1comment
2        Test and demonstration file for the Taylor expansion package,
3        by Rainer M. Schoepf.  Works with version 2.2a (01-Apr-2000);
4
5%%% showtime;
6
7on errcont; % disable interruption on errors
8
9comment Simple Taylor expansion;
10
11xx := taylor (e**x, x, 0, 4);
12yy := taylor (e**y, y, 0, 4);
13
14comment Basic operations, i.e. addition, subtraction, multiplication,
15        and division are possible: this is not done automatically if
16        the switch TAYLORAUTOCOMBINE is OFF.  In this case it is
17        necessary to use taylorcombine;
18
19taylorcombine (xx**2);
20taylorcombine (ws - xx);
21taylorcombine (xx**3);
22
23comment The result is again a Taylor kernel;
24
25if taylorseriesp ws then write "OK";
26
27comment It is not possible to combine Taylor kernels that were
28        expanded with respect to different variables;
29
30taylorcombine (xx**yy);
31
32comment But we can take the exponential or the logarithm
33        of a Taylor kernel;
34
35taylorcombine (e**xx);
36taylorcombine log ws;
37
38comment A more complicated example;
39
40hugo := taylor(log(1/(1-x)),x,0,5);
41taylorcombine(exp(hugo/(1+hugo)));
42
43comment We may try to expand about another point;
44
45taylor (xx, x, 1, 2);
46
47comment Arc tangent is one of the functions this package knows of;
48
49xxa := taylorcombine atan ws;
50
51comment The trigonometric functions;
52
53taylor (tan x / x, x, 0, 2);
54
55taylorcombine sin ws;
56
57taylor (cot x / x, x, 0, 4);
58
59comment The poles of these functions are correctly handled;
60
61taylor(tan x,x,pi/2,0);
62
63taylor(tan x,x,pi/2,3);
64
65comment Expansion with respect to more than one kernel is possible;
66
67xy := taylor (e**(x+y), x, 0, 2, y, 0, 2);
68
69taylorcombine (ws**2);
70
71comment We take the inverse and convert back to REDUCE's standard
72        representation;
73
74taylorcombine (1/ws);
75taylortostandard ws;
76
77comment Some examples of Taylor kernel divsion;
78
79xx1 := taylor (sin (x), x, 0, 4);
80taylorcombine (xx/xx1);
81taylorcombine (1/xx1);
82
83tt1 := taylor (exp (x), x, 0, 3);
84tt2 := taylor (sin (x), x, 0, 3);
85tt3 := taylor (1 + tt2, x, 0, 3);
86taylorcombine(tt1/tt2);
87taylorcombine(tt1/tt3);
88taylorcombine(tt2/tt1);
89taylorcombine(tt3/tt1);
90
91
92comment Here's what I call homogeneous expansion;
93
94xx := taylor (e**(x*y), {x,y}, 0, 2);
95xx1 := taylor (sin (x+y), {x,y}, 0, 2);
96xx2 := taylor (cos (x+y), {x,y}, 0, 2);
97temp := taylorcombine (xx/xx2);
98taylorcombine (ws*xx2);
99
100comment The following shows a principal difficulty:
101        since xx1 is symmetric in x and y but has no constant term
102        it is impossible to compute 1/xx1;
103
104taylorcombine (1/xx1);
105
106comment Substitution in Taylor expressions is possible;
107
108sub (x=z, xy);
109
110comment Expression dependency in substitution is detected;
111
112sub (x=y, xy);
113
114comment It is possible to replace a Taylor variable by a constant;
115
116sub (x=4, xy);
117
118sub (x=4, xx1);
119
120sub (y=0, ws);
121
122comment This package has three switches:
123        TAYLORKEEPORIGINAL, TAYLORAUTOEXPAND, and TAYLORAUTOCOMBINE;
124
125on taylorkeeporiginal;
126
127temp := taylor (e**(x+y), x, 0, 5);
128
129taylorcombine (log (temp));
130
131taylororiginal ws;
132
133taylorcombine (temp * e**x);
134
135on taylorautoexpand;
136
137taylorcombine ws;
138
139taylororiginal ws;
140
141taylorcombine (xx1 / x);
142
143on taylorautocombine;
144
145xx / xx2;
146
147ws * xx2;
148
149comment Another example that shows truncation if Taylor kernels
150        of different expansion order are combined;
151
152comment First we increase the number of terms to be printed;
153
154taylorprintterms := all;
155
156p := taylor (x**2 + 2, x, 0, 10);
157p - x**2;
158p - taylor (x**2, x, 0, 5);
159taylor (p - x**2, x, 0, 6);
160off taylorautocombine;
161taylorcombine(p-x**2);
162taylorcombine(p - taylor(x**2,x,0,5));
163
164comment Switch back to finite number of terms;
165
166taylorprintterms := 6;
167
168comment Some more examples;
169
170taylor(1/(1+y^4+x^2*y^2+x^4),{x,y},0,6);
171
172taylor ((1 + x)**n, x, 0, 3);
173
174taylor (e**(-a*t) * (1 + sin(t)), t, 0, 4);
175
176operator f;
177
178taylor (1 + f(t), t, 0, 3);
179
180taylor(f(sqrt(x^2+y^2)),x,x0,4,y,y0,4);
181
182clear f;
183
184taylor (sqrt(1 + a*x + sin(x)), x, 0, 3);
185
186taylorcombine (ws**2);
187
188taylor (sqrt(1 + x), x, 0, 5);
189
190taylor ((cos(x) - sec(x))^3, x, 0, 5);
191
192taylor ((cos(x) - sec(x))^-3, x, 0, 5);
193
194taylor (sqrt(1 - k^2*sin(x)^2), x, 0, 6);
195
196taylor (sin(x + y), x, 0, 3, y, 0, 3);
197
198taylor (e^x - 1 - x,x,0,6);
199
200taylorcombine sqrt ws;
201
202taylor(sin(x)/x,x,1,2);
203
204taylor((sqrt(4+h)-2)/h,h,0,5);
205
206taylor((sqrt(x)-2)/(4-x),x,4,2);
207
208taylor((sqrt(y+4)-2)/(-y),y,0,2);
209
210taylor(x*tanh(x)/(sqrt(1-x^2)-1),x,0,3);
211
212taylor((e^(5*x)-2*x)^(1/x),x,0,2);
213
214taylor(sin x/cos x,x,pi/2,3);
215
216taylor(log x*sin(x^2)/(x*sinh x),x,0,2);
217
218taylor(1/x-1/sin x,x,0,2);
219
220taylor(tan x/log cos x,x,pi/2,2);
221
222taylor(log(x^2/(x^2-a)),x,0,3);
223
224
225comment Three more complicated examples contributed by Stan Kameny;
226
227zz2 := (z*(z-2*pi*i)*(z-pi*i/2)^2)/(sinh z-i);
228dz2 := df(zz2,z);
229z0 := pi*i/2;
230taylor(dz2,z,z0,6);
231
232zz3:=(z*(z-2*pi)*(z-pi/2)^2)/(sin z-1);
233dz3 := df(zz3,z);
234z1 := pi/2;
235taylor(dz3,z,z1,6);
236
237taylor((sin tan x-tan sin x)/(asin atan x-atan asin x),x,0,6);
238
239taylor((sin tan x-tan sin x)/(asin atan x-atan asin x),x,0,0);
240
241
242comment If the expansion point is not constant, it has to be taken
243        care of in differentation, as the following examples show;
244
245taylor(sin(x+a),x,a,8);
246df(ws,a);
247taylor(cos(x+a),x,a,7);
248
249
250comment A problem are non-analytical terms: rational powers and
251        logarithmic terms can be handled, but other types of essential
252        singularities cannot;
253
254taylor(sqrt(x),x,0,2);
255
256taylor(asinh(1/x),x,0,5);
257
258taylor(e**(1/x),x,0,2);
259
260comment Another example for non-integer powers;
261
262sub (y = sqrt (x), yy);
263
264comment Expansion about infinity is possible in principle...;
265
266taylor (e**(1/x), x, infinity, 5);
267xi := taylor (sin (1/x), x, infinity, 5);
268
269y1 := taylor(x/(x-1), x, infinity, 3);
270z := df(y1, x);
271
272comment ...but far from being perfect;
273
274taylor (1 / sin (x), x, infinity, 5);
275
276clear z;
277
278comment You may access the expansion with the PART operator;
279
280part(yy,0);
281part(yy,1);
282part(yy,4);
283part(yy,6);
284
285
286comment The template of a Taylor kernel can be extracted;
287
288taylortemplate yy;
289
290taylortemplate xxa;
291
292taylortemplate xi;
293
294taylortemplate xy;
295
296taylortemplate xx1;
297
298comment Here is a slightly less trivial example;
299
300exp := (sin (x) * sin (y) / (x * y))**2;
301
302taylor (exp, x, 0, 1, y, 0, 1);
303taylor (exp, x, 0, 2, y, 0, 2);
304
305tt := taylor (exp, {x,y}, 0, 2);
306
307comment An example that uses factorization;
308
309on factor;
310
311ff := y**5 - 1;
312
313zz := sub (y = taylor(e**x, x, 0, 3), ff);
314
315on exp;
316
317zz;
318
319comment A simple example of Taylor kernel differentiation;
320
321hugo := taylor(e^x,x,0,5);
322df(hugo^2,x);
323
324comment The following shows the (limited) capabilities to integrate
325        Taylor kernels. Only simple cases are supported, otherwise
326        a warning is printed and the Taylor kernels are converted to
327        standard representation;
328
329zz := taylor (sin x, x, 0, 5);
330ww := taylor (cos y, y, 0, 5);
331
332int (zz, x);
333int (ww, x);
334int (zz + ww, x);
335
336
337comment And here we present Taylor series reversion.
338        We start with the example given by Knuth for the algorithm;
339
340taylor (t - t**2, t, 0, 5);
341
342taylorrevert (ws, t, x);
343
344tan!-series := taylor (tan x, x, 0, 5);
345taylorrevert (tan!-series, x, y);
346atan!-series:=taylor (atan y, y, 0, 5);
347
348tmp := taylor (e**x, x, 0, 5);
349
350taylorrevert (tmp, x, y);
351
352taylor (log y, y, 1, 5);
353
354
355comment The following example calculates the perturbation expansion
356        of the root x = 20 of the following polynomial in terms of
357        EPS, in ROUNDED mode;
358
359poly := for r := 1 : 20 product (x - r);
360
361on rounded;
362
363tpoly := taylor (poly, x, 20, 4);
364
365taylorrevert (tpoly, x, eps);
366
367comment Some more examples using rounded mode;
368
369precision 13;
370
371taylor(sin x/x,x,0,4);
372
373taylor(sin x,x,pi/2,4);
374
375taylor(tan x,x,pi/2,4);
376
377off rounded;
378
379
380comment An example that involves computing limits of type 0/0 if
381        expansion is done via differentiation;
382
383
384taylor(sqrt((e^x - 1)/x),x,0,15);
385
386comment An example that involves intermediate non-analytical terms
387        which cancel entirely;
388
389taylor(x^(5/2)/(log(x+1)*tan(x^(3/2))),x,0,5);
390
391comment Other examples involving non-analytical terms;
392
393taylor(log(e^x-1),x,0,5);
394
395taylor(e^(1/x)*(e^x-1),x,0,5);
396
397taylor(log(x)*x^10,x,0,5);
398
399taylor(log(x)*x^10,x,0,11);
400
401taylor(log(x-a)/((a-b)*(a-c)) + log(2(x-b))/((b-c)*(b-a))
402     + log(x-c)/((c-a)*(c-b)),x,infinity,2);
403
404ss := (sqrt(x^(2/5) +1) - x^(1/3)-1)/x^(1/3);
405taylor(exp ss,x,0,2);
406
407taylor(exp sub(x=x^15,ss),x,0,2);
408
409taylor(dilog(x),x,0,4);
410
411taylor(ei(x),x,0,4);
412
413comment In the following we demonstrate the possibiblity to compute the
414        expansion of a function which is given by a simple first order
415        differential equation: the function myexp(x) is exp(-x^2);
416
417operator myexp,myerf;
418let {df(myexp(~x),~x) => -2*x*myexp(x), myexp(0) => 1,
419     df(myerf(~x),~x) => 2/sqrt(pi)*myexp(x), myerf(0) => 0};
420taylor(myexp(x),x,0,5);
421taylor(myerf(x),x,0,5);
422clear {df(myexp(~x),~x) => -2*x*myexp(x), myexp(0) => 1,
423       df(myerf(~x),~x) => 2/sqrt(pi)*myexp(x), myerf(0) => 0};
424clear myexp,erf;
425
426%%% showtime;
427
428comment There are two special operators, implicit_taylor and
429        inverse_taylor, to compute the Taylor expansion of implicit
430        or inverse functions;
431
432
433implicit_taylor(x^2 + y^2 - 1,x,y,0,1,5);
434
435implicit_taylor(x^2 + y^2 - 1,x,y,0,1,20);
436
437implicit_taylor(x+y^3-y,x,y,0,0,8);
438
439implicit_taylor(x+y^3-y,x,y,0,1,5);
440
441implicit_taylor(x+y^3-y,x,y,0,-1,5);
442
443implicit_taylor(y*e^y-x,x,y,0,0,5);
444
445comment This is the function exp(-1/x^2), which has an essential
446        singularity at the point 0;
447
448implicit_taylor(x^2*log y+1,x,y,0,0,3);
449
450inverse_taylor(exp(x)-1,x,y,0,8);
451
452inverse_taylor(exp(x),x,y,0,5);
453
454inverse_taylor(sqrt(x),x,y,0,5);
455
456inverse_taylor(log(1+x),x,y,0,5);
457
458inverse_taylor((e^x-e^(-x))/2,x,y,0,5);
459
460comment In the next two cases the inverse functions have a branch
461        point, therefore the computation fails;
462
463inverse_taylor((e^x+e^(-x))/2,x,y,0,5);
464
465inverse_taylor(exp(x^2-1),x,y,0,5);
466
467inverse_taylor(exp(sqrt(x))-1,x,y,0,5);
468
469inverse_taylor(x*exp(x),x,y,0,5);
470
471
472%%% showtime;
473
474
475comment An application is the problem posed by Prof. Stanley:
476        we prove that the finite difference expression below
477        corresponds to the given derivative expression;
478
479operator diff,a,f,gg;  % We use gg to avoid conflict with high energy
480                       % physics operator.
481
482let diff(~f,~arg) => df(f,arg);
483
484derivative_expression :=
485diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),y),x) +
486diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),x),y) ;
487
488finite_difference_expression :=
489+a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
490+a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
491+a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
492+a(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
493-f(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
494-f(x,y)*a(x+dx,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
495-f(x,y)*a(x,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
496-a(x,y)*f(x,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
497-gg(x,y)*a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
498-gg(x,y)*a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
499-gg(x,y)*a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
500-a(x,y)*gg(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
501+f(x,y)*gg(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
502+f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
503+f(x,y)*gg(x,y)*a(x,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
504+a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
505-gg(x+dx,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
506+gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)*f(x+dx,y+dy)/(16*dx^2*dy^2)
507-gg(x,y+dy)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
508+gg(x,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
509-a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
510-a(x,y+dy)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
511-a(x,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
512+gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
513+a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
514+a(x,y)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
515-gg(x,y+dy)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
516+gg(x,y)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
517-a(x,y+dy)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
518-a(x,y)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
519+gg(x,y)^2*a(x,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
520+a(x,y)*gg(x,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
521+f(x,y)*gg(x+dx,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
522-f(x,y)*gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)/(16*dx^2*dy^2)
523+f(x,y)*gg(x,y+dy)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
524-f(x,y)*gg(x,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
525+a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
526+a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
527+a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
528+a(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
529-f(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
530-f(x,y)*a(x+dx,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
531-f(x,y)*a(x,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
532-a(x,y)*f(x,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
533-gg(x,y)*a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
534-gg(x,y)*a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
535-gg(x,y)*a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
536-a(x,y)*gg(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
537+f(x,y)*gg(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
538+f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
539+f(x,y)*gg(x,y)*a(x,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
540+a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
541-gg(x+dx,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
542+gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)*f(x+dx,y-dy)/(16*dx^2*dy^2)
543-gg(x,y-dy)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
544+gg(x,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
545-a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
546-a(x,y-dy)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
547-a(x,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
548+gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
549+a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
550+a(x,y)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
551-gg(x,y-dy)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
552+gg(x,y)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
553-a(x,y-dy)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
554-a(x,y)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
555+gg(x,y)^2*a(x,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
556+a(x,y)*gg(x,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
557+f(x,y)*gg(x+dx,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
558-f(x,y)*gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)/(16*dx^2*dy^2)
559+f(x,y)*gg(x,y-dy)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
560-f(x,y)*gg(x,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
561+f(x,y)*a(x+dx,y)*gg(x+dx,y)^2/(16*dx^2*dy^2)
562+f(x,y)*a(x,y+dy)*gg(x+dx,y)^2/(32*dx^2*dy^2)
563+f(x,y)*a(x,y-dy)*gg(x+dx,y)^2/(32*dx^2*dy^2)
564+a(x,y)*f(x,y)*gg(x+dx,y)^2/(16*dx^2*dy^2)
565-f(x,y)*gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2)
566-f(x,y)*gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2)
567-f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2)
568-a(x,y)*f(x,y)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2)
569-f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2)
570-a(x,y)*f(x,y)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2)
571+f(x,y)*gg(x,y+dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
572+f(x,y)*gg(x,y-dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
573-f(x,y)*gg(x,y)^2*a(x+dx,y)/(16*dx^2*dy^2)
574+a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
575+a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
576+a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
577+a(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
578-f(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
579-f(x,y)*a(x-dx,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
580-f(x,y)*a(x,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
581-a(x,y)*f(x,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
582-gg(x,y)*a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
583-gg(x,y)*a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
584-gg(x,y)*a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
585-a(x,y)*gg(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
586+f(x,y)*gg(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
587+f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
588+f(x,y)*gg(x,y)*a(x,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
589+a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
590-gg(x-dx,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
591+gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)*f(x-dx,y+dy)/(16*dx^2*dy^2)
592-gg(x,y+dy)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
593+gg(x,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
594-a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
595-a(x,y+dy)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
596-a(x,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
597+gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
598+a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
599+a(x,y)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
600-gg(x,y+dy)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
601+gg(x,y)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
602-a(x,y+dy)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
603-a(x,y)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
604+gg(x,y)^2*a(x,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
605+a(x,y)*gg(x,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
606+f(x,y)*gg(x-dx,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
607-f(x,y)*gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)/(16*dx^2*dy^2)
608+f(x,y)*gg(x,y+dy)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
609-f(x,y)*gg(x,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
610+a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
611+a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
612+a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
613+a(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
614-f(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
615-f(x,y)*a(x-dx,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
616-f(x,y)*a(x,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
617-a(x,y)*f(x,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
618-gg(x,y)*a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
619-gg(x,y)*a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
620-gg(x,y)*a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
621-a(x,y)*gg(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
622+f(x,y)*gg(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
623+f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
624+f(x,y)*gg(x,y)*a(x,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
625+a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
626-gg(x-dx,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
627+gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)*f(x-dx,y-dy)/(16*dx^2*dy^2)
628-gg(x,y-dy)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
629+gg(x,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
630-a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
631-a(x,y-dy)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
632-a(x,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
633+gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
634+a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
635+a(x,y)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
636-gg(x,y-dy)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
637+gg(x,y)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
638-a(x,y-dy)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
639-a(x,y)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
640+gg(x,y)^2*a(x,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
641+a(x,y)*gg(x,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
642+f(x,y)*gg(x-dx,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
643-f(x,y)*gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)/(16*dx^2*dy^2)
644+f(x,y)*gg(x,y-dy)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
645-f(x,y)*gg(x,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
646+f(x,y)*a(x-dx,y)*gg(x-dx,y)^2/(16*dx^2*dy^2)
647+f(x,y)*a(x,y+dy)*gg(x-dx,y)^2/(32*dx^2*dy^2)
648+f(x,y)*a(x,y-dy)*gg(x-dx,y)^2/(32*dx^2*dy^2)
649+a(x,y)*f(x,y)*gg(x-dx,y)^2/(16*dx^2*dy^2)
650-f(x,y)*gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2)
651-f(x,y)*gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2)
652-f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2)
653-a(x,y)*f(x,y)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2)
654-f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2)
655-a(x,y)*f(x,y)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2)
656+f(x,y)*gg(x,y+dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
657+f(x,y)*gg(x,y-dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
658-f(x,y)*gg(x,y)^2*a(x-dx,y)/(16*dx^2*dy^2)
659+f(x,y)*a(x,y+dy)*gg(x,y+dy)^2/(16*dx^2*dy^2)
660+a(x,y)*f(x,y)*gg(x,y+dy)^2/(16*dx^2*dy^2)
661-f(x,y)*gg(x,y)^2*a(x,y+dy)/(16*dx^2*dy^2)
662+f(x,y)*a(x,y-dy)*gg(x,y-dy)^2/(16*dx^2*dy^2)
663+a(x,y)*f(x,y)*gg(x,y-dy)^2/(16*dx^2*dy^2)
664-f(x,y)*gg(x,y)^2*a(x,y-dy)/(16*dx^2*dy^2)
665-a(x,y)*f(x,y)*gg(x,y)^2/(8*dx^2*dy^2)$
666
667comment We define abbreviations for the partial derivatives;
668
669operator ax,ay,fx,fy,gx,gy;
670operator axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;
671operator axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;
672operator axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,
673         gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;
674operator axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;
675operator gxxxxyy,gxxxyyy,gxxyyyy;
676
677operator_diff_rules := {
678  df(a(~x,~y),~x) => ax(x,y),
679  df(a(~x,~y),~y) => ay(x,y),
680  df(f(~x,~y),~x) => fx(x,y),
681  df(f(~x,~y),~y) => fy(x,y),
682  df(gg(~x,~y),~x) => gx(x,y),
683  df(gg(~x,~y),~y) => gy(x,y),
684
685  df(ax(~x,~y),~x) => axx(x,y),
686  df(ax(~x,~y),~y) => axy(x,y),
687  df(ay(~x,~y),~x) => axy(x,y),
688  df(ay(~x,~y),~y) => ayy(x,y),
689  df(fx(~x,~y),~x) => fxx(x,y),
690  df(fx(~x,~y),~y) => fxy(x,y),
691  df(fy(~x,~y),~x) => fxy(x,y),
692  df(fy(~x,~y),~y) => fyy(x,y),
693  df(gx(~x,~y),~x) => gxx(x,y),
694  df(gx(~x,~y),~y) => gxy(x,y),
695  df(gy(~x,~y),~x) => gxy(x,y),
696  df(gy(~x,~y),~y) => gyy(x,y),
697
698  df(axx(~x,~y),~x) => axxx(x,y),
699  df(axy(~x,~y),~x) => axxy(x,y),
700  df(ayy(~x,~y),~x) => axyy(x,y),
701  df(ayy(~x,~y),~y) => ayyy(x,y),
702  df(fxx(~x,~y),~x) => fxxx(x,y),
703  df(fxy(~x,~y),~x) => fxxy(x,y),
704  df(fxy(~x,~y),~y) => fxyy(x,y),
705  df(fyy(~x,~y),~x) => fxyy(x,y),
706  df(fyy(~x,~y),~y) => fyyy(x,y),
707  df(gxx(~x,~y),~x) => gxxx(x,y),
708  df(gxx(~x,~y),~y) => gxxy(x,y),
709  df(gxy(~x,~y),~x) => gxxy(x,y),
710  df(gxy(~x,~y),~y) => gxyy(x,y),
711  df(gyy(~x,~y),~x) => gxyy(x,y),
712  df(gyy(~x,~y),~y) => gyyy(x,y),
713
714  df(axyy(~x,~y),~x) => axxyy(x,y),
715  df(axxy(~x,~y),~x) => axxxy(x,y),
716  df(ayyy(~x,~y),~x) => axyyy(x,y),
717  df(fxxy(~x,~y),~x) => fxxxy(x,y),
718  df(fxyy(~x,~y),~x) => fxxyy(x,y),
719  df(fyyy(~x,~y),~x) => fxyyy(x,y),
720  df(gxxx(~x,~y),~x) => gxxxx(x,y),
721  df(gxxy(~x,~y),~x) => gxxxy(x,y),
722  df(gxyy(~x,~y),~x) => gxxyy(x,y),
723  df(gyyy(~x,~y),~x) => gxyyy(x,y),
724  df(gyyy(~x,~y),~y) => gyyyy(x,y),
725
726  df(axxyy(~x,~y),~x) => axxxyy(x,y),
727  df(axyyy(~x,~y),~x) => axxyyy(x,y),
728  df(fxxyy(~x,~y),~x) => fxxxyy(x,y),
729  df(fxyyy(~x,~y),~x) => fxxyyy(x,y),
730  df(gxxxy(~x,~y),~x) => gxxxxy(x,y),
731  df(gxxyy(~x,~y),~x) => gxxxyy(x,y),
732  df(gxyyy(~x,~y),~x) => gxxyyy(x,y),
733  df(gyyyy(~x,~y),~x) => gxyyyy(x,y),
734
735  df(gxxxyy(~x,~y),~x) => gxxxxyy(x,y),
736  df(gxxyyy(~x,~y),~x) => gxxxyyy(x,y),
737  df(gxyyyy(~x,~y),~x) => gxxyyyy(x,y)
738};
739
740let operator_diff_rules;
741
742texp := taylor (finite_difference_expression, dx, 0, 1, dy, 0, 1);
743
744comment You may also try to expand further but this needs a lot
745        of CPU time.  Therefore the following line is commented out;
746
747%texp := taylor (finite_difference_expression, dx, 0, 2, dy, 0, 2);
748
749factor dx,dy;
750
751result := taylortostandard texp;
752
753derivative_expression - result;
754
755
756clear diff(~f,~arg);
757clearrules operator_diff_rules;
758clear diff,a,f,gg;
759clear ax,ay,fx,fy,gx,gy;
760clear axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;
761clear axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;
762clear axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;
763clear axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;
764clear gxxxxyy,gxxxyyy,gxxyyyy;
765
766taylorprintterms := 5;
767
768off taylorautoexpand,taylorkeeporiginal;
769
770%%% showtime;
771
772comment An example provided by Alan Barnes: elliptic functions;
773
774% Jacobi's elliptic functions
775%       sn(x,k),  cn(x,k), dn(x,k).
776% The modulus and complementary modulus are denoted by K and K!'
777%      usually written mathematically as k and k' respectively
778%
779% epsilon(x,k) is the incomplete elliptic integral of the second kind
780%      usually written mathematically as E(x,k)
781%
782% KK(k) is the complete elliptic integral of the first kind
783%       usually written mathematically as K(k)
784%       K(k) = arcsn(1,k)
785% KK!'(k) is the complementary complete integral
786%      usually written mathematically as K'(k)
787%      NB.  K'(k) = K(k')
788% EE(k) is the complete elliptic integral of the second kind
789%      usually written mathematically as E(k)
790% EE!'(k) is the complementary complete integral
791%      usually written mathematically as E'(k)
792%      NB.  E'(k) = E(k')
793
794operator sn, cn, dn, epsilon;
795
796elliptic_rules := {
797% Differentiation rules for basic functions
798   df(sn(~x,~k),~x)     => cn(x,k)*dn(x,k),
799   df(cn(~x,~k),~x)     => -sn(x,k)*dn(x,k),
800   df(dn(~x,~k),~x)     => -k^2*sn(x,k)*cn(x,k),
801   df(epsilon(~x,~k),~x)=> dn(x,k)^2,
802
803% k-derivatives
804% DF Lawden     Elliptic Functions & Applications    Springer (1989)
805   df(sn(~x,~k),~k)  => (k*sn(x,k)*cn(x,k)^2
806                         -epsilon(x,k)*cn(x,k)*dn(x,k)/k)/(1-k^2)
807                       + x*cn(x,k)*dn(x,k)/k,
808   df(cn(~x,~k),~k)  => (-k*sn(x,k)^2*cn(x,k)
809                         +epsilon(x,k)*sn(x,k)*dn(x,k)/k)/(1-k^2)
810                        - x*sn(x,k)*dn(x,k)/k,
811   df(dn(~x,~k),~k)  => k*(-sn(x,k)^2*dn(x,k)
812                            +epsilon(x,k)*sn(x,k)*cn(x,k))/(1-k^2)
813                          - k*x*sn(x,k)*cn(x,k),
814   df(epsilon(~x,~k),~k) => k*(sn(x,k)*cn(x,k)*dn(x,k)
815                                -epsilon(x,k)*cn(x,k)^2)/(1-k^2)
816                             -k*x*sn(x,k)^2,
817
818% parity properties
819   sn(-~x,~k) => -sn(x,k),
820   cn(-~x,~k) => cn(x,k),
821   dn(-~x,~k) => dn(x,k),
822   epsilon(-~x,~k) => -epsilon(x,k),
823   sn(~x,-~k) => sn(x,k),
824   cn(~x,-~k) => cn(x,k),
825   dn(~x,-~k) => dn(x,k),
826   epsilon(~x,-~k) => epsilon(x,k),
827
828
829% behaviour at zero
830   sn(0,~k) => 0,
831   cn(0,~k) => 1,
832   dn(0,~k) => 1,
833   epsilon(0,~k) => 0,
834
835
836% degenerate cases of modulus
837   sn(~x,0) => sin(x),
838   cn(~x,0) => cos(x),
839   dn(~x,0) => 1,
840   epsilon(~x,0) => x,
841
842   sn(~x,1) => tanh(x),
843   cn(~x,1) => 1/cosh(x),
844   dn(~x,1) => 1/cosh(x),
845   epsilon(~x,1) => tanh(x)
846};
847
848let elliptic_rules;
849
850hugo := taylor(sn(x,k),k,0,6);
851otto := taylor(cn(x,k),k,0,6);
852taylorcombine(hugo^2 + otto^2);
853
854clearrules elliptic_rules;
855
856clear sn, cn, dn, epsilon;
857
858%%% showtime;
859
860comment That's all, folks;
861
862end;
863