1 /* ---------------------------------------------------------------------
2 *
3 *  -- PBLAS routine (version 2.0) --
4 *     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 *     and University of California, Berkeley.
6 *     April 1, 1998
7 *
8 *  ---------------------------------------------------------------------
9 */
10 /*
11 *  Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
pcher_(F_CHAR_T UPLO,int * N,float * ALPHA,float * X,int * IX,int * JX,int * DESCX,int * INCX,float * A,int * IA,int * JA,int * DESCA)20 void pcher_( F_CHAR_T UPLO, int * N, float * ALPHA,
21              float * X, int * IX, int * JX, int * DESCX, int * INCX,
22              float * A, int * IA, int * JA, int * DESCA )
23 #else
24 void pcher_( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA )
25 /*
26 *  .. Scalar Arguments ..
27 */
28    F_CHAR_T       UPLO;
29    int            * IA, * INCX, * IX, * JA, * JX, * N;
30    float          * ALPHA;
31 /*
32 *  .. Array Arguments ..
33 */
34    int            * DESCA, * DESCX;
35    float          * A, * X;
36 #endif
37 {
38 /*
39 *  Purpose
40 *  =======
41 *
42 *  PCHER  performs the Hermitian rank 1 operation
43 *
44 *     sub( A ) := alpha*sub( X )*conjg( sub( X )' ) + sub( A ),
45 *
46 *  where
47 *
48 *     sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1), and,
49 *
50 *     sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
51 *                      X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
52 *
53 *  Alpha is a  real  scalar,  sub( X )  is an  n element  subvector  and
54 *  sub( A ) is an n by n Hermitian submatrix.
55 *
56 *  Notes
57 *  =====
58 *
59 *  A description  vector  is associated with each 2D block-cyclicly dis-
60 *  tributed matrix.  This  vector  stores  the  information  required to
61 *  establish the  mapping  between a  matrix entry and its corresponding
62 *  process and memory location.
63 *
64 *  In  the  following  comments,   the character _  should  be  read  as
65 *  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
66 *  block cyclicly distributed matrix.  Its description vector is DESC_A:
67 *
68 *  NOTATION         STORED IN       EXPLANATION
69 *  ---------------- --------------- ------------------------------------
70 *  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
71 *  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
72 *                                   the NPROW x NPCOL BLACS process grid
73 *                                   A  is  distributed over. The context
74 *                                   itself  is  global,  but  the handle
75 *                                   (the integer value) may vary.
76 *  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
77 *                                   ted matrix A, M_A >= 0.
78 *  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
79 *                                   buted matrix A, N_A >= 0.
80 *  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
81 *                                   block of the matrix A, IMB_A > 0.
82 *  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
83 *                                   left   block   of   the  matrix   A,
84 *                                   INB_A > 0.
85 *  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
86 *                                   bute the last  M_A-IMB_A  rows of A,
87 *                                   MB_A > 0.
88 *  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
89 *                                   bute the last  N_A-INB_A  columns of
90 *                                   A, NB_A > 0.
91 *  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
92 *                                   row of the matrix  A is distributed,
93 *                                   NPROW > RSRC_A >= 0.
94 *  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
95 *                                   first column of  A  is  distributed.
96 *                                   NPCOL > CSRC_A >= 0.
97 *  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
98 *                                   array  storing  the  local blocks of
99 *                                   the distributed matrix A,
100 *                                   IF( Lc( 1, N_A ) > 0 )
101 *                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
102 *                                   ELSE
103 *                                      LLD_A >= 1.
104 *
105 *  Let K be the number of  rows of a matrix A starting at the global in-
106 *  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
107 *  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
108 *  receive if these K rows were distributed over NPROW processes.  If  K
109 *  is the number of columns of a matrix  A  starting at the global index
110 *  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
111 *  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
112 *  these K columns were distributed over NPCOL processes.
113 *
114 *  The values of Lr() and Lc() may be determined via a call to the func-
115 *  tion PB_Cnumroc:
116 *  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
117 *  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
118 *
119 *  Arguments
120 *  =========
121 *
122 *  UPLO    (global input) CHARACTER*1
123 *          On  entry,   UPLO  specifies  whether  the  local  pieces  of
124 *          the array  A  containing the  upper or lower triangular  part
125 *          of the Hermitian submatrix  sub( A )  are to be referenced as
126 *          follows:
127 *
128 *             UPLO = 'U' or 'u'   Only the local pieces corresponding to
129 *                                 the   upper  triangular  part  of  the
130 *                                 Hermitian submatrix sub( A ) are to be
131 *                                 referenced,
132 *
133 *             UPLO = 'L' or 'l'   Only the local pieces corresponding to
134 *                                 the   lower  triangular  part  of  the
135 *                                 Hermitian submatrix sub( A ) are to be
136 *                                 referenced.
137 *
138 *  N       (global input) INTEGER
139 *          On entry,  N specifies the order of the  submatrix  sub( A ).
140 *          N must be at least zero.
141 *
142 *  ALPHA   (global input) REAL
143 *          On entry, ALPHA specifies the scalar alpha.   When  ALPHA  is
144 *          supplied  as  zero  then  the  local entries of the array   X
145 *          corresponding to the entries of the subvector  sub( X )  need
146 *          not be set on input.
147 *
148 *  X       (local input) COMPLEX array
149 *          On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
150 *          is   at  least  MAX( 1, Lr( 1, IX ) )  when  INCX = M_X   and
151 *          MAX( 1, Lr( 1, IX+N-1 ) )  otherwise,  and,  Kx  is  at least
152 *          Lc( 1, JX+N-1 )  when  INCX = M_X  and Lc( 1, JX ) otherwise.
153 *          Before  entry,  this array  contains the local entries of the
154 *          matrix X.
155 *
156 *  IX      (global input) INTEGER
157 *          On entry, IX  specifies X's global row index, which points to
158 *          the beginning of the submatrix sub( X ).
159 *
160 *  JX      (global input) INTEGER
161 *          On entry, JX  specifies X's global column index, which points
162 *          to the beginning of the submatrix sub( X ).
163 *
164 *  DESCX   (global and local input) INTEGER array
165 *          On entry, DESCX  is an integer array of dimension DLEN_. This
166 *          is the array descriptor for the matrix X.
167 *
168 *  INCX    (global input) INTEGER
169 *          On entry,  INCX   specifies  the  global  increment  for  the
170 *          elements of  X.  Only two values of  INCX   are  supported in
171 *          this version, namely 1 and M_X. INCX  must not be zero.
172 *
173 *  A       (local input/local output) COMPLEX array
174 *          On entry, A is an array of dimension (LLD_A, Ka), where Ka is
175 *          at least Lc( 1, JA+N-1 ).  Before  entry, this array contains
176 *          the local entries of the matrix A.
177 *          Before  entry  with  UPLO = 'U' or 'u', this  array  contains
178 *          the local entries corresponding to the upper triangular  part
179 *          of  the  Hermitian submatrix  sub( A ), and the local entries
180 *          corresponding to the  strictly lower triangular  of  sub( A )
181 *          are not referenced.  On exit,  the upper  triangular  part of
182 *          sub( A ) is overwritten by the  upper triangular part  of the
183 *          updated submatrix.
184 *          Before  entry  with  UPLO = 'L' or 'l', this  array  contains
185 *          the local entries corresponding to the lower triangular  part
186 *          of  the  Hermitian submatrix  sub( A ), and the local entries
187 *          corresponding to the  strictly upper triangular  of  sub( A )
188 *          are not referenced.  On exit,  the lower  triangular  part of
189 *          sub( A ) is overwritten by the  lower triangular part  of the
190 *          updated submatrix.
191 *          Note that the  imaginary parts  of the local entries  corres-
192 *          ponding to the  diagonal elements  of  sub( A )  need not  be
193 *          set,  they are assumed to be zero,  and on exit they are  set
194 *          to zero.
195 *
196 *  IA      (global input) INTEGER
197 *          On entry, IA  specifies A's global row index, which points to
198 *          the beginning of the submatrix sub( A ).
199 *
200 *  JA      (global input) INTEGER
201 *          On entry, JA  specifies A's global column index, which points
202 *          to the beginning of the submatrix sub( A ).
203 *
204 *  DESCA   (global and local input) INTEGER array
205 *          On entry, DESCA  is an integer array of dimension DLEN_. This
206 *          is the array descriptor for the matrix A.
207 *
208 *  -- Written on April 1, 1998 by
209 *     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
210 *
211 *  ---------------------------------------------------------------------
212 */
213 /*
214 *  .. Local Scalars ..
215 */
216    char           UploA;
217    int            Acol, Ai, Aii, Aimb1, Ainb1, Aj, Ajj, Akp, Akq, Ald, Amb,
218                   Amp, Amp0, Anb, Anq, Anq0, Arow, XCfr, XCld, XRfr, XRld,
219                   Xi, Xj, ctxt, info, ione=1, k, kb, ktmp, mycol, myrow, nb,
220                   npcol, nprow, size, upper;
221    cmplx          Calpha;
222    PBTYP_T        * type;
223 /*
224 *  .. Local Arrays ..
225 */
226    int            Ad[DLEN_], Ad0[DLEN_], XCd0[DLEN_], XRd0[DLEN_], Xd[DLEN_];
227    char           * Aptr = NULL, * XC = NULL, * XR = NULL;
228 /* ..
229 *  .. Executable Statements ..
230 *
231 */
232    upper = ( ( UploA  = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
233    PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
234    PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
235 #ifndef NO_ARGCHK
236 /*
237 *  Test the input parameters
238 */
239    Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
240    if( !( info = ( ( nprow == -1 ) ? -( 701 + CTXT_ ) : 0 ) ) )
241    {
242       if( ( !upper ) && ( UploA != CLOWER ) )
243       {
244          PB_Cwarn( ctxt, __LINE__, "PCHER", "Illegal UPLO = %c\n", UploA );
245          info = -1;
246       }
247       PB_Cchkvec( ctxt, "PCHER", "X", *N, 2, Xi, Xj, Xd, *INCX,  7, &info );
248       PB_Cchkmat( ctxt, "PCHER", "A", *N, 2, *N, 2, Ai, Aj, Ad, 12, &info );
249    }
250    if( info ) { PB_Cabort( ctxt, "PCHER", info ); return; }
251 #endif
252 /*
253 *  Quick return if possible
254 */
255    if( ( *N == 0 ) || ( ALPHA[REAL_PART] == ZERO ) )
256       return;
257 /*
258 *  Retrieve process grid information
259 */
260 #ifdef NO_ARGCHK
261    Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
262 #endif
263 /*
264 *  Get type structure
265 */
266    type = PB_Cctypeset();
267 /*
268 *  Compute descriptor Ad0 for sub( A )
269 */
270    PB_Cdescribe( *N, *N, Ai, Aj, Ad, nprow, npcol, myrow, mycol, &Aii, &Ajj,
271                  &Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 );
272 /*
273 *  Replicate sub( X ) in process rows (XR) and process columns (XC) spanned by
274 *  sub( A )
275 */
276    if( *INCX == Xd[M_] )
277    {
278       PB_CInV( type, NOCONJG, ROW,    *N, *N, Ad0, 1, ((char *) X), Xi, Xj,
279                Xd,   ROW,    &XR, XRd0, &XRfr );
280       PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, XR,            0,  0,
281                XRd0, ROW,    &XC, XCd0, &XCfr );
282    }
283    else
284    {
285       PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, ((char *) X), Xi, Xj,
286                Xd,   COLUMN, &XC, XCd0, &XCfr );
287       PB_CInV( type, NOCONJG, ROW,    *N, *N, Ad0, 1, XC,            0, 0,
288                XCd0, COLUMN, &XR, XRd0, &XRfr );
289    }
290 /*
291 *  Local rank-1 update if I own some data
292 */
293    Amp = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow );
294    Anq = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol );
295 
296    if( ( Amp > 0 ) && ( Anq > 0 ) )
297    {
298       size = type->size;
299       Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size );
300 /*
301 *  Computational partitioning size is computed as the product of the logical
302 *  value returned by pilaenv_ and 2 * lcm( nprow, npcol ).
303 */
304       nb   = 2 * pilaenv_( &ctxt, C2F_CHAR( &type->type ) ) *
305              PB_Clcm( ( Arow >= 0 ? nprow : 1 ), ( Acol >= 0 ? npcol : 1 ) );
306 
307       XCld = XCd0[LLD_]; XRld = XRd0[LLD_];
308       Calpha[REAL_PART] = ALPHA[REAL_PART];
309       Calpha[IMAG_PART] = ZERO;
310 
311       if( upper )
312       {
313          for( k = 0; k < *N; k += nb )
314          {
315             kb   = *N - k; kb = MIN( kb, nb );
316             Akp  = PB_Cnumroc( k,  0, Aimb1, Amb, myrow, Arow, nprow );
317             Akq  = PB_Cnumroc( k,  0, Ainb1, Anb, mycol, Acol, npcol );
318             Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
319             if( Akp > 0 && Anq0 > 0 )
320                cgerc_( &Akp, &Anq0, ((char *) Calpha), XC, &ione,
321                        Mptr( XR, 0, Akq, XRld, size ), &XRld, Mptr( Aptr, 0,
322                        Akq, Ald, size ), &Ald );
323             PB_Cpsyr( type, UPPER, kb, 1, ((char *) Calpha), Mptr( XC, Akp, 0,
324                       XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld,
325                       Aptr, k, k, Ad0, PB_Ctzher );
326          }
327       }
328       else
329       {
330          for( k = 0; k < *N; k += nb )
331          {
332             kb = *N - k; ktmp = k + ( kb = MIN( kb, nb ) );
333             Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow );
334             Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol );
335             PB_Cpsyr( type, LOWER, kb, 1, ((char *) Calpha), Mptr( XC, Akp, 0,
336                       XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld,
337                       Aptr, k, k, Ad0, PB_Ctzher );
338             Akp  = PB_Cnumroc( ktmp, 0, Aimb1, Amb, myrow, Arow, nprow );
339             Amp0 = Amp - Akp;
340             Anq0 = PB_Cnumroc( kb,   k, Ainb1, Anb, mycol, Acol, npcol );
341             if( Amp0 > 0 && Anq0 > 0 )
342                cgerc_( &Amp0, &Anq0, ((char *) Calpha), Mptr( XC, Akp,
343                        0, XCld, size ), &ione, Mptr( XR, 0, Akq, XRld, size ),
344                        &XRld, Mptr( Aptr, Akp, Akq, Ald, size ), &Ald );
345          }
346       }
347    }
348    if( XRfr ) free( XR );
349    if( XCfr ) free( XC );
350 /*
351 *  End of PCHER
352 */
353 }
354