1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987-2021 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com).
4    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5    at Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config/vxworks-dummy.h"
24 
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27 
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29 
30 /* Target hooks for D language.  */
31 #define TARGET_D_CPU_VERSIONS sparc_d_target_versions
32 #define TARGET_D_REGISTER_CPU_TARGET_INFO sparc_d_register_target_info
33 
34 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
35 /* #define SPARC_BI_ARCH */
36 
37 /* Macro used later in this file to determine default architecture.  */
38 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
39 
40 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
41    architectures to compile for.  We allow targets to choose compile time or
42    runtime selection.  */
43 #ifdef IN_LIBGCC2
44 #if defined(__sparcv9) || defined(__arch64__)
45 #define TARGET_ARCH32 0
46 #else
47 #define TARGET_ARCH32 1
48 #endif /* sparc64 */
49 #else
50 #ifdef SPARC_BI_ARCH
51 #define TARGET_ARCH32 (!TARGET_64BIT)
52 #else
53 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
54 #endif /* SPARC_BI_ARCH */
55 #endif /* IN_LIBGCC2 */
56 #define TARGET_ARCH64 (!TARGET_ARCH32)
57 
58 /* Code model selection in 64-bit environment.
59 
60    The machine mode used for addresses is 32-bit wide:
61 
62    TARGET_CM_32:     32-bit address space.
63                      It is the code model used when generating 32-bit code.
64 
65    The machine mode used for addresses is 64-bit wide:
66 
67    TARGET_CM_MEDLOW: 32-bit address space.
68                      The executable must be in the low 32 bits of memory.
69                      This avoids generating %uhi and %ulo terms.  Programs
70                      can be statically or dynamically linked.
71 
72    TARGET_CM_MEDMID: 44-bit address space.
73                      The executable must be in the low 44 bits of memory,
74                      and the %[hml]44 terms are used.  The text and data
75                      segments have a maximum size of 2GB (31-bit span).
76                      The maximum offset from any instruction to the label
77                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
78 
79    TARGET_CM_MEDANY: 64-bit address space.
80                      The text and data segments have a maximum size of 2GB
81                      (31-bit span) and may be located anywhere in memory.
82                      The maximum offset from any instruction to the label
83                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
84 
85    TARGET_CM_EMBMEDANY: 64-bit address space.
86                      The text and data segments have a maximum size of 2GB
87                      (31-bit span) and may be located anywhere in memory.
88                      The global register %g4 contains the start address of
89                      the data segment.  Programs are statically linked and
90                      PIC is not supported.
91 
92    Different code models are not supported in 32-bit environment.  */
93 
94 #define TARGET_CM_MEDLOW    (sparc_code_model == CM_MEDLOW)
95 #define TARGET_CM_MEDMID    (sparc_code_model == CM_MEDMID)
96 #define TARGET_CM_MEDANY    (sparc_code_model == CM_MEDANY)
97 #define TARGET_CM_EMBMEDANY (sparc_code_model == CM_EMBMEDANY)
98 
99 /* Default code model to be overridden in 64-bit environment.  */
100 #define SPARC_DEFAULT_CMODEL CM_32
101 
102 /* Do not use the .note.GNU-stack convention by default.  */
103 #define NEED_INDICATE_EXEC_STACK 0
104 
105 /* This is call-clobbered in the normal ABI, but is reserved in the
106    home grown (aka upward compatible) embedded ABI.  */
107 #define EMBMEDANY_BASE_REG "%g4"
108 
109 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
110    and specified by the user via --with-cpu=foo.
111    This specifies the cpu implementation, not the architecture size.  */
112 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
113    capable cpu's.  */
114 #define TARGET_CPU_sparc	0
115 #define TARGET_CPU_v7		0	/* alias */
116 #define TARGET_CPU_cypress	0       /* alias */
117 #define TARGET_CPU_v8		1	/* generic v8 implementation */
118 #define TARGET_CPU_supersparc	2
119 #define TARGET_CPU_hypersparc	3
120 #define TARGET_CPU_leon		4
121 #define TARGET_CPU_leon3	5
122 #define TARGET_CPU_leon3v7	6
123 #define TARGET_CPU_sparclite	7
124 #define TARGET_CPU_f930		7       /* alias */
125 #define TARGET_CPU_f934		7       /* alias */
126 #define TARGET_CPU_sparclite86x	8
127 #define TARGET_CPU_sparclet	9
128 #define TARGET_CPU_tsc701	9       /* alias */
129 #define TARGET_CPU_v9		10	/* generic v9 implementation */
130 #define TARGET_CPU_sparcv9	10	/* alias */
131 #define TARGET_CPU_sparc64	10	/* alias */
132 #define TARGET_CPU_ultrasparc	11
133 #define TARGET_CPU_ultrasparc3	12
134 #define TARGET_CPU_niagara	13
135 #define TARGET_CPU_niagara2	14
136 #define TARGET_CPU_niagara3	15
137 #define TARGET_CPU_niagara4	16
138 #define TARGET_CPU_niagara7	19
139 #define TARGET_CPU_m8		20
140 
141 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
142  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
143  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
144  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
145  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
146  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
147  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4 \
148  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara7 \
149  || TARGET_CPU_DEFAULT == TARGET_CPU_m8
150 
151 #define CPP_CPU32_DEFAULT_SPEC ""
152 #define ASM_CPU32_DEFAULT_SPEC ""
153 
154 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
155 /* ??? What does Sun's CC pass?  */
156 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
157 /* ??? It's not clear how other assemblers will handle this, so by default
158    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
159    is handled in sol2.h.  */
160 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
161 #endif
162 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
163 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
164 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
165 #endif
166 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
167 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
168 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
169 #endif
170 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
171 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
172 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
173 #endif
174 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
175 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
176 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
177 #endif
178 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
179 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
180 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
181 #endif
182 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
183 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
184 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
185 #endif
186 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara7
187 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
188 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA7_FLAG
189 #endif
190 #if TARGET_CPU_DEFAULT == TARGET_CPU_m8
191 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
192 #define ASM_CPU64_DEFAULT_SPEC AS_M8_FLAG
193 #endif
194 
195 #else
196 
197 #define CPP_CPU64_DEFAULT_SPEC ""
198 #define ASM_CPU64_DEFAULT_SPEC ""
199 
200 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
201  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
202 #define CPP_CPU32_DEFAULT_SPEC ""
203 #define ASM_CPU32_DEFAULT_SPEC ""
204 #endif
205 
206 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
207 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
208 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
209 #endif
210 
211 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
212 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
213 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
214 #endif
215 
216 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
217 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
218 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
219 #endif
220 
221 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
222 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
223 #define ASM_CPU32_DEFAULT_SPEC ""
224 #endif
225 
226 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
227 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
228 #define ASM_CPU32_DEFAULT_SPEC ""
229 #endif
230 
231 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
232  || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
233 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
234 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
235 #endif
236 
237 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
238 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
239 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
240 #endif
241 
242 #endif
243 
244 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
245  #error Unrecognized value in TARGET_CPU_DEFAULT.
246 #endif
247 
248 #ifdef SPARC_BI_ARCH
249 
250 #define CPP_CPU_DEFAULT_SPEC \
251 (DEFAULT_ARCH32_P ? "\
252 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
253 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
254 " : "\
255 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
256 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
257 ")
258 #define ASM_CPU_DEFAULT_SPEC \
259 (DEFAULT_ARCH32_P ? "\
260 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
261 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
262 " : "\
263 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
264 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
265 ")
266 
267 #else /* !SPARC_BI_ARCH */
268 
269 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
270 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
271 
272 #endif /* !SPARC_BI_ARCH */
273 
274 /* Define macros to distinguish architectures.  */
275 
276 /* Common CPP definitions used by CPP_SPEC amongst the various targets
277    for handling -mcpu=xxx switches.  */
278 #define CPP_CPU_SPEC "\
279 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
280 %{mcpu=sparclite:-D__sparclite__} \
281 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
282 %{mcpu=sparclite86x:-D__sparclite86x__} \
283 %{mcpu=v8:-D__sparc_v8__} \
284 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
285 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
286 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
287 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
288 %{mcpu=leon3v7:-D__leon__} \
289 %{mcpu=v9:-D__sparc_v9__} \
290 %{mcpu=ultrasparc:-D__sparc_v9__} \
291 %{mcpu=ultrasparc3:-D__sparc_v9__} \
292 %{mcpu=niagara:-D__sparc_v9__} \
293 %{mcpu=niagara2:-D__sparc_v9__} \
294 %{mcpu=niagara3:-D__sparc_v9__} \
295 %{mcpu=niagara4:-D__sparc_v9__} \
296 %{mcpu=niagara7:-D__sparc_v9__} \
297 %{mcpu=m8:-D__sparc_v9__} \
298 %{!mcpu*:%(cpp_cpu_default)} \
299 "
300 #define CPP_ARCH32_SPEC ""
301 #define CPP_ARCH64_SPEC "-D__arch64__"
302 
303 #define CPP_ARCH_DEFAULT_SPEC \
304 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
305 
306 #define CPP_ARCH_SPEC "\
307 %{m32:%(cpp_arch32)} \
308 %{m64:%(cpp_arch64)} \
309 %{!m32:%{!m64:%(cpp_arch_default)}} \
310 "
311 
312 /* Macros to distinguish the endianness, window model and FP support.  */
313 #define CPP_OTHER_SPEC "\
314 %{mflat:-D_FLAT} \
315 %{msoft-float:-D_SOFT_FLOAT} \
316 "
317 
318 /* Macros to distinguish the particular subtarget.  */
319 #define CPP_SUBTARGET_SPEC ""
320 
321 #define CPP_SPEC \
322   "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
323 
324 /* This used to translate -dalign to -malign, but that is no good
325    because it can't turn off the usual meaning of making debugging dumps.  */
326 
327 #define CC1_SPEC ""
328 
329 /* Override in target specific files.  */
330 #define ASM_CPU_SPEC "\
331 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
332 %{mcpu=sparclite:-Asparclite} \
333 %{mcpu=sparclite86x:-Asparclite} \
334 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
335 %{mcpu=v8:-Av8} \
336 %{mcpu=supersparc:-Av8} \
337 %{mcpu=hypersparc:-Av8} \
338 %{mcpu=leon:" AS_LEON_FLAG "} \
339 %{mcpu=leon3:" AS_LEON_FLAG "} \
340 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
341 %{mv8plus:-Av8plus} \
342 %{mcpu=v9:-Av9} \
343 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
344 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
345 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
346 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
347 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
348 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
349 %{mcpu=niagara7:%{!mv8plus:" AS_NIAGARA7_FLAG "}} \
350 %{mcpu=m8:%{!mv8plus:" AS_M8_FLAG "}} \
351 %{!mcpu*:%(asm_cpu_default)} \
352 "
353 
354 /* Word size selection, among other things.
355    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
356 
357 #define ASM_ARCH32_SPEC "-32"
358 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
359 #define ASM_ARCH_DEFAULT_SPEC \
360 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
361 
362 #define ASM_ARCH_SPEC "\
363 %{m32:%(asm_arch32)} \
364 %{m64:%(asm_arch64)} \
365 %{!m32:%{!m64:%(asm_arch_default)}} \
366 "
367 
368 #ifdef HAVE_AS_RELAX_OPTION
369 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
370 #else
371 #define ASM_RELAX_SPEC ""
372 #endif
373 
374 /* Special flags to the Sun-4 assembler when using pipe for input.  */
375 
376 #define ASM_SPEC "\
377 %{!pg:%{!p:%{" FPIE_OR_FPIC_SPEC ":-k}}} %{keep-local-as-symbols:-L} \
378 %(asm_cpu) %(asm_relax)"
379 
380 /* This macro defines names of additional specifications to put in the specs
381    that can be used in various specifications like CC1_SPEC.  Its definition
382    is an initializer with a subgrouping for each command option.
383 
384    Each subgrouping contains a string constant, that defines the
385    specification name, and a string constant that used by the GCC driver
386    program.
387 
388    Do not define this macro if it does not need to do anything.  */
389 
390 #define EXTRA_SPECS \
391   { "cpp_cpu",		CPP_CPU_SPEC },		\
392   { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
393   { "cpp_arch32",	CPP_ARCH32_SPEC },	\
394   { "cpp_arch64",	CPP_ARCH64_SPEC },	\
395   { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
396   { "cpp_arch",		CPP_ARCH_SPEC },	\
397   { "cpp_other",	CPP_OTHER_SPEC },	\
398   { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
399   { "asm_cpu",		ASM_CPU_SPEC },		\
400   { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
401   { "asm_arch32",	ASM_ARCH32_SPEC },	\
402   { "asm_arch64",	ASM_ARCH64_SPEC },	\
403   { "asm_relax",	ASM_RELAX_SPEC },	\
404   { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
405   { "asm_arch",		ASM_ARCH_SPEC },	\
406   SUBTARGET_EXTRA_SPECS
407 
408 #define SUBTARGET_EXTRA_SPECS
409 
410 /* Because libgcc can generate references back to libc (via .umul etc.) we have
411    to list libc again after the second libgcc.  */
412 #define LINK_GCC_C_SEQUENCE_SPEC "%G %{!nolibc:%L} %G %{!nolibc:%L}"
413 
414 
415 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
416 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
417 
418 /* ??? This should be 32 bits for v9 but what can we do?  */
419 #define WCHAR_TYPE "short unsigned int"
420 #define WCHAR_TYPE_SIZE 16
421 
422 /* Mask of all CPU selection flags.  */
423 #define MASK_ISA						\
424   (MASK_SPARCLITE + MASK_SPARCLET + MASK_LEON + MASK_LEON3	\
425    + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
426 
427 /* Mask of all CPU feature flags.  */
428 #define MASK_FEATURES						\
429   (MASK_FPU + MASK_HARD_QUAD + MASK_VIS + MASK_VIS2 + MASK_VIS3	\
430    + MASK_VIS4 + MASK_CBCOND + MASK_FMAF + MASK_FSMULD		\
431    + MASK_POPC + MASK_SUBXC)
432 
433 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y.  */
434 #define TARGET_HARD_MUL				\
435   (TARGET_SPARCLITE || TARGET_SPARCLET		\
436    || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
437 
438 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
439    to get high 32 bits.  False in 64-bit or V8+ because multiply stores
440    a 64-bit result in a register.  */
441 #define TARGET_HARD_MUL32 \
442   (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
443 
444 /* MASK_APP_REGS must always be the default because that's what
445    FIXED_REGISTERS is set to and -ffixed- is processed before
446    TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
447    -mno-app-regs).  */
448 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
449 
450 /* Recast the cpu class to be the cpu attribute.
451    Every file includes us, but not every file includes insn-attr.h.  */
452 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
453 
454 /* Support for a compile-time default CPU, et cetera.  The rules are:
455    --with-cpu is ignored if -mcpu is specified.
456    --with-tune is ignored if -mtune is specified.
457    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
458      are specified.  */
459 #define OPTION_DEFAULT_SPECS \
460   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
461   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
462   {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
463 
464 /* target machine storage layout */
465 
466 /* Define this if most significant bit is lowest numbered
467    in instructions that operate on numbered bit-fields.  */
468 #define BITS_BIG_ENDIAN 1
469 
470 /* Define this if most significant byte of a word is the lowest numbered.  */
471 #define BYTES_BIG_ENDIAN 1
472 
473 /* Define this if most significant word of a multiword number is the lowest
474    numbered.  */
475 #define WORDS_BIG_ENDIAN 1
476 
477 #define MAX_BITS_PER_WORD	64
478 
479 /* Width of a word, in units (bytes).  */
480 #define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
481 #ifdef IN_LIBGCC2
482 #define MIN_UNITS_PER_WORD	UNITS_PER_WORD
483 #else
484 #define MIN_UNITS_PER_WORD	4
485 #endif
486 
487 /* Now define the sizes of the C data types.  */
488 #define SHORT_TYPE_SIZE		16
489 #define INT_TYPE_SIZE		32
490 #define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
491 #define LONG_LONG_TYPE_SIZE	64
492 #define FLOAT_TYPE_SIZE		32
493 #define DOUBLE_TYPE_SIZE	64
494 
495 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
496    SPARC ABI says that it is 128-bit wide.  */
497 /* #define LONG_DOUBLE_TYPE_SIZE	128 */
498 
499 /* The widest floating-point format really supported by the hardware.  */
500 #define WIDEST_HARDWARE_FP_SIZE 64
501 
502 /* Width in bits of a pointer.  This is the size of ptr_mode.  */
503 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
504 
505 /* This is the machine mode used for addresses.  */
506 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
507 
508 /* If we have to extend pointers (only when TARGET_ARCH64 and not
509    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
510    if ptr_mode and Pmode are the same.  */
511 #define POINTERS_EXTEND_UNSIGNED 1
512 
513 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
514 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
515 
516 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
517 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
518    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
519 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
520 
521 /* Temporary hack until the FIXME above is fixed.  */
522 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
523 
524 /* ALIGN FRAMES on double word boundaries */
525 #define SPARC_STACK_ALIGN(LOC) ROUND_UP ((LOC), UNITS_PER_WORD * 2)
526 
527 /* Allocation boundary (in *bits*) for the code of a function.  */
528 #define FUNCTION_BOUNDARY 32
529 
530 /* Alignment of field after `int : 0' in a structure.  */
531 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
532 
533 /* Every structure's size must be a multiple of this.  */
534 #define STRUCTURE_SIZE_BOUNDARY 8
535 
536 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
537 #define PCC_BITFIELD_TYPE_MATTERS 1
538 
539 /* No data type wants to be aligned rounder than this.  */
540 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
541 
542 /* The best alignment to use in cases where we have a choice.  */
543 #define FASTEST_ALIGNMENT 64
544 
545 /* Define this macro as an expression for the alignment of a structure
546    (given by STRUCT as a tree node) if the alignment computed in the
547    usual way is COMPUTED and the alignment explicitly specified was
548    SPECIFIED.
549 
550    The default is to use SPECIFIED if it is larger; otherwise, use
551    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
552 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
553  (TARGET_FASTER_STRUCTS ?				\
554   ((TREE_CODE (STRUCT) == RECORD_TYPE			\
555     || TREE_CODE (STRUCT) == UNION_TYPE                 \
556     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
557    && TYPE_FIELDS (STRUCT) != 0                         \
558      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
559      : MAX ((COMPUTED), (SPECIFIED)))			\
560    :  MAX ((COMPUTED), (SPECIFIED)))
561 
562 /* An integer expression for the size in bits of the largest integer machine
563    mode that should actually be used.  We allow pairs of registers.  */
564 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
565 
566 /* We need 2 words, so we can save the stack pointer and the return register
567    of the function containing a non-local goto target.  */
568 #define STACK_SAVEAREA_MODE(LEVEL) \
569   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
570 
571 /* Make arrays of chars word-aligned for the same reasons.  */
572 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
573   (TREE_CODE (TYPE) == ARRAY_TYPE		\
574    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
575    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
576 
577 /* Make local arrays of chars word-aligned for the same reasons.  */
578 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
579 
580 /* Set this nonzero if move instructions will actually fail to work
581    when given unaligned data.  */
582 #define STRICT_ALIGNMENT 1
583 
584 /* Things that must be doubleword aligned cannot go in the text section,
585    because the linker fails to align the text section enough!
586    Put them in the data section.  This macro is only used in this file.  */
587 #define MAX_TEXT_ALIGN 32
588 
589 /* Standard register usage.  */
590 
591 /* Number of actual hardware registers.
592    The hardware registers are assigned numbers for the compiler
593    from 0 to just below FIRST_PSEUDO_REGISTER.
594    All registers that the compiler knows about must be given numbers,
595    even those that are not normally considered general registers.
596 
597    SPARC has 32 integer registers and 32 floating point registers.
598    64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
599    accessible.  We still account for them to simplify register computations
600    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
601    32+32+32+4 == 100.
602    Register 100 is used as the integer condition code register.
603    Register 101 is used as the soft frame pointer register.
604    Register 102 is used as the general status register by VIS instructions.  */
605 
606 #define FIRST_PSEUDO_REGISTER 103
607 
608 #define SPARC_FIRST_INT_REG     0
609 #define SPARC_LAST_INT_REG     31
610 #define SPARC_FIRST_FP_REG     32
611 /* Additional V9 fp regs.  */
612 #define SPARC_FIRST_V9_FP_REG  64
613 #define SPARC_LAST_V9_FP_REG   95
614 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
615 #define SPARC_FIRST_V9_FCC_REG 96
616 #define SPARC_LAST_V9_FCC_REG  99
617 /* V8 fcc reg.  */
618 #define SPARC_FCC_REG 96
619 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
620 #define SPARC_ICC_REG 100
621 #define SPARC_GSR_REG 102
622 
623 /* Nonzero if REGNO is an fp reg.  */
624 #define SPARC_FP_REG_P(REGNO) \
625 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
626 
627 /* Nonzero if REGNO is an int reg.  */
628 #define SPARC_INT_REG_P(REGNO) \
629 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
630 
631 /* Argument passing regs.  */
632 #define SPARC_OUTGOING_INT_ARG_FIRST 8
633 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
634 #define SPARC_FP_ARG_FIRST           32
635 
636 /* 1 for registers that have pervasive standard uses
637    and are not available for the register allocator.
638 
639    On non-v9 systems:
640    g1 is free to use as temporary.
641    g2-g4 are reserved for applications.  Gcc normally uses them as
642    temporaries, but this can be disabled via the -mno-app-regs option.
643    g5 through g7 are reserved for the operating system.
644 
645    On v9 systems:
646    g1,g5 are free to use as temporaries, and are free to use between calls
647    if the call is to an external function via the PLT.
648    g4 is free to use as a temporary in the non-embedded case.
649    g4 is reserved in the embedded case.
650    g2-g3 are reserved for applications.  Gcc normally uses them as
651    temporaries, but this can be disabled via the -mno-app-regs option.
652    g6-g7 are reserved for the operating system (or application in
653    embedded case).
654    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
655    currently be a fixed register until this pattern is rewritten.
656    Register 1 is also used when restoring call-preserved registers in large
657    stack frames.
658 
659    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
660    TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
661 */
662 
663 #define FIXED_REGISTERS  \
664  {1, 0, 2, 2, 2, 2, 1, 1,	\
665   0, 0, 0, 0, 0, 0, 1, 0,	\
666   0, 0, 0, 0, 0, 0, 0, 0,	\
667   0, 0, 0, 0, 0, 0, 0, 1,	\
668 				\
669   0, 0, 0, 0, 0, 0, 0, 0,	\
670   0, 0, 0, 0, 0, 0, 0, 0,	\
671   0, 0, 0, 0, 0, 0, 0, 0,	\
672   0, 0, 0, 0, 0, 0, 0, 0,	\
673 				\
674   0, 0, 0, 0, 0, 0, 0, 0,	\
675   0, 0, 0, 0, 0, 0, 0, 0,	\
676   0, 0, 0, 0, 0, 0, 0, 0,	\
677   0, 0, 0, 0, 0, 0, 0, 0,	\
678 				\
679   0, 0, 0, 0, 1, 1, 1}
680 
681 /* 1 for registers not available across function calls.
682    Unlike the above, this need not include the FIXED_REGISTERS, but any
683    registers that can be used without being saved.
684    The latter must include the registers where values are returned
685    and the register where structure-value addresses are passed.
686    Aside from that, you can include as many other registers as you like.  */
687 
688 #define CALL_REALLY_USED_REGISTERS  \
689  {1, 1, 1, 1, 1, 1, 1, 1,	\
690   1, 1, 1, 1, 1, 1, 1, 1,	\
691   0, 0, 0, 0, 0, 0, 0, 0,	\
692   0, 0, 0, 0, 0, 0, 0, 0,	\
693 				\
694   1, 1, 1, 1, 1, 1, 1, 1,	\
695   1, 1, 1, 1, 1, 1, 1, 1,	\
696   1, 1, 1, 1, 1, 1, 1, 1,	\
697   1, 1, 1, 1, 1, 1, 1, 1,	\
698 				\
699   1, 1, 1, 1, 1, 1, 1, 1,	\
700   1, 1, 1, 1, 1, 1, 1, 1,	\
701   1, 1, 1, 1, 1, 1, 1, 1,	\
702   1, 1, 1, 1, 1, 1, 1, 1,	\
703 				\
704   1, 1, 1, 1, 1, 1, 1}
705 
706 /* Due to the ARCH64 discrepancy above we must override this next
707    macro too.  */
708 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
709 
710 /* Value is 1 if it is OK to rename a hard register FROM to another hard
711    register TO.  We cannot rename %g1 as it may be used before the save
712    register window instruction in the prologue.  */
713 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
714 
715 /* Select a register mode required for caller save of hard regno REGNO.
716    Contrary to what is documented, the default is not the smallest suitable
717    mode but the largest suitable mode for the given (REGNO, NREGS) pair and
718    it quickly creates paradoxical subregs that can be problematic.  */
719 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
720   ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
721 
722 /* Specify the registers used for certain standard purposes.
723    The values of these macros are register numbers.  */
724 
725 /* Register to use for pushing function arguments.  */
726 #define STACK_POINTER_REGNUM 14
727 
728 /* The stack bias (amount by which the hardware register is offset by).  */
729 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
730 
731 /* Actual top-of-stack address is 92/176 greater than the contents of the
732    stack pointer register for !v9/v9.  That is:
733    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
734      address, and 6*4 bytes for the 6 register parameters.
735    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
736      parameter regs.  */
737 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
738 
739 /* Base register for access to local variables of the function.  */
740 #define HARD_FRAME_POINTER_REGNUM 30
741 
742 /* The soft frame pointer does not have the stack bias applied.  */
743 #define FRAME_POINTER_REGNUM 101
744 
745 #define INIT_EXPANDERS							 \
746   do {									 \
747     if (crtl->emit.regno_pointer_align)					 \
748       {									 \
749 	/* The biased stack pointer is only aligned on BITS_PER_UNIT.  */\
750 	if (SPARC_STACK_BIAS)						 \
751 	  {								 \
752 	    REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM)			 \
753 	      = BITS_PER_UNIT;	 					 \
754 	    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM)		 \
755 	      = BITS_PER_UNIT;						 \
756 	  }								 \
757 									 \
758 	/* In 32-bit mode, not everything is double-word aligned.  */	 \
759 	if (TARGET_ARCH32)						 \
760 	  {								 \
761 	    REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM)		 \
762 	      = BITS_PER_WORD;						 \
763 	    REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM)		 \
764 	      = BITS_PER_WORD;						 \
765 	    REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM)		 \
766 	      = BITS_PER_WORD;						 \
767 	  }								 \
768       }									 \
769   } while (0)
770 
771 /* Base register for access to arguments of the function.  */
772 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
773 
774 /* Register in which static-chain is passed to a function.  This must
775    not be a register used by the prologue.  */
776 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
777 
778 /* Register which holds the global offset table, if any.  */
779 #define GLOBAL_OFFSET_TABLE_REGNUM 23
780 
781 /* Register which holds offset table for position-independent data references.
782    The original SPARC ABI imposes no requirement on the choice of the register
783    so we use a pseudo-register to make sure it is properly saved and restored
784    around calls to setjmp.  Now the ABI of VxWorks RTP makes it live on entry
785    to PLT entries so we use the canonical GOT register in this case.  */
786 #define PIC_OFFSET_TABLE_REGNUM \
787   (TARGET_VXWORKS_RTP && flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
788 
789 /* Pick a default value we can notice from override_options:
790    !v9: Default is on.
791    v9: Default is off.
792    Originally it was -1, but later on the container of options changed to
793    unsigned byte, so we decided to pick 127 as default value, which does
794    reflect an undefined default value in case of 0/1.  */
795 #define DEFAULT_PCC_STRUCT_RETURN 127
796 
797 /* Functions which return large structures get the address
798    to place the wanted value at offset 64 from the frame.
799    Must reserve 64 bytes for the in and local registers.
800    v9: Functions which return large structures get the address to place the
801    wanted value from an invisible first argument.  */
802 #define STRUCT_VALUE_OFFSET 64
803 
804 /* Define the classes of registers for register constraints in the
805    machine description.  Also define ranges of constants.
806 
807    One of the classes must always be named ALL_REGS and include all hard regs.
808    If there is more than one class, another class must be named NO_REGS
809    and contain no registers.
810 
811    The name GENERAL_REGS must be the name of a class (or an alias for
812    another name such as ALL_REGS).  This is the class of registers
813    that is allowed by "g" or "r" in a register constraint.
814    Also, registers outside this class are allocated only when
815    instructions express preferences for them.
816 
817    The classes must be numbered in nondecreasing order; that is,
818    a larger-numbered class must never be contained completely
819    in a smaller-numbered class.
820 
821    For any two classes, it is very desirable that there be another
822    class that represents their union.  */
823 
824 /* The SPARC has various kinds of registers: general, floating point,
825    and condition codes [well, it has others as well, but none that we
826    care directly about].
827 
828    For v9 we must distinguish between the upper and lower floating point
829    registers because the upper ones can't hold SFmode values.
830    TARGET_HARD_REGNO_MODE_OK won't help here because reload assumes that
831    register(s) satisfying a group need for a class will also satisfy a
832    single need for that class.  EXTRA_FP_REGS is a bit of a misnomer as
833    it covers all 64 fp regs.
834 
835    It is important that one class contains all the general and all the standard
836    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
837    because reg_class_record() will bias the selection in favor of fp regs,
838    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
839    because FP_REGS > GENERAL_REGS.
840 
841    It is also important that one class contain all the general and all
842    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
843    EXTRA_FP_REGS but find_reloads() may use class
844    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
845    because the compiler thinks it doesn't have a spill reg when in
846    fact it does.
847 
848    v9 also has 4 floating point condition code registers.  Since we don't
849    have a class that is the union of FPCC_REGS with either of the others,
850    it is important that it appear first.  Otherwise the compiler will die
851    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
852    constraints.  */
853 
854 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
855 		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
856 		 ALL_REGS, LIM_REG_CLASSES };
857 
858 #define N_REG_CLASSES (int) LIM_REG_CLASSES
859 
860 /* Give names of register classes as strings for dump file.  */
861 
862 #define REG_CLASS_NAMES \
863   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
864      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
865      "ALL_REGS" }
866 
867 /* Define which registers fit in which classes.
868    This is an initializer for a vector of HARD_REG_SET
869    of length N_REG_CLASSES.  */
870 
871 #define REG_CLASS_CONTENTS				\
872   {{0, 0, 0, 0},	/* NO_REGS */			\
873    {0, 0, 0, 0xf},	/* FPCC_REGS */			\
874    {0xffff, 0, 0, 0},	/* I64_REGS */			\
875    {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
876    {0, -1, 0, 0},	/* FP_REGS */			\
877    {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
878    {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
879    {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
880    {-1, -1, -1, 0x7f}}	/* ALL_REGS */
881 
882 /* The same information, inverted:
883    Return the class number of the smallest class containing
884    reg number REGNO.  This could be a conditional expression
885    or could index an array.  */
886 
887 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
888 
889 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
890 
891 /* This is the order in which to allocate registers normally.
892 
893    We put %f0-%f7 last among the float registers, so as to make it more
894    likely that a pseudo-register which dies in the float return register
895    area will get allocated to the float return register, thus saving a move
896    instruction at the end of the function.
897 
898    Similarly for integer return value registers.
899 
900    We know in this case that we will not end up with a leaf function.
901 
902    The register allocator is given the global and out registers first
903    because these registers are call clobbered and thus less useful to
904    global register allocation.
905 
906    Next we list the local and in registers.  They are not call clobbered
907    and thus very useful for global register allocation.  We list the input
908    registers before the locals so that it is more likely the incoming
909    arguments received in those registers can just stay there and not be
910    reloaded.  */
911 
912 #define REG_ALLOC_ORDER \
913 { 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
914   13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
915   15,					/* %o7 */	\
916   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
917   29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
918   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
919   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
920   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
921   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
922   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
923   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
924   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
925   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
926   96, 97, 98, 99,			/* %fcc0-3 */   \
927   100, 0, 14, 30, 101, 102 }		/* %icc, %g0, %o6, %i6, %sfp, %gsr */
928 
929 /* This is the order in which to allocate registers for
930    leaf functions.  If all registers can fit in the global and
931    output registers, then we have the possibility of having a leaf
932    function.
933 
934    The macro actually mentioned the input registers first,
935    because they get renumbered into the output registers once
936    we know really do have a leaf function.
937 
938    To be more precise, this register allocation order is used
939    when %o7 is found to not be clobbered right before register
940    allocation.  Normally, the reason %o7 would be clobbered is
941    due to a call which could not be transformed into a sibling
942    call.
943 
944    As a consequence, it is possible to use the leaf register
945    allocation order and not end up with a leaf function.  We will
946    not get suboptimal register allocation in that case because by
947    definition of being potentially leaf, there were no function
948    calls.  Therefore, allocation order within the local register
949    window is not critical like it is when we do have function calls.  */
950 
951 #define REG_LEAF_ALLOC_ORDER \
952 { 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
953   29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
954   15,					/* %o7 */	\
955   13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
956   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
957   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
958   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
959   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
960   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
961   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
962   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
963   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
964   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
965   96, 97, 98, 99,			/* %fcc0-3 */	\
966   100, 0, 14, 30, 31, 101, 102 }	/* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
967 
968 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
969 
970 extern char sparc_leaf_regs[];
971 #define LEAF_REGISTERS sparc_leaf_regs
972 
973 extern char leaf_reg_remap[];
974 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
975 
976 /* The class value for index registers, and the one for base regs.  */
977 #define INDEX_REG_CLASS GENERAL_REGS
978 #define BASE_REG_CLASS GENERAL_REGS
979 
980 /* Local macro to handle the two v9 classes of FP regs.  */
981 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
982 
983 /* Predicate for 2-bit and 5-bit unsigned constants.  */
984 #define SPARC_IMM2_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x3) == 0)
985 #define SPARC_IMM5_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x1F)	== 0)
986 
987 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants.  */
988 #define SPARC_SIMM5_P(X)  ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
989 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
990 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
991 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
992 
993 /* 10- and 11-bit immediates are only used for a few specific insns.
994    SMALL_INT is used throughout the port so we continue to use it.  */
995 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
996 
997 /* Predicate for constants that can be loaded with a sethi instruction.
998    This is the general, 64-bit aware, bitwise version that ensures that
999    only constants whose representation fits in the mask
1000 
1001      0x00000000fffffc00
1002 
1003    are accepted.  It will reject, for example, negative SImode constants
1004    on 64-bit hosts, so correct handling is to mask the value beforehand
1005    according to the mode of the instruction.  */
1006 #define SPARC_SETHI_P(X) \
1007   (((unsigned HOST_WIDE_INT) (X) \
1008     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1009 
1010 /* Version of the above predicate for SImode constants and below.  */
1011 #define SPARC_SETHI32_P(X) \
1012   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1013 
1014 /* Return the maximum number of consecutive registers
1015    needed to represent mode MODE in a register of class CLASS.  */
1016 /* On SPARC, this is the size of MODE in words.  */
1017 #define CLASS_MAX_NREGS(CLASS, MODE)	\
1018   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1019    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1020 
1021 /* Stack layout; function entry, exit and calling.  */
1022 
1023 /* Define this if pushing a word on the stack
1024    makes the stack pointer a smaller address.  */
1025 #define STACK_GROWS_DOWNWARD 1
1026 
1027 /* Define this to nonzero if the nominal address of the stack frame
1028    is at the high-address end of the local variables;
1029    that is, each additional local variable allocated
1030    goes at a more negative offset in the frame.  */
1031 #define FRAME_GROWS_DOWNWARD 1
1032 
1033 /* Offset of first parameter from the argument pointer register value.
1034    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1035    even if this function isn't going to use it.
1036    v9: This is 128 for the ins and locals.  */
1037 #define FIRST_PARM_OFFSET(FNDECL) \
1038   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1039 
1040 /* Offset from the argument pointer register value to the CFA.
1041    This is different from FIRST_PARM_OFFSET because the register window
1042    comes between the CFA and the arguments.  */
1043 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1044 
1045 /* When a parameter is passed in a register, stack space is still
1046    allocated for it.
1047    !v9: All 6 possible integer registers have backing store allocated.
1048    v9: Only space for the arguments passed is allocated.  */
1049 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1050    meaning to the backend.  Further, we need to be able to detect if a
1051    varargs/unprototyped function is called, as they may want to spill more
1052    registers than we've provided space.  Ugly, ugly.  So for now we retain
1053    all 6 slots even for v9.  */
1054 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1055 
1056 /* Definitions for register elimination.  */
1057 
1058 #define ELIMINABLE_REGS \
1059   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1060    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1061 
1062 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) 		\
1063   do								\
1064     {								\
1065       (OFFSET) = sparc_initial_elimination_offset ((TO));	\
1066     }								\
1067   while (0)
1068 
1069 /* Keep the stack pointer constant throughout the function.
1070    This is both an optimization and a necessity: longjmp
1071    doesn't behave itself when the stack pointer moves within
1072    the function!  */
1073 #define ACCUMULATE_OUTGOING_ARGS 1
1074 
1075 /* Define this macro if the target machine has "register windows".  This
1076    C expression returns the register number as seen by the called function
1077    corresponding to register number OUT as seen by the calling function.
1078    Return OUT if register number OUT is not an outbound register.  */
1079 
1080 #define INCOMING_REGNO(OUT) \
1081  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1082 
1083 /* Define this macro if the target machine has "register windows".  This
1084    C expression returns the register number as seen by the calling function
1085    corresponding to register number IN as seen by the called function.
1086    Return IN if register number IN is not an inbound register.  */
1087 
1088 #define OUTGOING_REGNO(IN) \
1089  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1090 
1091 /* Define this macro if the target machine has register windows.  This
1092    C expression returns true if the register is call-saved but is in the
1093    register window.  */
1094 
1095 #define LOCAL_REGNO(REGNO) \
1096   (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1097 
1098 /* Define the size of space to allocate for the return value of an
1099    untyped_call.  */
1100 
1101 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1102 
1103 /* 1 if N is a possible register number for function argument passing.
1104    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1105 
1106 #define FUNCTION_ARG_REGNO_P(N) \
1107   (((N) >= 8 && (N) <= 13)	\
1108    || (TARGET_ARCH64 && TARGET_FPU && (N) >= 32 && (N) <= 63))
1109 
1110 /* Define a data type for recording info about an argument list
1111    during the scan of that argument list.  This data type should
1112    hold all necessary information about the function itself
1113    and about the args processed so far, enough to enable macros
1114    such as FUNCTION_ARG to determine where the next arg should go.
1115 
1116    On SPARC (!v9), this is a single integer, which is a number of words
1117    of arguments scanned so far (including the invisible argument,
1118    if any, which holds the structure-value-address).
1119    Thus 7 or more means all following args should go on the stack.
1120 
1121    For v9, we also need to know whether a prototype is present.  */
1122 
1123 struct sparc_args {
1124   int words;       /* number of words passed so far */
1125   int prototype_p; /* nonzero if a prototype is present */
1126   int libcall_p;   /* nonzero if a library call */
1127 };
1128 #define CUMULATIVE_ARGS struct sparc_args
1129 
1130 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1131    for a call to a function whose data type is FNTYPE.
1132    For a library call, FNTYPE is 0.  */
1133 
1134 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1135 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1136 
1137 
1138 /* Generate the special assembly code needed to tell the assembler whatever
1139    it might need to know about the return value of a function.
1140 
1141    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1142    information to the assembler relating to peephole optimization (done in
1143    the assembler).  */
1144 
1145 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1146   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1147 
1148 /* Output the special assembly code needed to tell the assembler some
1149    register is used as global register variable.
1150 
1151    SPARC 64bit psABI declares registers %g2 and %g3 as application
1152    registers and %g6 and %g7 as OS registers.  Any object using them
1153    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1154    and how they are used (scratch or some global variable).
1155    Linker will then refuse to link together objects which use those
1156    registers incompatibly.
1157 
1158    Unless the registers are used for scratch, two different global
1159    registers cannot be declared to the same name, so in the unlikely
1160    case of a global register variable occupying more than one register
1161    we prefix the second and following registers with .gnu.part1. etc.  */
1162 
1163 extern GTY(()) char sparc_hard_reg_printed[8];
1164 
1165 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1166 do {									\
1167   if (TARGET_ARCH64)							\
1168     {									\
1169       int end = end_hard_regno (DECL_MODE (decl), REGNO);		\
1170       int reg;								\
1171       for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1172 	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1173 	  {								\
1174 	    if (reg == (REGNO))						\
1175 	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1176 	    else							\
1177 	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1178 		       reg, reg - (REGNO), (NAME));			\
1179 	    sparc_hard_reg_printed[reg] = 1;				\
1180 	  }								\
1181     }									\
1182 } while (0)
1183 
1184 /* Emit rtl for profiling.  */
1185 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1186 
1187 /* All the work done in PROFILE_HOOK, but still required.  */
1188 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1189 
1190 /* Set the name of the mcount function for the system.  */
1191 #define MCOUNT_FUNCTION "*mcount"
1192 
1193 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1194    the stack pointer does not matter.  The value is tested only in
1195    functions that have frame pointers.  */
1196 #define EXIT_IGNORE_STACK 1
1197 
1198 /* Length in units of the trampoline for entering a nested function.  */
1199 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1200 
1201 /* Alignment required for trampolines, in bits.  */
1202 #define TRAMPOLINE_ALIGNMENT 128
1203 
1204 /* Generate RTL to flush the register windows so as to make arbitrary frames
1205    available.  */
1206 #define SETUP_FRAME_ADDRESSES()			\
1207   do {						\
1208     if (!TARGET_FLAT)				\
1209       emit_insn (gen_flush_register_windows ());\
1210   } while (0)
1211 
1212 /* Given an rtx for the address of a frame,
1213    return an rtx for the address of the word in the frame
1214    that holds the dynamic chain--the previous frame's address.  */
1215 #define DYNAMIC_CHAIN_ADDRESS(frame)	\
1216   plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1217 
1218 /* Given an rtx for the frame pointer,
1219    return an rtx for the address of the frame.  */
1220 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1221 
1222 /* The return address isn't on the stack, it is in a register, so we can't
1223    access it from the current frame pointer.  We can access it from the
1224    previous frame pointer though by reading a value from the register window
1225    save area.  */
1226 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1227 
1228 /* This is the offset of the return address to the true next instruction to be
1229    executed for the current function.  */
1230 #define RETURN_ADDR_OFFSET \
1231   (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1232 
1233 /* The current return address is in %i7.  The return address of anything
1234    farther back is in the register window save area at [%fp+60].  */
1235 /* ??? This ignores the fact that the actual return address is +8 for normal
1236    returns, and +12 for structure returns.  */
1237 #define RETURN_ADDR_REGNUM 31
1238 #define RETURN_ADDR_RTX(count, frame)		\
1239   ((count == -1)				\
1240    ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)			\
1241    : gen_rtx_MEM (Pmode,			\
1242 		  memory_address (Pmode, plus_constant (Pmode, frame, \
1243 							15 * UNITS_PER_WORD \
1244 							+ SPARC_STACK_BIAS))))
1245 
1246 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1247    +12, but always using +8 is close enough for frame unwind purposes.
1248    Actually, just using %o7 is close enough for unwinding, but %o7+8
1249    is something you can return to.  */
1250 #define INCOMING_RETURN_ADDR_REGNUM 15
1251 #define INCOMING_RETURN_ADDR_RTX \
1252   plus_constant (word_mode, \
1253 		 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1254 #define DWARF_FRAME_RETURN_COLUMN \
1255   DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1256 
1257 /* The offset from the incoming value of %sp to the top of the stack frame
1258    for the current function.  On sparc64, we have to account for the stack
1259    bias if present.  */
1260 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1261 
1262 /* Describe how we implement __builtin_eh_return.  */
1263 #define EH_RETURN_REGNUM 1
1264 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1265 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1266 
1267 /* Define registers used by the epilogue and return instruction.  */
1268 #define EPILOGUE_USES(REGNO)					\
1269   ((REGNO) == RETURN_ADDR_REGNUM				\
1270    || (TARGET_FLAT						\
1271        && epilogue_completed					\
1272        && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)		\
1273    || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1274 
1275 /* Select a format to encode pointers in exception handling data.  CODE
1276    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1277    true if the symbol may be affected by dynamic relocations.
1278 
1279    If assembler and linker properly support .uaword %r_disp32(foo),
1280    then use PC relative 32-bit relocations instead of absolute relocs
1281    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1282    for binaries, to save memory.
1283 
1284    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1285    symbol %r_disp32() is against was not local, but .hidden.  In that
1286    case, we have to use DW_EH_PE_absptr for pic personality.  */
1287 #ifdef HAVE_AS_SPARC_UA_PCREL
1288 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1289 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1290   (flag_pic								\
1291    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1292    : ((TARGET_ARCH64 && ! GLOBAL)					\
1293       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1294       : DW_EH_PE_absptr))
1295 #else
1296 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1297   (flag_pic								\
1298    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
1299    : ((TARGET_ARCH64 && ! GLOBAL)					\
1300       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1301       : DW_EH_PE_absptr))
1302 #endif
1303 
1304 /* Emit a PC-relative relocation.  */
1305 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1306   do {							\
1307     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1308     fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
1309     assemble_name (FILE, LABEL);			\
1310     fputc (')', FILE);					\
1311   } while (0)
1312 #endif
1313 
1314 /* Addressing modes, and classification of registers for them.  */
1315 
1316 /* Macros to check register numbers against specific register classes.  */
1317 
1318 /* These assume that REGNO is a hard or pseudo reg number.
1319    They give nonzero only if REGNO is a hard reg of the suitable class
1320    or a pseudo reg currently allocated to a suitable hard reg.
1321    Since they use reg_renumber, they are safe only once reg_renumber
1322    has been allocated, which happens in reginfo.c during register
1323    allocation.  */
1324 
1325 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1326 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1327  || (REGNO) == FRAME_POINTER_REGNUM				  \
1328  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1329 
1330 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1331 
1332 #define REGNO_OK_FOR_FP_P(REGNO) \
1333   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1334    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1335 
1336 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1337  (TARGET_V9 \
1338   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1339       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1340 
1341 /* Maximum number of registers that can appear in a valid memory address.  */
1342 
1343 #define MAX_REGS_PER_ADDRESS 2
1344 
1345 /* Recognize any constant value that is a valid address.
1346    When PIC, we do not accept an address that would require a scratch reg
1347    to load into a register.  */
1348 
1349 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1350 
1351 /* Define this, so that when PIC, reload won't try to reload invalid
1352    addresses which require two reload registers.  */
1353 
1354 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1355 
1356 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1357 
1358 #ifdef HAVE_AS_OFFSETABLE_LO10
1359 #define USE_AS_OFFSETABLE_LO10 1
1360 #else
1361 #define USE_AS_OFFSETABLE_LO10 0
1362 #endif
1363 
1364 /* Try a machine-dependent way of reloading an illegitimate address
1365    operand.  If we find one, push the reload and jump to WIN.  This
1366    macro is used in only one place: `find_reloads_address' in reload.c.  */
1367 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	   \
1368 do {									   \
1369   int win;								   \
1370   (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),		   \
1371 					 (int)(TYPE), (IND_LEVELS), &win); \
1372   if (win)								   \
1373     goto WIN;								   \
1374 } while (0)
1375 
1376 /* Specify the machine mode that this machine uses
1377    for the index in the tablejump instruction.  */
1378 /* If we ever implement any of the full models (such as CM_FULLANY),
1379    this has to be DImode in that case */
1380 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1381 #define CASE_VECTOR_MODE \
1382 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1383 #else
1384 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1385    we have to sign extend which slows things down.  */
1386 #define CASE_VECTOR_MODE \
1387 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1388 #endif
1389 
1390 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1391 #define DEFAULT_SIGNED_CHAR 1
1392 
1393 /* Max number of bytes we can move from memory to memory
1394    in one reasonably fast instruction.  */
1395 #define MOVE_MAX 8
1396 
1397 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1398    move-instruction pairs, we will do a cpymem or libcall instead.  */
1399 
1400 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1401 
1402 /* Define if operations between registers always perform the operation
1403    on the full register even if a narrower mode is specified.  */
1404 #define WORD_REGISTER_OPERATIONS 1
1405 
1406 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1407    will either zero-extend or sign-extend.  The value of this macro should
1408    be the code that says which one of the two operations is implicitly
1409    done, UNKNOWN if none.  */
1410 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1411 
1412 /* Nonzero if access to memory by bytes is slow and undesirable.
1413    For RISC chips, it means that access to memory by bytes is no
1414    better than access by words when possible, so grab a whole word
1415    and maybe make use of that.  */
1416 #define SLOW_BYTE_ACCESS 1
1417 
1418 /* Define this to be nonzero if shift instructions ignore all but the low-order
1419    few bits.  */
1420 #define SHIFT_COUNT_TRUNCATED 1
1421 
1422 /* For SImode, we make sure the top 32-bits of the register are clear and
1423    then we subtract 32 from the lzd instruction result.  */
1424 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1425   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1426 
1427 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1428    return the mode to be used for the comparison.  For floating-point,
1429    CCFP[E]mode is used.  CCNZmode should be used when the first operand
1430    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1431    processing is needed.  */
1432 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1433 
1434 /* Return nonzero if MODE implies a floating point inequality can be
1435    reversed.  For SPARC this is always true because we have a full
1436    compliment of ordered and unordered comparisons, but until generic
1437    code knows how to reverse it correctly we keep the old definition.  */
1438 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1439 
1440 /* A function address in a call instruction for indexing purposes.  */
1441 #define FUNCTION_MODE Pmode
1442 
1443 /* Define this if addresses of constant functions
1444    shouldn't be put through pseudo regs where they can be cse'd.
1445    Desirable on machines where ordinary constants are expensive
1446    but a CALL with constant address is cheap.  */
1447 #define NO_FUNCTION_CSE 1
1448 
1449 /* The _Q_* comparison libcalls return booleans.  */
1450 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1451 
1452 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1453    that the inputs are fully consumed before the output memory is clobbered.  */
1454 
1455 #define TARGET_BUGGY_QP_LIB	0
1456 
1457 /* Assume by default that we do not have the Solaris-specific conversion
1458    routines nor 64-bit integer multiply and divide routines.  */
1459 
1460 #define SUN_CONVERSION_LIBFUNCS 	0
1461 #define DITF_CONVERSION_LIBFUNCS	0
1462 #define SUN_INTEGER_MULTIPLY_64 	0
1463 
1464 /* A C expression for the cost of a branch instruction.  A value of 1
1465    is the default; other values are interpreted relative to that.  */
1466 #define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
1467   (sparc_branch_cost (SPEED_P, PREDICTABLE_P))
1468 
1469 /* Control the assembler format that we output.  */
1470 
1471 /* A C string constant describing how to begin a comment in the target
1472    assembler language.  The compiler assumes that the comment will end at
1473    the end of the line.  */
1474 
1475 #define ASM_COMMENT_START "!"
1476 
1477 /* Output to assembler file text saying following lines
1478    may contain character constants, extra white space, comments, etc.  */
1479 
1480 #define ASM_APP_ON ""
1481 
1482 /* Output to assembler file text saying following lines
1483    no longer contain unusual constructs.  */
1484 
1485 #define ASM_APP_OFF ""
1486 
1487 /* How to refer to registers in assembler output.
1488    This sequence is indexed by compiler's hard-register-number (see above).  */
1489 
1490 #define REGISTER_NAMES \
1491 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
1492  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
1493  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
1494  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
1495  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
1496  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
1497  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
1498  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
1499  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
1500  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
1501  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
1502  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
1503  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1504 
1505 /* Define additional names for use in asm clobbers and asm declarations.  */
1506 
1507 #define ADDITIONAL_REGISTER_NAMES \
1508 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1509 
1510 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1511    can run past this up to a continuation point.  Once we used 1500, but
1512    a single entry in C++ can run more than 500 bytes, due to the length of
1513    mangled symbol names.  dbxout.c should really be fixed to do
1514    continuations when they are actually needed instead of trying to
1515    guess...  */
1516 #define DBX_CONTIN_LENGTH 1000
1517 
1518 /* This is how to output a command to make the user-level label named NAME
1519    defined for reference from other files.  */
1520 
1521 /* Globalizing directive for a label.  */
1522 #define GLOBAL_ASM_OP "\t.global "
1523 
1524 /* The prefix to add to user-visible assembler symbols.  */
1525 
1526 #define USER_LABEL_PREFIX "_"
1527 
1528 /* This is how to store into the string LABEL
1529    the symbol_ref name of an internal numbered label where
1530    PREFIX is the class of label and NUM is the number within the class.
1531    This is suitable for output with `assemble_name'.  */
1532 
1533 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1534   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1535 
1536 /* This is how we hook in and defer the case-vector until the end of
1537    the function.  */
1538 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1539   sparc_defer_case_vector ((LAB),(VEC), 0)
1540 
1541 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1542   sparc_defer_case_vector ((LAB),(VEC), 1)
1543 
1544 /* This is how to output an element of a case-vector that is absolute.  */
1545 
1546 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1547 do {									\
1548   char label[30];							\
1549   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
1550   if (CASE_VECTOR_MODE == SImode)					\
1551     fprintf (FILE, "\t.word\t");					\
1552   else									\
1553     fprintf (FILE, "\t.xword\t");					\
1554   assemble_name (FILE, label);						\
1555   fputc ('\n', FILE);							\
1556 } while (0)
1557 
1558 /* This is how to output an element of a case-vector that is relative.
1559    (SPARC uses such vectors only when generating PIC.)  */
1560 
1561 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
1562 do {									\
1563   char label[30];							\
1564   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
1565   if (CASE_VECTOR_MODE == SImode)					\
1566     fprintf (FILE, "\t.word\t");					\
1567   else									\
1568     fprintf (FILE, "\t.xword\t");					\
1569   assemble_name (FILE, label);						\
1570   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
1571   fputc ('-', FILE);							\
1572   assemble_name (FILE, label);						\
1573   fputc ('\n', FILE);							\
1574 } while (0)
1575 
1576 /* This is what to output before and after case-vector (both
1577    relative and absolute).  If .subsection -1 works, we put case-vectors
1578    at the beginning of the current section.  */
1579 
1580 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1581 
1582 #define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
1583   fprintf(FILE, "\t.subsection\t-1\n")
1584 
1585 #define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
1586   fprintf(FILE, "\t.previous\n")
1587 
1588 #endif
1589 
1590 /* This is how to output an assembler line
1591    that says to advance the location counter
1592    to a multiple of 2**LOG bytes.  */
1593 
1594 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1595   if ((LOG) != 0)			\
1596     fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
1597 
1598 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1599   fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1600 
1601 /* This says how to output an assembler line
1602    to define a global common symbol.  */
1603 
1604 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1605 ( fputs ("\t.common ", (FILE)),		\
1606   assemble_name ((FILE), (NAME)),		\
1607   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1608 
1609 /* This says how to output an assembler line to define a local common
1610    symbol.  */
1611 
1612 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1613 ( fputs ("\t.reserve ", (FILE)),					\
1614   assemble_name ((FILE), (NAME)),					\
1615   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
1616 	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1617 
1618 /* A C statement (sans semicolon) to output to the stdio stream
1619    FILE the assembler definition of uninitialized global DECL named
1620    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1621    Try to use asm_output_aligned_bss to implement this macro.  */
1622 
1623 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
1624   do {								\
1625     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
1626   } while (0)
1627 
1628 /* Output #ident as a .ident.  */
1629 
1630 #undef TARGET_ASM_OUTPUT_IDENT
1631 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1632 
1633 /* Prettify the assembly.  */
1634 
1635 extern int sparc_indent_opcode;
1636 
1637 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1638   do {					\
1639     if (sparc_indent_opcode)		\
1640       {					\
1641 	putc (' ', FILE);		\
1642 	sparc_indent_opcode = 0;	\
1643       }					\
1644   } while (0)
1645 
1646 /* TLS support defaulting to original Sun flavor.  GNU extensions
1647    must be activated in separate configuration files.  */
1648 #ifdef HAVE_AS_TLS
1649 #define TARGET_TLS 1
1650 #else
1651 #define TARGET_TLS 0
1652 #endif
1653 
1654 #define TARGET_SUN_TLS TARGET_TLS
1655 #define TARGET_GNU_TLS 0
1656 
1657 #ifdef HAVE_AS_FMAF_HPC_VIS3
1658 #define AS_NIAGARA3_FLAG "d"
1659 #else
1660 #define AS_NIAGARA3_FLAG "b"
1661 #endif
1662 
1663 #ifdef HAVE_AS_SPARC4
1664 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1665 #else
1666 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1667 #endif
1668 
1669 #ifdef HAVE_AS_SPARC5_VIS4
1670 #define AS_NIAGARA7_FLAG "-xarch=sparc5"
1671 #else
1672 #define AS_NIAGARA7_FLAG AS_NIAGARA4_FLAG
1673 #endif
1674 
1675 #ifdef HAVE_AS_SPARC6
1676 #define AS_M8_FLAG "-xarch=sparc6"
1677 #else
1678 #define AS_M8_FLAG AS_NIAGARA7_FLAG
1679 #endif
1680 
1681 #ifdef HAVE_AS_LEON
1682 #define AS_LEON_FLAG "-Aleon"
1683 #define AS_LEONV7_FLAG "-Aleon"
1684 #else
1685 #define AS_LEON_FLAG "-Av8"
1686 #define AS_LEONV7_FLAG "-Av7"
1687 #endif
1688 
1689 /* We use gcc _mcount for profiling.  */
1690 #define NO_PROFILE_COUNTERS 0
1691 
1692 /* Debug support */
1693 #define MASK_DEBUG_OPTIONS		0x01	/* debug option handling */
1694 #define MASK_DEBUG_ALL			MASK_DEBUG_OPTIONS
1695 
1696 #define TARGET_DEBUG_OPTIONS		(sparc_debug & MASK_DEBUG_OPTIONS)
1697 
1698 /* By default, use the weakest memory model for the cpu.  */
1699 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1700 #define SUBTARGET_DEFAULT_MEMORY_MODEL	SMM_DEFAULT
1701 #endif
1702 
1703 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1.  */
1704 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1705 
1706 #define TARGET_SUPPORTS_WIDE_INT 1
1707