1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This file defines some utilities useful for implementing Google
34 // Mock.  They are subject to change without notice, so please DO NOT
35 // USE THEM IN USER CODE.
36 
37 // GOOGLETEST_CM0002 DO NOT DELETE
38 
39 #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
40 #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
41 
42 #include <stdio.h>
43 #include <ostream>  // NOLINT
44 #include <string>
45 #include <type_traits>
46 #include "gmock/internal/gmock-port.h"
47 #include "gtest/gtest.h"
48 
49 namespace testing {
50 
51 template <typename>
52 class Matcher;
53 
54 namespace internal {
55 
56 // Silence MSVC C4100 (unreferenced formal parameter) and
57 // C4805('==': unsafe mix of type 'const int' and type 'const bool')
58 #ifdef _MSC_VER
59 # pragma warning(push)
60 # pragma warning(disable:4100)
61 # pragma warning(disable:4805)
62 #endif
63 
64 // Joins a vector of strings as if they are fields of a tuple; returns
65 // the joined string.
66 GTEST_API_ std::string JoinAsTuple(const Strings& fields);
67 
68 // Converts an identifier name to a space-separated list of lower-case
69 // words.  Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
70 // treated as one word.  For example, both "FooBar123" and
71 // "foo_bar_123" are converted to "foo bar 123".
72 GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name);
73 
74 // PointeeOf<Pointer>::type is the type of a value pointed to by a
75 // Pointer, which can be either a smart pointer or a raw pointer.  The
76 // following default implementation is for the case where Pointer is a
77 // smart pointer.
78 template <typename Pointer>
79 struct PointeeOf {
80   // Smart pointer classes define type element_type as the type of
81   // their pointees.
82   typedef typename Pointer::element_type type;
83 };
84 // This specialization is for the raw pointer case.
85 template <typename T>
86 struct PointeeOf<T*> { typedef T type; };  // NOLINT
87 
88 // GetRawPointer(p) returns the raw pointer underlying p when p is a
89 // smart pointer, or returns p itself when p is already a raw pointer.
90 // The following default implementation is for the smart pointer case.
91 template <typename Pointer>
92 inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) {
93   return p.get();
94 }
95 // This overloaded version is for the raw pointer case.
96 template <typename Element>
97 inline Element* GetRawPointer(Element* p) { return p; }
98 
99 // MSVC treats wchar_t as a native type usually, but treats it as the
100 // same as unsigned short when the compiler option /Zc:wchar_t- is
101 // specified.  It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
102 // is a native type.
103 #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
104 // wchar_t is a typedef.
105 #else
106 # define GMOCK_WCHAR_T_IS_NATIVE_ 1
107 #endif
108 
109 // In what follows, we use the term "kind" to indicate whether a type
110 // is bool, an integer type (excluding bool), a floating-point type,
111 // or none of them.  This categorization is useful for determining
112 // when a matcher argument type can be safely converted to another
113 // type in the implementation of SafeMatcherCast.
114 enum TypeKind {
115   kBool, kInteger, kFloatingPoint, kOther
116 };
117 
118 // KindOf<T>::value is the kind of type T.
119 template <typename T> struct KindOf {
120   enum { value = kOther };  // The default kind.
121 };
122 
123 // This macro declares that the kind of 'type' is 'kind'.
124 #define GMOCK_DECLARE_KIND_(type, kind) \
125   template <> struct KindOf<type> { enum { value = kind }; }
126 
127 GMOCK_DECLARE_KIND_(bool, kBool);
128 
129 // All standard integer types.
130 GMOCK_DECLARE_KIND_(char, kInteger);
131 GMOCK_DECLARE_KIND_(signed char, kInteger);
132 GMOCK_DECLARE_KIND_(unsigned char, kInteger);
133 GMOCK_DECLARE_KIND_(short, kInteger);  // NOLINT
134 GMOCK_DECLARE_KIND_(unsigned short, kInteger);  // NOLINT
135 GMOCK_DECLARE_KIND_(int, kInteger);
136 GMOCK_DECLARE_KIND_(unsigned int, kInteger);
137 GMOCK_DECLARE_KIND_(long, kInteger);  // NOLINT
138 GMOCK_DECLARE_KIND_(unsigned long, kInteger);  // NOLINT
139 GMOCK_DECLARE_KIND_(long long, kInteger);  // NOLINT
140 GMOCK_DECLARE_KIND_(unsigned long long, kInteger);  // NOLINT
141 
142 #if GMOCK_WCHAR_T_IS_NATIVE_
143 GMOCK_DECLARE_KIND_(wchar_t, kInteger);
144 #endif
145 
146 // All standard floating-point types.
147 GMOCK_DECLARE_KIND_(float, kFloatingPoint);
148 GMOCK_DECLARE_KIND_(double, kFloatingPoint);
149 GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
150 
151 #undef GMOCK_DECLARE_KIND_
152 
153 // Evaluates to the kind of 'type'.
154 #define GMOCK_KIND_OF_(type) \
155   static_cast< ::testing::internal::TypeKind>( \
156       ::testing::internal::KindOf<type>::value)
157 
158 // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
159 // is true if and only if arithmetic type From can be losslessly converted to
160 // arithmetic type To.
161 //
162 // It's the user's responsibility to ensure that both From and To are
163 // raw (i.e. has no CV modifier, is not a pointer, and is not a
164 // reference) built-in arithmetic types, kFromKind is the kind of
165 // From, and kToKind is the kind of To; the value is
166 // implementation-defined when the above pre-condition is violated.
167 template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
168 using LosslessArithmeticConvertibleImpl = std::integral_constant<
169     bool,
170     // clang-format off
171       // Converting from bool is always lossless
172       (kFromKind == kBool) ? true
173       // Converting between any other type kinds will be lossy if the type
174       // kinds are not the same.
175     : (kFromKind != kToKind) ? false
176     : (kFromKind == kInteger &&
177        // Converting between integers of different widths is allowed so long
178        // as the conversion does not go from signed to unsigned.
179       (((sizeof(From) < sizeof(To)) &&
180         !(std::is_signed<From>::value && !std::is_signed<To>::value)) ||
181        // Converting between integers of the same width only requires the
182        // two types to have the same signedness.
183        ((sizeof(From) == sizeof(To)) &&
184         (std::is_signed<From>::value == std::is_signed<To>::value)))
185        ) ? true
186       // Floating point conversions are lossless if and only if `To` is at least
187       // as wide as `From`.
188     : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true
189     : false
190     // clang-format on
191     >;
192 
193 // LosslessArithmeticConvertible<From, To>::value is true if and only if
194 // arithmetic type From can be losslessly converted to arithmetic type To.
195 //
196 // It's the user's responsibility to ensure that both From and To are
197 // raw (i.e. has no CV modifier, is not a pointer, and is not a
198 // reference) built-in arithmetic types; the value is
199 // implementation-defined when the above pre-condition is violated.
200 template <typename From, typename To>
201 using LosslessArithmeticConvertible =
202     LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From,
203                                       GMOCK_KIND_OF_(To), To>;
204 
205 // This interface knows how to report a Google Mock failure (either
206 // non-fatal or fatal).
207 class FailureReporterInterface {
208  public:
209   // The type of a failure (either non-fatal or fatal).
210   enum FailureType {
211     kNonfatal, kFatal
212   };
213 
214   virtual ~FailureReporterInterface() {}
215 
216   // Reports a failure that occurred at the given source file location.
217   virtual void ReportFailure(FailureType type, const char* file, int line,
218                              const std::string& message) = 0;
219 };
220 
221 // Returns the failure reporter used by Google Mock.
222 GTEST_API_ FailureReporterInterface* GetFailureReporter();
223 
224 // Asserts that condition is true; aborts the process with the given
225 // message if condition is false.  We cannot use LOG(FATAL) or CHECK()
226 // as Google Mock might be used to mock the log sink itself.  We
227 // inline this function to prevent it from showing up in the stack
228 // trace.
229 inline void Assert(bool condition, const char* file, int line,
230                    const std::string& msg) {
231   if (!condition) {
232     GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal,
233                                         file, line, msg);
234   }
235 }
236 inline void Assert(bool condition, const char* file, int line) {
237   Assert(condition, file, line, "Assertion failed.");
238 }
239 
240 // Verifies that condition is true; generates a non-fatal failure if
241 // condition is false.
242 inline void Expect(bool condition, const char* file, int line,
243                    const std::string& msg) {
244   if (!condition) {
245     GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal,
246                                         file, line, msg);
247   }
248 }
249 inline void Expect(bool condition, const char* file, int line) {
250   Expect(condition, file, line, "Expectation failed.");
251 }
252 
253 // Severity level of a log.
254 enum LogSeverity {
255   kInfo = 0,
256   kWarning = 1
257 };
258 
259 // Valid values for the --gmock_verbose flag.
260 
261 // All logs (informational and warnings) are printed.
262 const char kInfoVerbosity[] = "info";
263 // Only warnings are printed.
264 const char kWarningVerbosity[] = "warning";
265 // No logs are printed.
266 const char kErrorVerbosity[] = "error";
267 
268 // Returns true if and only if a log with the given severity is visible
269 // according to the --gmock_verbose flag.
270 GTEST_API_ bool LogIsVisible(LogSeverity severity);
271 
272 // Prints the given message to stdout if and only if 'severity' >= the level
273 // specified by the --gmock_verbose flag.  If stack_frames_to_skip >=
274 // 0, also prints the stack trace excluding the top
275 // stack_frames_to_skip frames.  In opt mode, any positive
276 // stack_frames_to_skip is treated as 0, since we don't know which
277 // function calls will be inlined by the compiler and need to be
278 // conservative.
279 GTEST_API_ void Log(LogSeverity severity, const std::string& message,
280                     int stack_frames_to_skip);
281 
282 // A marker class that is used to resolve parameterless expectations to the
283 // correct overload. This must not be instantiable, to prevent client code from
284 // accidentally resolving to the overload; for example:
285 //
286 //    ON_CALL(mock, Method({}, nullptr))...
287 //
288 class WithoutMatchers {
289  private:
290   WithoutMatchers() {}
291   friend GTEST_API_ WithoutMatchers GetWithoutMatchers();
292 };
293 
294 // Internal use only: access the singleton instance of WithoutMatchers.
295 GTEST_API_ WithoutMatchers GetWithoutMatchers();
296 
297 // Disable MSVC warnings for infinite recursion, since in this case the
298 // the recursion is unreachable.
299 #ifdef _MSC_VER
300 # pragma warning(push)
301 # pragma warning(disable:4717)
302 #endif
303 
304 // Invalid<T>() is usable as an expression of type T, but will terminate
305 // the program with an assertion failure if actually run.  This is useful
306 // when a value of type T is needed for compilation, but the statement
307 // will not really be executed (or we don't care if the statement
308 // crashes).
309 template <typename T>
310 inline T Invalid() {
311   Assert(false, "", -1, "Internal error: attempt to return invalid value");
312   // This statement is unreachable, and would never terminate even if it
313   // could be reached. It is provided only to placate compiler warnings
314   // about missing return statements.
315   return Invalid<T>();
316 }
317 
318 #ifdef _MSC_VER
319 # pragma warning(pop)
320 #endif
321 
322 // Given a raw type (i.e. having no top-level reference or const
323 // modifier) RawContainer that's either an STL-style container or a
324 // native array, class StlContainerView<RawContainer> has the
325 // following members:
326 //
327 //   - type is a type that provides an STL-style container view to
328 //     (i.e. implements the STL container concept for) RawContainer;
329 //   - const_reference is a type that provides a reference to a const
330 //     RawContainer;
331 //   - ConstReference(raw_container) returns a const reference to an STL-style
332 //     container view to raw_container, which is a RawContainer.
333 //   - Copy(raw_container) returns an STL-style container view of a
334 //     copy of raw_container, which is a RawContainer.
335 //
336 // This generic version is used when RawContainer itself is already an
337 // STL-style container.
338 template <class RawContainer>
339 class StlContainerView {
340  public:
341   typedef RawContainer type;
342   typedef const type& const_reference;
343 
344   static const_reference ConstReference(const RawContainer& container) {
345     static_assert(!std::is_const<RawContainer>::value,
346                   "RawContainer type must not be const");
347     return container;
348   }
349   static type Copy(const RawContainer& container) { return container; }
350 };
351 
352 // This specialization is used when RawContainer is a native array type.
353 template <typename Element, size_t N>
354 class StlContainerView<Element[N]> {
355  public:
356   typedef typename std::remove_const<Element>::type RawElement;
357   typedef internal::NativeArray<RawElement> type;
358   // NativeArray<T> can represent a native array either by value or by
359   // reference (selected by a constructor argument), so 'const type'
360   // can be used to reference a const native array.  We cannot
361   // 'typedef const type& const_reference' here, as that would mean
362   // ConstReference() has to return a reference to a local variable.
363   typedef const type const_reference;
364 
365   static const_reference ConstReference(const Element (&array)[N]) {
366     static_assert(std::is_same<Element, RawElement>::value,
367                   "Element type must not be const");
368     return type(array, N, RelationToSourceReference());
369   }
370   static type Copy(const Element (&array)[N]) {
371     return type(array, N, RelationToSourceCopy());
372   }
373 };
374 
375 // This specialization is used when RawContainer is a native array
376 // represented as a (pointer, size) tuple.
377 template <typename ElementPointer, typename Size>
378 class StlContainerView< ::std::tuple<ElementPointer, Size> > {
379  public:
380   typedef typename std::remove_const<
381       typename internal::PointeeOf<ElementPointer>::type>::type RawElement;
382   typedef internal::NativeArray<RawElement> type;
383   typedef const type const_reference;
384 
385   static const_reference ConstReference(
386       const ::std::tuple<ElementPointer, Size>& array) {
387     return type(std::get<0>(array), std::get<1>(array),
388                 RelationToSourceReference());
389   }
390   static type Copy(const ::std::tuple<ElementPointer, Size>& array) {
391     return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy());
392   }
393 };
394 
395 // The following specialization prevents the user from instantiating
396 // StlContainer with a reference type.
397 template <typename T> class StlContainerView<T&>;
398 
399 // A type transform to remove constness from the first part of a pair.
400 // Pairs like that are used as the value_type of associative containers,
401 // and this transform produces a similar but assignable pair.
402 template <typename T>
403 struct RemoveConstFromKey {
404   typedef T type;
405 };
406 
407 // Partially specialized to remove constness from std::pair<const K, V>.
408 template <typename K, typename V>
409 struct RemoveConstFromKey<std::pair<const K, V> > {
410   typedef std::pair<K, V> type;
411 };
412 
413 // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to
414 // reduce code size.
415 GTEST_API_ void IllegalDoDefault(const char* file, int line);
416 
417 template <typename F, typename Tuple, size_t... Idx>
418 auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype(
419     std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) {
420   return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...);
421 }
422 
423 // Apply the function to a tuple of arguments.
424 template <typename F, typename Tuple>
425 auto Apply(F&& f, Tuple&& args)
426     -> decltype(ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
427                           MakeIndexSequence<std::tuple_size<Tuple>::value>())) {
428   return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
429                    MakeIndexSequence<std::tuple_size<Tuple>::value>());
430 }
431 
432 // Template struct Function<F>, where F must be a function type, contains
433 // the following typedefs:
434 //
435 //   Result:               the function's return type.
436 //   Arg<N>:               the type of the N-th argument, where N starts with 0.
437 //   ArgumentTuple:        the tuple type consisting of all parameters of F.
438 //   ArgumentMatcherTuple: the tuple type consisting of Matchers for all
439 //                         parameters of F.
440 //   MakeResultVoid:       the function type obtained by substituting void
441 //                         for the return type of F.
442 //   MakeResultIgnoredValue:
443 //                         the function type obtained by substituting Something
444 //                         for the return type of F.
445 template <typename T>
446 struct Function;
447 
448 template <typename R, typename... Args>
449 struct Function<R(Args...)> {
450   using Result = R;
451   static constexpr size_t ArgumentCount = sizeof...(Args);
452   template <size_t I>
453   using Arg = ElemFromList<I, Args...>;
454   using ArgumentTuple = std::tuple<Args...>;
455   using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
456   using MakeResultVoid = void(Args...);
457   using MakeResultIgnoredValue = IgnoredValue(Args...);
458 };
459 
460 template <typename R, typename... Args>
461 constexpr size_t Function<R(Args...)>::ArgumentCount;
462 
463 #ifdef _MSC_VER
464 # pragma warning(pop)
465 #endif
466 
467 }  // namespace internal
468 }  // namespace testing
469 
470 #endif  // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
471