1 /*=========================================================================
2 
3   Program:   Visualization Toolkit
4   Module:    vtkPlane.h
5 
6   Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
7   All rights reserved.
8   See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
9 
10      This software is distributed WITHOUT ANY WARRANTY; without even
11      the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
12      PURPOSE.  See the above copyright notice for more information.
13 
14 =========================================================================*/
15 /**
16  * @class   vtkPlane
17  * @brief   perform various plane computations
18  *
19  * vtkPlane provides methods for various plane computations. These include
20  * projecting points onto a plane, evaluating the plane equation, and
21  * returning plane normal. vtkPlane is a concrete implementation of the
22  * abstract class vtkImplicitFunction.
23  */
24 
25 #ifndef vtkPlane_h
26 #define vtkPlane_h
27 
28 #include "vtkCommonDataModelModule.h" // For export macro
29 #include "vtkImplicitFunction.h"
30 
31 class vtkPoints; // forward declaration
32 
33 class VTKCOMMONDATAMODEL_EXPORT vtkPlane : public vtkImplicitFunction
34 {
35 public:
36   /**
37    * Construct plane passing through origin and normal to z-axis.
38    */
39   static vtkPlane* New();
40 
41   vtkTypeMacro(vtkPlane, vtkImplicitFunction);
42   void PrintSelf(ostream& os, vtkIndent indent) override;
43 
44   ///@{
45   /**
46    * Evaluate plane equation for point x[3].
47    */
48   using vtkImplicitFunction::EvaluateFunction;
49   void EvaluateFunction(vtkDataArray* input, vtkDataArray* output) override;
50   double EvaluateFunction(double x[3]) override;
51   ///@}
52 
53   /**
54    * Evaluate function gradient at point x[3].
55    */
56   void EvaluateGradient(double x[3], double g[3]) override;
57 
58   ///@{
59   /**
60    * Set/get plane normal. Plane is defined by point and normal.
61    */
62   vtkSetVector3Macro(Normal, double);
63   vtkGetVectorMacro(Normal, double, 3);
64   ///@}
65 
66   ///@{
67   /**
68    * Set/get point through which plane passes. Plane is defined by point
69    * and normal.
70    */
71   vtkSetVector3Macro(Origin, double);
72   vtkGetVectorMacro(Origin, double, 3);
73   ///@}
74 
75   /**
76    * Translate the plane in the direction of the normal by the
77    * distance specified.  Negative values move the plane in the
78    * opposite direction.
79    */
80   void Push(double distance);
81 
82   ///@{
83   /**
84    * Project a point x onto plane defined by origin and normal. The
85    * projected point is returned in xproj. NOTE : normal assumed to
86    * have magnitude 1.
87    */
88   static void ProjectPoint(
89     const double x[3], const double origin[3], const double normal[3], double xproj[3]);
90   void ProjectPoint(const double x[3], double xproj[3]);
91   ///@}
92 
93   ///@{
94   /**
95    * Project a vector v onto plane defined by origin and normal. The
96    * projected vector is returned in vproj.
97    */
98   static void ProjectVector(
99     const double v[3], const double origin[3], const double normal[3], double vproj[3]);
100   void ProjectVector(const double v[3], double vproj[3]);
101   ///@}
102 
103   ///@{
104   /**
105    * Project a point x onto plane defined by origin and normal. The
106    * projected point is returned in xproj. NOTE : normal does NOT have to
107    * have magnitude 1.
108    */
109   static void GeneralizedProjectPoint(
110     const double x[3], const double origin[3], const double normal[3], double xproj[3]);
111   void GeneralizedProjectPoint(const double x[3], double xproj[3]);
112   ///@}
113 
114   /**
115    * Quick evaluation of plane equation n(x-origin)=0.
116    */
117   static double Evaluate(double normal[3], double origin[3], double x[3]);
118 
119   ///@{
120   /**
121    * Return the distance of a point x to a plane defined by n(x-p0) = 0. The
122    * normal n[3] must be magnitude=1.
123    */
124   static double DistanceToPlane(double x[3], double n[3], double p0[3]);
125   double DistanceToPlane(double x[3]);
126   ///@}
127 
128   ///@{
129   /**
130    * Given a line defined by the two points p1,p2; and a plane defined by the
131    * normal n and point p0, compute an intersection. The parametric
132    * coordinate along the line is returned in t, and the coordinates of
133    * intersection are returned in x. A zero is returned if the plane and line
134    * do not intersect between (0<=t<=1). If the plane and line are parallel,
135    * zero is returned and t is set to VTK_LARGE_DOUBLE.
136    */
137   static int IntersectWithLine(
138     const double p1[3], const double p2[3], double n[3], double p0[3], double& t, double x[3]);
139   int IntersectWithLine(const double p1[3], const double p2[3], double& t, double x[3]);
140   ///@}
141 
142   ///@{
143   /**
144    * Given two planes, one infinite and one finite, defined by the normal n
145    * and point o (infinite plane), and the second finite plane1 defined by
146    * the three points (pOrigin,px,py), compute a line of intersection (if
147    * any). The line of intersection is defined by the return values
148    * (x0,x1). If there is no intersection, then zero is returned; otherwise
149    * non-zero. There are two variants of this method. The static function
150    * operates on the supplied function parameters; the non-static operates on
151    * this instance of vtkPlane (and its associated origin and normal).
152    */
153   static int IntersectWithFinitePlane(double n[3], double o[3], double pOrigin[3], double px[3],
154     double py[3], double x0[3], double x1[3]);
155   int IntersectWithFinitePlane(
156     double pOrigin[3], double px[3], double py[3], double x0[3], double x1[3]);
157   ///@}
158 
159   ///@{
160   /**
161    * Given a set of points calculate the best-fitting origin and normal for the plane.
162    * The origin will be the centroid of the points. The normal is determined
163    * by using the covariance matrix of the points relative to the centroid.
164    * Returns true if successful. If not successful the origin will still contain
165    * the centroid and the normal will point into z-direction.
166    */
167   static bool ComputeBestFittingPlane(vtkPoints* pts, double* origin, double* normal);
168   ///@}
169 
170 protected:
171   vtkPlane();
172   ~vtkPlane() override = default;
173 
174   double Normal[3];
175   double Origin[3];
176 
177 private:
178   vtkPlane(const vtkPlane&) = delete;
179   void operator=(const vtkPlane&) = delete;
180 };
181 
182 // Generally the normal should be normalized
Evaluate(double normal[3],double origin[3],double x[3])183 inline double vtkPlane::Evaluate(double normal[3], double origin[3], double x[3])
184 {
185   return normal[0] * (x[0] - origin[0]) + normal[1] * (x[1] - origin[1]) +
186     normal[2] * (x[2] - origin[2]);
187 }
188 
189 // Assumes normal is normalized
DistanceToPlane(double x[3],double n[3],double p0[3])190 inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3])
191 {
192 #define vtkPlaneAbs(x) ((x) < 0 ? -(x) : (x))
193   return (vtkPlaneAbs(n[0] * (x[0] - p0[0]) + n[1] * (x[1] - p0[1]) + n[2] * (x[2] - p0[2])));
194 }
195 
196 #endif
197