    3.783 |    3.552 |    2.803 |    1.845 |    0.237  |
47  *  | 10^12 |    0.755 |    0.697 |    0.505 |    0.378 |    54.9ms |
48  *  | 10^11 |    0.165 |    0.144 |    93.7ms|    81.6ms|    13.80ms|
49  *  | 10^10 |    35.9ms|    29.9ms|    19.9ms|    17.8ms|     3.64ms|
50  *
51  * Run with high memory limits: Meissel uses 1GB for 10^16, ~3GB for 10^17.
52  * Lehmer is limited at high n values by sieving speed.  It is much faster
53  * using parallel primesieve, though cannot come close to LMO.
54  */
55 
56 /* Adjust to get best performance.  Alpha from TOS paper. */
57 #define M_FACTOR(n)     (UV) ((double)n * (log(n)/log(5.2)) * (log(log(n))-1.4))
58 /* Size of segment used for previous primes, must be >= 21 */
59 #define PREV_SIEVE_SIZE 512
60 /* Phi sieve multiplier, adjust for best performance and memory use. */
61 #define PHI_SIEVE_MULT 13
62 
63 #define FUNC_isqrt 1
64 #define FUNC_icbrt 1
65 #include "lmo.h"
66 #include "util.h"
67 #include "constants.h"
68 #include "prime_nth_count.h"
69 #include "cache.h"
70 #include "sieve.h"
71 
72 #ifdef _MSC_VER
73   typedef unsigned __int8   uint8;
74   typedef unsigned __int16  uint16;
75   typedef unsigned __int32  uint32;
76 #else
77   typedef unsigned char  uint8;
78   typedef unsigned short uint16;
79   typedef uint32_t       uint32;
80 #endif
81 
82 /* UV is either uint32 or uint64 depending on Perl.  We use this native size
83  * for the basic unit of the phi sieve.  It can be easily overridden here. */
84 typedef UV sword_t;
85 #define SWORD_BITS  BITS_PER_WORD
86 #define SWORD_ONES  UV_MAX
87 #define SWORD_MASKBIT(bits)  (UVCONST(1) << ((bits) % SWORD_BITS))
88 #define SWORD_CLEAR(s,bits)  s[bits/SWORD_BITS] &= ~SWORD_MASKBIT(bits)
89 
90 /* GCC 3.4 - 4.1 has broken 64-bit popcount.
91  * GCC 4.2+ can generate awful code when it doesn't have asm (GCC bug 36041).
92  * When the asm is present (e.g. compile with -march=native on a platform that
93  * has them, like Nahelem+), then it is almost as fast as the direct asm. */
94 #if SWORD_BITS == 64
95  #if defined(__POPCNT__) && defined(__GNUC__) && (__GNUC__> 4 || (__GNUC__== 4 && __GNUC_MINOR__> 1))
96    #define bitcount(b)  __builtin_popcountll(b)
97  #else
bitcount(sword_t b)98    static sword_t bitcount(sword_t b) {
99      b -= (b >> 1) & 0x5555555555555555;
100      b = (b & 0x3333333333333333) + ((b >> 2) & 0x3333333333333333);
101      b = (b + (b >> 4)) & 0x0f0f0f0f0f0f0f0f;
102      return (b * 0x0101010101010101) >> 56;
103    }
104  #endif
105 #else
106    /* An 8-bit table version is usually a little faster, but this is simpler. */
bitcount(sword_t b)107    static sword_t bitcount(sword_t b) {
108      b -= (b >> 1) & 0x55555555;
109      b = (b & 0x33333333) + ((b >> 2) & 0x33333333);
110      b = (b + (b >> 4)) & 0x0f0f0f0f;
111      return (b * 0x01010101) >> 24;
112    }
113 #endif
114 
115 
116 /* Create array of small primes: 0,2,3,5,...,prev_prime(n+1) */
make_primelist(uint32 n,uint32 * number_of_primes)117 static uint32_t* make_primelist(uint32 n, uint32* number_of_primes)
118 {
119   uint32 i = 0;
120   uint32_t* plist;
121   double logn = log(n);
122   uint32 max_index = (n < 67)     ? 18
123                    : (n < 355991) ? 15+(n/(logn-1.09))
124                    : (n/logn) * (1.0+1.0/logn+2.51/(logn*logn));
125   *number_of_primes = 0;
126   New(0, plist, max_index+1, uint32_t);
127   plist[0] = 0;
128   /* We could do a simple SoE here.  This is not time critical. */
129   START_DO_FOR_EACH_PRIME(2, n) {
130     plist[++i] = p;
131   } END_DO_FOR_EACH_PRIME;
132   *number_of_primes = i;
133   return plist;
134 }
135 #if 0  /* primesieve 5.0 example */
136 #include <primesieve.h>
137 static uint32_t* make_primelist(uint32 n, uint32* number_of_primes) {
138   uint32_t plist;
139   uint32_t* psprimes = generate_primes(2, n, number_of_primes, UINT_PRIMES);
140   New(0, plist, *number_of_primes + 1, uint32_t);
141   plist[0] = 0;
142   memcpy(plist+1, psprimes, *number_of_primes * sizeof(uint32_t));
143   primesieve_free(psprimes);
144   return plist;
145 }
146 #endif
147 
148 /* Given a max prime in small prime list, return max prev prime input */
prev_sieve_max(UV maxprime)149 static uint32 prev_sieve_max(UV maxprime) {
150   UV limit = maxprime*maxprime - (maxprime*maxprime % (16*PREV_SIEVE_SIZE)) - 1;
151   return (limit > U32_CONST(4294967295)) ? U32_CONST(4294967295) : limit;
152 }
153 
154 /* Simple SoE filling a segment */
_prev_sieve_fill(UV start,uint8 * sieve,const uint32_t * primes)155 static void _prev_sieve_fill(UV start, uint8* sieve, const uint32_t* primes) {
156   UV i, j, p;
157   memset( sieve, 0xFF, PREV_SIEVE_SIZE );
158   for (i = 2, p = 3; p*p < start + (16*PREV_SIEVE_SIZE); p = primes[++i])
159     for (j = (start == 0) ? p*p/2 : (p-1) - ((start+(p-1))/2) % p;
160          j < (8*PREV_SIEVE_SIZE); j += p)
161       sieve[j/8] &= ~(1U << (j%8));
162 }
163 
164 /* Calculate previous prime using small segment */
prev_sieve_prime(uint32 n,uint8 * sieve,uint32 * segment_start,uint32 sieve_max,const uint32_t * primes)165 static uint32 prev_sieve_prime(uint32 n, uint8* sieve, uint32* segment_start, uint32 sieve_max, const uint32_t* primes)
166 {
167   uint32 sieve_start, bit_offset;
168   if (n <= 3) return (n == 3) ? 2 : 0;
169   if (n > sieve_max) croak("ps overflow\n");
170 
171   /* If n > 3 && n <= sieve_max, then there is an odd prime we can find. */
172   n -= 2;
173   bit_offset = n % (16*PREV_SIEVE_SIZE);
174   sieve_start = n - bit_offset;
175   bit_offset >>= 1;
176 
177   while (1) {
178     if (sieve_start != *segment_start) {  /* Fill sieve if necessary */
179       _prev_sieve_fill(sieve_start, sieve, primes);
180       *segment_start = sieve_start;
181     }
182     do {                                  /* Look for a set bit in sieve */
183       if (sieve[bit_offset / 8] & (1u << (bit_offset % 8)))
184         return sieve_start + 2*bit_offset + 1;
185     } while (bit_offset-- > 0);
186     sieve_start -= (16 * PREV_SIEVE_SIZE);
187     bit_offset = ((16 * PREV_SIEVE_SIZE) - 1) / 2;
188   }
189 }
190 
191 /* Create factor table.
192  * In lehmer.c we create mu and lpf arrays.  Here we use Christian Bau's
193  * method, which is slightly more memory efficient and also a bit faster than
194  * the code there (which does not use our fast ranged moebius).  It makes
195  * very little difference -- mainly using this table is more convenient.
196  *
197  * In a uint16 we have stored:
198  *    0     moebius(n) = 0
199  *    even  moebius(n) = 1
200  *    odd   moebius(n) = -1   (last bit indicates even/odd number of factors)
201  *    v     smallest odd prime factor of n is v&1
202  *    65535 large prime
203  */
ft_create(uint32 max)204 static uint16* ft_create(uint32 max)
205 {
206   uint16* factor_table;
207   uint32 i;
208   uint32 tableLimit = max + 338 + 1;  /* At least one more prime */
209   uint32 tableSize = tableLimit/2;
210   uint32 max_prime = (tableLimit - 1) / 3 + 1;
211 
212   New(0, factor_table, tableSize, uint16);
213 
214   /* Set all values to 65535 (a large prime), set 0 to 65534. */
215   factor_table[0] = 65534;
216   for (i = 1; i < tableSize; ++i)
217     factor_table[i] = 65535;
218 
219   /* Process each odd. */
220   for (i = 1; i < tableSize; ++i) {
221     uint32 factor, max_factor;
222     uint32 p = i*2+1;
223     if (factor_table[i] != 65535)  /* Already marked. */
224       continue;
225     if (p < 65535)                 /* p is a small prime, so set the number. */
226       factor_table[i] = p;
227     if (p >= max_prime)            /* No multiples will be in the table */
228       continue;
229 
230     max_factor = (tableLimit - 1) / p + 1;
231     /* Look for odd multiples of the prime p. */
232     for (factor = 3; factor < max_factor; factor += 2) {
233       uint32 index = (p*factor)/2;
234       if (factor_table[index] == 65535)  /* p is smallest factor */
235         factor_table[index] = p;
236       else if (factor_table[index] > 0)  /* Change number of factors */
237         factor_table[index] ^= 0x01;
238     }
239 
240     /* Change all odd multiples of p*p to 0 to indicate non-square-free. */
241     for (factor = p; factor < max_factor; factor += 2*p)
242       factor_table[ (p*factor) / 2] = 0;
243   }
244   return factor_table;
245 }
246 
247 #define PHIC 6
248 
249 /* static const uint8_t _s0[ 1] = {0};
250   static const uint8_t _s1[ 2] = {0,1};
251   static const uint8_t _s2[ 6] = {0,1,1,1,1,2}; */
252 static const uint8_t _s3[30] = {0,1,1,1,1,1,1,2,2,2,2,3,3,4,4,4,4,5,5,6,6,6,6,7,7,7,7,7,7,8};
253 static const uint8_t _s4[210]= {0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4,5,5,5,5,6,6,6,6,6,6,7,7,8,8,8,8,8,8,9,9,9,9,10,10,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,15,15,15,15,15,15,16,16,16,16,17,17,18,18,18,18,18,18,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,21,21,22,22,22,22,23,23,24,24,24,24,25,25,26,26,26,26,27,27,27,27,27,27,27,27,28,28,28,28,28,28,29,29,29,29,30,30,30,30,30,30,31,31,32,32,32,32,33,33,33,33,33,33,34,34,35,35,35,35,35,35,36,36,36,36,36,36,37,37,37,37,38,38,39,39,39,39,40,40,40,40,40,40,41,41,42,42,42,42,42,42,43,43,43,43,44,44,45,45,45,45,46,46,47,47,47,47,47,47,47,47,47,47,48};
tablephi(UV x,uint32 a)254 static UV tablephi(UV x, uint32 a)
255 {
256   switch (a) {
257     case 0: return x;
258     case 1: return x-x/2;
259     case 2: return x-x/2-x/3+x/6;
260     case 3: return (x/    30U) *     8U + _s3[x %     30U];
261     case 4: return (x/   210U) *    48U + _s4[x %    210U];
262     case 5: {
263               UV xp  = x / 11U;
264               return ((x /210) * 48 + _s4[x  % 210]) -
265                      ((xp/210) * 48 + _s4[xp % 210]);
266              }
267     case 6:
268     default:{
269               UV xp  = x / 11U;
270               UV x2  = x / 13U;
271               UV x2p = x2 / 11U;
272               return ((x  /210) * 48 + _s4[x  % 210]) -
273                      ((xp /210) * 48 + _s4[xp % 210]) -
274                      ((x2 /210) * 48 + _s4[x2 % 210]) +
275                      ((x2p/210) * 48 + _s4[x2p% 210]);
276             }
277     /* case 7: return tablephi(x,a-1)-tablephi(x/17,a-1); */  /* Hack hack */
278   }
279 }
280 
281 /****************************************************************************/
282 /*              Legendre Phi.  Not used by LMO, but exported.               */
283 /****************************************************************************/
284 
285 /*
286  * Choices include:
287  *   1) recursive, memory-less.  We use this for small values.
288  *   2) recursive, caching.  We use a this for larger values w/ 32MB cache.
289  *   3) a-walker sorted list.  lehmer.c has this implementation.  It is
290  *      faster for some values, but big and memory intensive.
291  */
_phi_recurse(UV x,UV a)292 static UV _phi_recurse(UV x, UV a) {
293   UV i, c = (a > PHIC) ? PHIC : a;
294   UV sum = tablephi(x, c);
295   if (a > c) {
296     UV p  = nth_prime(c);
297     UV pa = nth_prime(a);
298     for (i = c+1; i <= a; i++) {
299       UV xp;
300       p = next_prime(p);
301       xp = x/p;
302       if (xp < p) {
303         while (x < pa) {
304           a--;
305           pa = prev_prime(pa);
306         }
307         return (sum - a + i - 1);
308       }
309       sum -= legendre_phi(xp, i-1);
310     }
311   }
312   return sum;
313 }
314 
315 #define PHICACHEA 256
316 #define PHICACHEX 65536
317 #define PHICACHE_EXISTS(x,a) \
318   ((x < PHICACHEX && a < PHICACHEA) ? cache[a*PHICACHEX+x] : 0)
_phi(UV x,UV a,int sign,const uint32_t * const primes,const uint32_t lastidx,uint16_t * cache)319 static IV _phi(UV x, UV a, int sign, const uint32_t* const primes, const uint32_t lastidx, uint16_t* cache)
320 {
321   IV sum;
322   if      (PHICACHE_EXISTS(x,a))  return sign * cache[a*PHICACHEX+x];
323   else if (a <= PHIC)             return sign * tablephi(x, a);
324   else if (x < primes[a+1])       sum = sign;
325   else {
326     /* sum = _phi(x, a-1, sign, primes, lastidx, cache) +              */
327     /*       _phi(x/primes[a], a-1, -sign, primes, lastidx, cache);    */
328     UV a2, iters = (a*a > x)  ?  segment_prime_count(2,isqrt(x))  :  a;
329     UV c = (iters > PHIC) ? PHIC : iters;
330     IV phixc = PHICACHE_EXISTS(x,c) ? cache[a*PHICACHEX+x] : tablephi(x,c);
331     sum = sign * (iters - a + phixc);
332     for (a2 = c+1; a2 <= iters; a2++)
333       sum += _phi(x/primes[a2], a2-1, -sign, primes, lastidx, cache);
334   }
335   if (x < PHICACHEX && a < PHICACHEA && sign*sum <= SHRT_MAX)
336     cache[a*PHICACHEX+x] = sign * sum;
337   return sum;
338 }
legendre_phi(UV x,UV a)339 UV legendre_phi(UV x, UV a)
340 {
341   /* If 'x' is very small, give a quick answer with any 'a' */
342   if (x <= PHIC)
343     return tablephi(x, (a > PHIC) ? PHIC : a);
344 
345   /* Shortcuts for large values, from R. Andrew Ohana */
346   if (a > (x >> 1))  return 1;
347   /* If a > prime_count(2^32), then we need not be concerned with composite
348    * x values with all factors > 2^32, as x is limited to 64-bit. */
349   if (a > 203280221) {  /* prime_count(2**32) */
350     UV pc = LMO_prime_count(x);
351     return (a > pc)  ?  1  :  pc - a + 1;
352   }
353   /* If a is large enough, check the ratios */
354   if (a > 1000000 && x < a*21) {  /* x always less than 2^32 */
355     if ( LMO_prime_count(x) < a)  return 1;
356   }
357 
358   /* TODO:  R. Andrew Ohana's 2011 SAGE code is faster as the a value
359    * increases.  It uses a primelist as in the caching code below, as
360    * well as a binary search prime count on it (like in our lehmer). */
361 
362   if ( a > 254 || (x > 1000000000 && a > 30) ) {
363     uint16_t* cache;
364     uint32_t* primes;
365     uint32_t lastidx;
366     UV res, max_cache_a = (a >= PHICACHEA) ? PHICACHEA : a+1;
367     Newz(0, cache, PHICACHEX * max_cache_a, uint16_t);
368     primes = make_primelist(nth_prime(a+1), &lastidx);
369     res = (UV) _phi(x, a, 1, primes, lastidx, cache);
370     Safefree(primes);
371     Safefree(cache);
372     return res;
373   }
374 
375   return _phi_recurse(x, a);
376 }
377 /****************************************************************************/
378 
379 
380 typedef struct {
381   sword_t  *sieve;                 /* segment bit mask */
382   uint8    *word_count;            /* bit count in each 64-bit word */
383   uint32   *word_count_sum;        /* cumulative sum of word_count */
384   UV       *totals;                /* total bit count for all phis at index */
385   uint32   *prime_index;           /* index of prime where phi(n/p/p(k+1))=1 */
386   uint32   *first_bit_index;       /* offset relative to start for this prime */
387   uint8    *multiplier;            /* mod-30 wheel of each prime */
388   UV        start;                 /* x value of first bit of segment */
389   UV        phi_total;             /* cumulative bit count before removal */
390   uint32    size;                  /* segment size in bits */
391   uint32    first_prime;           /* index of first prime in segment */
392   uint32    last_prime;            /* index of last prime in segment */
393   uint32    last_prime_to_remove;  /* index of last prime p, p^2 in segment */
394 } sieve_t;
395 
396 /* Size of phi sieve in words.  Multiple of 3*5*7*11 words. */
397 #define PHI_SIEVE_WORDS (1155 * PHI_SIEVE_MULT)
398 
399 /* Bit counting using cumulative sums.  A bit slower than using a running sum,
400  * but a little simpler and can be run in parallel. */
make_sieve_sums(uint32 sieve_size,const uint8 * sieve_word_count,uint32 * sieve_word_count_sum)401 static uint32 make_sieve_sums(uint32 sieve_size, const uint8* sieve_word_count, uint32* sieve_word_count_sum) {
402   uint32 i, bc, words = (sieve_size + 2*SWORD_BITS-1) / (2*SWORD_BITS);
403   sieve_word_count_sum[0] = 0;
404   for (i = 0, bc = 0; i+7 < words; i += 8) {
405     const uint8* cntptr = sieve_word_count + i;
406     uint32* sumptr = sieve_word_count_sum + i;
407     sumptr[1] = bc += cntptr[0];
408     sumptr[2] = bc += cntptr[1];
409     sumptr[3] = bc += cntptr[2];
410     sumptr[4] = bc += cntptr[3];
411     sumptr[5] = bc += cntptr[4];
412     sumptr[6] = bc += cntptr[5];
413     sumptr[7] = bc += cntptr[6];
414     sumptr[8] = bc += cntptr[7];
415   }
416   for (; i < words; i++)
417     sieve_word_count_sum[i+1] = sieve_word_count_sum[i] + sieve_word_count[i];
418   return sieve_word_count_sum[words];
419 }
420 
_sieve_phi(UV segment_x,const sword_t * sieve,const uint32 * sieve_word_count_sum)421 static UV _sieve_phi(UV segment_x, const sword_t* sieve, const uint32* sieve_word_count_sum) {
422   uint32 bits = (segment_x + 1) / 2;
423   uint32 words = bits / SWORD_BITS;
424   uint32 sieve_sum = sieve_word_count_sum[words];
425   sieve_sum += bitcount( sieve[words] & ~(SWORD_ONES << (bits % SWORD_BITS)) );
426   return sieve_sum;
427 }
428 
429 /* Erasing primes from the sieve is done using Christian Bau's
430  * case statement walker.  It's not pretty, but it is short, fast,
431  * clever, and does the job. */
432 
433 #define sieve_zero(sieve, si, wordcount) \
434   { uint32  index_ = si/SWORD_BITS; \
435     sword_t mask_  = SWORD_MASKBIT(si); \
436     if (sieve[index_] & mask_) { \
437       sieve[index_] &= ~mask_; \
438       wordcount[index_]--; \
439     }  }
440 
441 #define sieve_case_zero(casenum, skip, si, p, size, mult, sieve, wordcount) \
442   case casenum: sieve_zero(sieve, si, wordcount); \
443                 si += skip * p; \
444                 mult = (casenum+1) % 8; \
445                 if (si >= size) break;
446 
remove_primes(uint32 index,uint32 last_index,sieve_t * s,const uint32_t * primes)447 static void remove_primes(uint32 index, uint32 last_index, sieve_t* s, const uint32_t* primes)
448 {
449   uint32    size = (s->size + 1) / 2;
450   sword_t  *sieve = s->sieve;
451   uint8    *word_count = s->word_count;
452 
453   s->phi_total = s->totals[last_index];
454   for ( ;index <= last_index; index++) {
455     if (index >= s->first_prime && index <= s->last_prime) {
456       uint32 b = (primes[index] - (uint32) s->start - 1) / 2;
457       sieve_zero(sieve, b, word_count);
458     }
459     if (index <= s->last_prime_to_remove) {
460       uint32 b = s->first_bit_index[index];
461       if (b < size) {
462         uint32 p    = primes[index];
463         uint32 mult = s->multiplier[index];
464         switch (mult) {
465           reloop: ;
466             sieve_case_zero(0, 3, b, p, size, mult, sieve, word_count);
467             sieve_case_zero(1, 2, b, p, size, mult, sieve, word_count);
468             sieve_case_zero(2, 1, b, p, size, mult, sieve, word_count);
469             sieve_case_zero(3, 2, b, p, size, mult, sieve, word_count);
470             sieve_case_zero(4, 1, b, p, size, mult, sieve, word_count);
471             sieve_case_zero(5, 2, b, p, size, mult, sieve, word_count);
472             sieve_case_zero(6, 3, b, p, size, mult, sieve, word_count);
473             sieve_case_zero(7, 1, b, p, size, mult, sieve, word_count);
474           goto reloop;
475         }
476         s->multiplier[index] = mult;
477       }
478       s->first_bit_index[index] = b - size;
479     }
480   }
481   s->totals[last_index] += make_sieve_sums(s->size, s->word_count, s->word_count_sum);
482 }
483 
word_tile(sword_t * source,uint32 from,uint32 to)484 static void word_tile (sword_t* source, uint32 from, uint32 to) {
485   while (from < to) {
486     uint32 words = (2*from > to) ? to-from : from;
487     memcpy(source+from, source, sizeof(sword_t)*words);
488     from += words;
489   }
490 }
491 
init_segment(sieve_t * s,UV segment_start,uint32 size,uint32 start_prime_index,uint32 sieve_last,const uint32_t * primes)492 static void init_segment(sieve_t* s, UV segment_start, uint32 size, uint32 start_prime_index, uint32 sieve_last, const uint32_t* primes)
493 {
494   uint32    i, words;
495   sword_t*  sieve = s->sieve;
496   uint8*    word_count = s->word_count;
497 
498   s->start = segment_start;
499   s->size  = size;
500 
501   if (segment_start == 0) {
502     s->last_prime = 0;
503     s->last_prime_to_remove = 0;
504   }
505   s->first_prime = s->last_prime + 1;
506   while (s->last_prime < sieve_last) {
507     uint32 p = primes[s->last_prime + 1];
508     if (p >= segment_start + size)
509       break;
510     s->last_prime++;
511   }
512   while (s->last_prime_to_remove < sieve_last) {
513     UV p = primes[s->last_prime_to_remove + 1];
514     UV p2 = p*p;
515     if (p2 >= segment_start + size)
516       break;
517     s->last_prime_to_remove++;
518     s->first_bit_index[s->last_prime_to_remove] = (p2 - segment_start - 1) / 2;
519     s->multiplier[s->last_prime_to_remove] = (uint8) ((p % 30) * 8 / 30);
520   }
521 
522   memset(sieve, 0xFF, 3*sizeof(sword_t));  /* Set first 3 words to all 1 bits */
523   if (start_prime_index >= 3)      /* Remove multiples of 3. */
524     for (i = 3/2; i < 3 * SWORD_BITS; i += 3)
525       SWORD_CLEAR(sieve, i);
526 
527   word_tile(sieve, 3, 15);         /* Copy to first 15 = 3*5 words */
528   if (start_prime_index >= 3)      /* Remove multiples of 5. */
529     for (i = 5/2; i < 15 * SWORD_BITS; i += 5)
530       SWORD_CLEAR(sieve, i);
531 
532   word_tile(sieve, 15, 105);       /* Copy to first 105 = 3*5*7 words */
533   if (start_prime_index >= 4)      /* Remove multiples of 7. */
534     for (i = 7/2; i < 105 * SWORD_BITS; i += 7)
535       SWORD_CLEAR(sieve, i);
536 
537   word_tile(sieve, 105, 1155);     /* Copy to first 1155 = 3*5*7*11 words */
538   if (start_prime_index >= 5)      /* Remove multiples of 11. */
539     for (i = 11/2; i < 1155 * SWORD_BITS; i += 11)
540       SWORD_CLEAR(sieve, i);
541 
542   size = (size+1) / 2;             /* size to odds */
543   words = (size + SWORD_BITS-1) / SWORD_BITS;   /* sieve size in words */
544   word_tile(sieve, 1155, words);   /* Copy first 1155 words to rest */
545   /* Zero all unused bits and words */
546   if (size % SWORD_BITS)
547     sieve[words-1] &= ~(SWORD_ONES << (size % SWORD_BITS));
548   memset(sieve + words, 0x00, sizeof(sword_t)*(PHI_SIEVE_WORDS+2 - words));
549 
550   /* Create counts, remove primes (updating counts and sums). */
551   for (i = 0; i < words; i++)
552     word_count[i] = (uint8) bitcount(sieve[i]);
553   remove_primes(6, start_prime_index, s, primes);
554 }
555 
556 /* However we want to handle reduced prime counts */
557 #define simple_pi(n)  LMO_prime_count(n)
558 /* Macros to hide all the variables being passed */
559 #define prev_sieve_prime(n) \
560   prev_sieve_prime(n, &prev_sieve[0], &ps_start, ps_max, primes)
561 #define sieve_phi(x) \
562   ss.phi_total + _sieve_phi((x) - ss.start, ss.sieve, ss.word_count_sum)
563 
564 
LMO_prime_count(UV n)565 UV LMO_prime_count(UV n)
566 {
567   UV        N2, N3, K2, K3, M, sum1, sum2, phi_value;
568   UV        sieve_start, sieve_end, least_divisor, step7_max, last_phi_sieve;
569   uint32    j, k, piM, KM, end, prime, prime_index;
570   uint32    ps_start, ps_max, smallest_divisor, nprimes;
571   uint8     prev_sieve[PREV_SIEVE_SIZE];
572   uint32_t *primes;
573   uint16   *factor_table;
574   sieve_t   ss;
575 
576   const uint32 c = PHIC;  /* We can use our fast function for this */
577 
578   /* For "small" n, use our table+segment sieve. */
579   if (n < _MPU_LMO_CROSSOVER || n < 10000)  return segment_prime_count(2, n);
580   /* n should now be reasonably sized (not tiny). */
581 
582 #ifdef USE_PRIMECOUNT_FOR_LARGE_LMO
583   if (n > 110000000000UL) {
584     FILE *f;
585     char cmd[100];
586     sprintf(cmd, "primecount %lu", n);
587     f = popen(cmd, "r");
588     fscanf(f, "%lu", &sum1);
589     pclose(f);
590     return sum1;
591   }
592 #endif
593 
594   N2 = isqrt(n);             /* floor(N^1/2) */
595   N3 = icbrt(n);             /* floor(N^1/3) */
596   K2 = simple_pi(N2);        /* Pi(N2) */
597   K3 = simple_pi(N3);        /* Pi(N3) */
598 
599   /* M is N^1/3 times a tunable performance factor. */
600   M = (N3 > 500) ? M_FACTOR(N3) : N3+N3/2;
601   if (M >= N2) M = N2 - 1;         /* M must be smaller than N^1/2 */
602   if (M < N3) M = N3;              /* M must be at least N^1/3 */
603 
604   /* Create the array of small primes, and least-prime-factor/moebius table */
605   primes = make_primelist( M + 500, &nprimes );
606   factor_table = ft_create( M );
607 
608   /* Create other arrays */
609   New(0, ss.sieve,           PHI_SIEVE_WORDS   + 2, sword_t);
610   New(0, ss.word_count,      PHI_SIEVE_WORDS   + 2, uint8);
611   New(0, ss.word_count_sum,  PHI_SIEVE_WORDS   + 2, uint32);
612   New(0, ss.totals,          K3+2, UV);
613   New(0, ss.prime_index,     K3+2, uint32);
614   New(0, ss.first_bit_index, K3+2, uint32);
615   New(0, ss.multiplier,      K3+2, uint8);
616 
617   if (ss.sieve == 0 || ss.word_count == 0 || ss.word_count_sum == 0 ||
618       ss.totals == 0 || ss.prime_index == 0 || ss.first_bit_index == 0 ||
619       ss.multiplier == 0)
620     croak("Allocation failure in LMO Pi\n");
621 
622   /* Variables for fast prev_prime using small segment sieves (up to M^2) */
623   ps_max   = prev_sieve_max( primes[nprimes] );
624   ps_start = U32_CONST(0xFFFFFFFF);
625 
626   /* Look for the smallest divisor: the smallest number > M which is
627    * square-free and not divisible by any prime covered by our Mapes
628    * small-phi case.  The largest value we will look up in the phi
629    * sieve is n/smallest_divisor. */
630   for (j = (M+1)/2; factor_table[j] <= primes[c]; j++) /* */;
631   smallest_divisor = 2*j+1;
632   /* largest_divisor = (N2 > (UV)M * (UV)M)  ?  N2  :  (UV)M * (UV)M; */
633 
634   M = smallest_divisor - 1;   /* Increase M if possible */
635   piM = simple_pi(M);
636   if (piM < c)  croak("N too small for LMO\n");
637   last_phi_sieve = n / smallest_divisor + 1;
638 
639   /* KM = smallest k, c <= k <= piM, s.t. primes[k+1] * primes[k+2] > M. */
640   for (KM = c; primes[KM+1] * primes[KM+2] <= M && KM < piM; KM++) /* */;
641   if (K3 < KM)  K3 = KM;  /* Ensure K3 >= KM */
642 
643   /* Start calculating Pi(n).  Steps 4-10 from Bau. */
644   sum1 = (K2 - 1) + (UV) (piM - K3 - 1) * (UV) (piM - K3) / 2;
645   sum2 = 0;
646   end = (M+1)/2;
647 
648   /* Start at index K2, which is the prime preceeding N^1/2 */
649   prime = prev_sieve_prime( (N2 >= ps_start) ? ps_start : N2+1 );
650   prime_index = K2 - 1;
651   step7_max = K3;
652 
653   /* Step 4:  For 1 <= x <= M where x is square-free and has no
654    * factor <= primes[c], sum phi(n / x, c). */
655   for (j = 0; j < end; j++) {
656     uint32 lpf = factor_table[j];
657     if (lpf > primes[c]) {
658       phi_value = tablephi(n / (2*j+1), c);   /* x = 2j+1 */
659       if (lpf & 0x01) sum2 += phi_value; else sum1 += phi_value;
660     }
661   }
662 
663   /* Step 5:  For 1+M/primes[c+1] <= x <= M, x square-free and
664    * has no factor <= primes[c+1], sum phi(n / (x*primes[c+1]), c). */
665   if (c < piM) {
666     UV pc_1 = primes[c+1];
667     for (j = (1+M/pc_1)/2; j < end; j++) {
668       uint32 lpf = factor_table[j];
669       if (lpf > pc_1) {
670         phi_value = tablephi(n / (pc_1 * (2*j+1)), c);   /* x = 2j+1 */
671         if (lpf & 0x01) sum1 += phi_value; else sum2 += phi_value;
672       }
673     }
674   }
675 
676   for (k = 0; k <= K3; k++)     ss.totals[k] = 0;
677   for (k = 0; k < KM; k++)      ss.prime_index[k] = end;
678 
679   /* Instead of dividing by all primes up to pi(M), once a divisor is large
680    * enough then phi(n / (p*primes[k+1]), k) = 1. */
681   {
682     uint32 last_prime = piM;
683     for (k = KM; k < K3; k++) {
684       UV pk = primes[k+1];
685       while (last_prime > k+1 && pk * pk * primes[last_prime] > n)
686         last_prime--;
687       ss.prime_index[k] = last_prime;
688       sum1 += piM - last_prime;
689     }
690   }
691 
692   for (sieve_start = 0; sieve_start < last_phi_sieve; sieve_start = sieve_end) {
693     /* This phi segment goes from sieve_start to sieve_end. */
694     sieve_end = ((sieve_start + 2*SWORD_BITS*PHI_SIEVE_WORDS) <  last_phi_sieve)
695               ?   sieve_start + 2*SWORD_BITS*PHI_SIEVE_WORDS  :  last_phi_sieve;
696     /* Only divisors s.t. sieve_start <= N / divisor < sieve_end considered. */
697     least_divisor = n / sieve_end;
698     /* Initialize the sieve segment and all associated variables. */
699     init_segment(&ss, sieve_start, sieve_end - sieve_start, c, K3, primes);
700 
701     /* Step 6:  For c < k < KM:  For 1+M/primes[k+1] <= x <= M, x square-free
702      * and has no factor <= primes[k+1], sum phi(n / (x*primes[k+1]), k). */
703     for (k = c+1; k < KM; k++) {
704       UV pk = primes[k+1];
705       uint32 start = (least_divisor >= pk * U32_CONST(0xFFFFFFFE))
706                    ? U32_CONST(0xFFFFFFFF)
707                    : (least_divisor / pk + 1)/2;
708       remove_primes(k, k, &ss, primes);
709       for (j = ss.prime_index[k] - 1; j >= start; j--) {
710         uint32 lpf = factor_table[j];
711         if (lpf > pk) {
712           phi_value = sieve_phi(n / (pk * (2*j+1)));
713           if (lpf & 0x01) sum1 += phi_value; else sum2 += phi_value;
714         }
715       }
716       if (start < ss.prime_index[k])
717         ss.prime_index[k] = start;
718     }
719     /* Step 7:  For KM <= K < Pi_M:  For primes[k+2] <= x <= M, sum
720      * phi(n / (x*primes[k+1]), k).  The inner for loop can be parallelized. */
721     for (; k < step7_max; k++) {
722       remove_primes(k, k, &ss, primes);
723       j = ss.prime_index[k];
724       if (j >= k+2) {
725         UV pk = primes[k+1];
726         UV endj = j;
727         while (endj > 7 && endj-7 >= k+2 && pk*primes[endj-7] > least_divisor) endj -= 8;
728         while (            endj   >= k+2 && pk*primes[endj  ] > least_divisor) endj--;
729         /* Now that we know how far to go, do the summations */
730         for ( ; j > endj; j--)
731           sum1 += sieve_phi(n / (pk*primes[j]));
732         ss.prime_index[k] = endj;
733       }
734     }
735     /* Restrict work for the above loop when we know it will be empty. */
736     while (step7_max > KM && ss.prime_index[step7_max-1] < (step7_max-1)+2)
737       step7_max--;
738 
739     /* Step 8:  For KM <= K < K3, sum -phi(n / primes[k+1], k) */
740     remove_primes(k, K3, &ss, primes);
741     /* Step 9:  For K3 <= k < K2, sum -phi(n / primes[k+1], k) + (k-K3). */
742     while (prime > least_divisor && prime_index >= piM) {
743       sum1 += prime_index - K3;
744       sum2 += sieve_phi(n / prime);
745       prime_index--;
746       prime = prev_sieve_prime(prime);
747     }
748   }
749 
750   Safefree(ss.sieve);
751   Safefree(ss.word_count);
752   Safefree(ss.word_count_sum);
753   Safefree(ss.totals);
754   Safefree(ss.prime_index);
755   Safefree(ss.first_bit_index);
756   Safefree(ss.multiplier);
757   Safefree(factor_table);
758   Safefree(primes);
759 
760   return sum1 - sum2;
761 }
762