1      SUBROUTINE PDGEQRRV( M, N, A, IA, JA, DESCA, TAU, WORK )
2*
3*  -- ScaLAPACK routine (version 1.7) --
4*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5*     and University of California, Berkeley.
6*     May 28, 2001
7*
8*     .. Scalar Arguments ..
9      INTEGER            IA, JA, M, N
10*     ..
11*     .. Array Arguments ..
12      INTEGER            DESCA( * )
13      DOUBLE PRECISION   A( * ), TAU( * ), WORK( * )
14*     ..
15*
16*  Purpose
17*  =======
18*
19*  PDGEQRRV computes sub( A ) = A(IA:IA+M-1,JA:JA+N-1) from Q, R
20*  computed by PDGEQRF.
21*
22*  Notes
23*  =====
24*
25*  Each global data object is described by an associated description
26*  vector.  This vector stores the information required to establish
27*  the mapping between an object element and its corresponding process
28*  and memory location.
29*
30*  Let A be a generic term for any 2D block cyclicly distributed array.
31*  Such a global array has an associated description vector DESCA.
32*  In the following comments, the character _ should be read as
33*  "of the global array".
34*
35*  NOTATION        STORED IN      EXPLANATION
36*  --------------- -------------- --------------------------------------
37*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
38*                                 DTYPE_A = 1.
39*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
40*                                 the BLACS process grid A is distribu-
41*                                 ted over. The context itself is glo-
42*                                 bal, but the handle (the integer
43*                                 value) may vary.
44*  M_A    (global) DESCA( M_ )    The number of rows in the global
45*                                 array A.
46*  N_A    (global) DESCA( N_ )    The number of columns in the global
47*                                 array A.
48*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
49*                                 the rows of the array.
50*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
51*                                 the columns of the array.
52*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
53*                                 row of the array A is distributed.
54*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
55*                                 first column of the array A is
56*                                 distributed.
57*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
58*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
59*
60*  Let K be the number of rows or columns of a distributed matrix,
61*  and assume that its process grid has dimension p x q.
62*  LOCr( K ) denotes the number of elements of K that a process
63*  would receive if K were distributed over the p processes of its
64*  process column.
65*  Similarly, LOCc( K ) denotes the number of elements of K that a
66*  process would receive if K were distributed over the q processes of
67*  its process row.
68*  The values of LOCr() and LOCc() may be determined via a call to the
69*  ScaLAPACK tool function, NUMROC:
70*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
71*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
72*  An upper bound for these quantities may be computed by:
73*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
74*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
75*
76*  Arguments
77*  =========
78*
79*  M       (global input) INTEGER
80*          The number of rows to be operated on, i.e. the number of rows
81*          of the distributed submatrix sub( A ). M >= 0.
82*
83*  N       (global input) INTEGER
84*          The number of columns to be operated on, i.e. the number of
85*          columns of the distributed submatrix sub( A ). N >= 0.
86*
87*  A       (local input/local output) DOUBLE PRECISION pointer into the
88*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
89*          On entry, sub( A ) contains the the factors Q and R computed
90*          by PDGEQRF. On exit, the original matrix is restored.
91*
92*  IA      (global input) INTEGER
93*          The row index in the global array A indicating the first
94*          row of sub( A ).
95*
96*  JA      (global input) INTEGER
97*          The column index in the global array A indicating the
98*          first column of sub( A ).
99*
100*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
101*          The array descriptor for the distributed matrix A.
102*
103*  TAU     (local input) DOUBLE PRECISION, array, dimension
104*          LOCc(JA+MIN(M,N)-1). This array contains the scalar factors
105*          TAU of the elementary reflectors computed by PDGEQRF. TAU
106*          is tied to the distributed matrix A.
107*
108*  WORK    (local workspace) DOUBLE PRECISION array, dimension (LWORK)
109*          LWORK = NB_A * ( 2*Mp0 + Nq0 + NB_A ), where
110*          Mp0   = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ) * NB_A,
111*          Nq0   = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ) * MB_A,
112*          IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
113*          IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
114*                           NPROW ),
115*          IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
116*                           NPCOL ),
117*          and NUMROC, INDXG2P are ScaLAPACK tool functions;
118*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
119*          the subroutine BLACS_GRIDINFO.
120*
121*  =====================================================================
122*
123*     .. Parameters ..
124      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
125     $                   LLD_, MB_, M_, NB_, N_, RSRC_
126      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
127     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
128     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
129      DOUBLE PRECISION   ONE, ZERO
130      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
131*     ..
132*     .. Local Scalars ..
133      CHARACTER          COLBTOP, ROWBTOP
134      INTEGER            IACOL, IAROW, I, ICTXT, IIA, IPT, IPV, IPW,
135     $                   IROFF, IV, J, JB, JJA, JL, JN, K, MP, MYCOL,
136     $                   MYROW, NPCOL, NPROW
137*     ..
138*     .. Local Arrays ..
139      INTEGER            DESCV( DLEN_ )
140*     ..
141*     .. External Subroutines ..
142      EXTERNAL           BLACS_GRIDINFO, DESCSET, INFOG2L, PDLACPY,
143     $                   PDLARFB, PDLARFT, PDLASET, PB_TOPGET,
144     $                   PB_TOPSET
145*     ..
146*     .. External Functions ..
147      INTEGER            ICEIL, INDXG2P, NUMROC
148      EXTERNAL           ICEIL, INDXG2P, NUMROC
149*     ..
150*     .. Intrinsic Functions ..
151      INTRINSIC          MAX, MIN, MOD
152*     ..
153*     .. Executable Statements ..
154*
155*     Get grid parameters
156*
157      ICTXT = DESCA( CTXT_ )
158      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
159*
160      IROFF = MOD( IA-1, DESCA( MB_ ) )
161      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
162     $              IAROW, IACOL )
163      MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
164      IPV = 1
165      IPT = IPV + MP * DESCA( NB_ )
166      IPW = IPT + DESCA( NB_ ) * DESCA( NB_ )
167      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
168      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
169      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'D-ring' )
170      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
171*
172      K  = MIN( M, N )
173      JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+K-1 )
174      JL = MAX( ( (JA+K-2) / DESCA( NB_ ) ) * DESCA( NB_ ) + 1, JA )
175*
176      CALL DESCSET( DESCV, M+IROFF, DESCA( NB_ ), DESCA( MB_ ),
177     $              DESCA( NB_ ), IAROW, INDXG2P( JL, DESCA( NB_ ),
178     $              MYCOL, DESCA( CSRC_ ), NPCOL ), ICTXT,
179     $              MAX( 1, MP ) )
180*
181      DO 10 J = JL, JN+1, -DESCA( NB_ )
182         JB = MIN( JA+K-J, DESCA( NB_ ) )
183         I  = IA + J - JA
184         IV = 1  + J - JA + IROFF
185*
186*        Compute upper triangular matrix T
187*
188         CALL PDLARFT( 'Forward', 'Columnwise', M-I+IA, JB, A, I, J,
189     $                 DESCA, TAU, WORK( IPT ), WORK( IPW ) )
190*
191*        Copy Householder vectors into workspace
192*
193         CALL PDLACPY( 'Lower', M-I+IA, JB, A, I, J, DESCA, WORK( IPV ),
194     $                 IV, 1, DESCV )
195         CALL PDLASET( 'Upper', M-I+IA, JB, ZERO, ONE, WORK( IPV ), IV,
196     $                 1, DESCV )
197*
198*        Zeroes the strict lower triangular part of sub( A ) to get
199*        block column of R
200*
201         CALL PDLASET( 'Lower', M-I+IA-1, JB, ZERO, ZERO, A, I+1, J,
202     $                 DESCA )
203*
204*        Apply block Householder transformation
205*
206         CALL PDLARFB( 'Left', 'No transpose', 'Forward', 'Columnwise',
207     $                 M-I+IA, N-J+JA, JB, WORK( IPV ), IV, 1, DESCV,
208     $                 WORK( IPT ), A, I, J, DESCA, WORK( IPW ) )
209*
210         DESCV( CSRC_ ) = MOD( DESCV( CSRC_ ) + NPCOL - 1, NPCOL )
211*
212   10 CONTINUE
213*
214*     Handle first block separately
215*
216      JB = JN - JA + 1
217*
218*     Compute upper triangular matrix T
219*
220      CALL PDLARFT( 'Forward', 'Columnwise', M, JB, A, IA, JA, DESCA,
221     $              TAU, WORK( IPT ), WORK( IPW ) )
222*
223*     Copy Householder vectors into workspace
224*
225      CALL PDLACPY( 'Lower', M, JB, A, IA, JA, DESCA, WORK( IPV ),
226     $              IROFF+1, 1, DESCV )
227      CALL PDLASET( 'Upper', M, JB, ZERO, ONE, WORK, IROFF+1, 1, DESCV )
228*
229*     Zeroes the strict lower triangular part of sub( A ) to get block
230*     column of R
231*
232      CALL PDLASET( 'Lower', M-1, JB, ZERO, ZERO, A, IA+1, JA, DESCA )
233*
234*     Apply block Householder transformation
235*
236      CALL PDLARFB( 'Left', 'No transpose', 'Forward', 'Columnwise', M,
237     $              N, JB, WORK( IPV ), IROFF+1, 1, DESCV, WORK( IPT ),
238     $              A, IA, JA, DESCA, WORK( IPW ) )
239*
240      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
241      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
242*
243      RETURN
244*
245*     End of PDGEQRRV
246*
247      END
248