1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package testing
6
7import (
8	"flag"
9	"fmt"
10	"internal/race"
11	"internal/sysinfo"
12	"io"
13	"math"
14	"os"
15	"runtime"
16	"sort"
17	"strconv"
18	"strings"
19	"sync"
20	"sync/atomic"
21	"time"
22	"unicode"
23)
24
25func initBenchmarkFlags() {
26	matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`")
27	benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
28	flag.Var(&benchTime, "test.benchtime", "run each benchmark for duration `d`")
29}
30
31var (
32	matchBenchmarks *string
33	benchmarkMemory *bool
34
35	benchTime = benchTimeFlag{d: 1 * time.Second} // changed during test of testing package
36)
37
38type benchTimeFlag struct {
39	d time.Duration
40	n int
41}
42
43func (f *benchTimeFlag) String() string {
44	if f.n > 0 {
45		return fmt.Sprintf("%dx", f.n)
46	}
47	return time.Duration(f.d).String()
48}
49
50func (f *benchTimeFlag) Set(s string) error {
51	if strings.HasSuffix(s, "x") {
52		n, err := strconv.ParseInt(s[:len(s)-1], 10, 0)
53		if err != nil || n <= 0 {
54			return fmt.Errorf("invalid count")
55		}
56		*f = benchTimeFlag{n: int(n)}
57		return nil
58	}
59	d, err := time.ParseDuration(s)
60	if err != nil || d <= 0 {
61		return fmt.Errorf("invalid duration")
62	}
63	*f = benchTimeFlag{d: d}
64	return nil
65}
66
67// Global lock to ensure only one benchmark runs at a time.
68var benchmarkLock sync.Mutex
69
70// Used for every benchmark for measuring memory.
71var memStats runtime.MemStats
72
73// InternalBenchmark is an internal type but exported because it is cross-package;
74// it is part of the implementation of the "go test" command.
75type InternalBenchmark struct {
76	Name string
77	F    func(b *B)
78}
79
80// B is a type passed to Benchmark functions to manage benchmark
81// timing and to specify the number of iterations to run.
82//
83// A benchmark ends when its Benchmark function returns or calls any of the methods
84// FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called
85// only from the goroutine running the Benchmark function.
86// The other reporting methods, such as the variations of Log and Error,
87// may be called simultaneously from multiple goroutines.
88//
89// Like in tests, benchmark logs are accumulated during execution
90// and dumped to standard output when done. Unlike in tests, benchmark logs
91// are always printed, so as not to hide output whose existence may be
92// affecting benchmark results.
93type B struct {
94	common
95	importPath       string // import path of the package containing the benchmark
96	context          *benchContext
97	N                int
98	previousN        int           // number of iterations in the previous run
99	previousDuration time.Duration // total duration of the previous run
100	benchFunc        func(b *B)
101	benchTime        benchTimeFlag
102	bytes            int64
103	missingBytes     bool // one of the subbenchmarks does not have bytes set.
104	timerOn          bool
105	showAllocResult  bool
106	result           BenchmarkResult
107	parallelism      int // RunParallel creates parallelism*GOMAXPROCS goroutines
108	// The initial states of memStats.Mallocs and memStats.TotalAlloc.
109	startAllocs uint64
110	startBytes  uint64
111	// The net total of this test after being run.
112	netAllocs uint64
113	netBytes  uint64
114	// Extra metrics collected by ReportMetric.
115	extra map[string]float64
116}
117
118// StartTimer starts timing a test. This function is called automatically
119// before a benchmark starts, but it can also be used to resume timing after
120// a call to StopTimer.
121func (b *B) StartTimer() {
122	if !b.timerOn {
123		runtime.ReadMemStats(&memStats)
124		b.startAllocs = memStats.Mallocs
125		b.startBytes = memStats.TotalAlloc
126		b.start = time.Now()
127		b.timerOn = true
128	}
129}
130
131// StopTimer stops timing a test. This can be used to pause the timer
132// while performing complex initialization that you don't
133// want to measure.
134func (b *B) StopTimer() {
135	if b.timerOn {
136		b.duration += time.Since(b.start)
137		runtime.ReadMemStats(&memStats)
138		b.netAllocs += memStats.Mallocs - b.startAllocs
139		b.netBytes += memStats.TotalAlloc - b.startBytes
140		b.timerOn = false
141	}
142}
143
144// ResetTimer zeroes the elapsed benchmark time and memory allocation counters
145// and deletes user-reported metrics.
146// It does not affect whether the timer is running.
147func (b *B) ResetTimer() {
148	if b.extra == nil {
149		// Allocate the extra map before reading memory stats.
150		// Pre-size it to make more allocation unlikely.
151		b.extra = make(map[string]float64, 16)
152	} else {
153		for k := range b.extra {
154			delete(b.extra, k)
155		}
156	}
157	if b.timerOn {
158		runtime.ReadMemStats(&memStats)
159		b.startAllocs = memStats.Mallocs
160		b.startBytes = memStats.TotalAlloc
161		b.start = time.Now()
162	}
163	b.duration = 0
164	b.netAllocs = 0
165	b.netBytes = 0
166}
167
168// SetBytes records the number of bytes processed in a single operation.
169// If this is called, the benchmark will report ns/op and MB/s.
170func (b *B) SetBytes(n int64) { b.bytes = n }
171
172// ReportAllocs enables malloc statistics for this benchmark.
173// It is equivalent to setting -test.benchmem, but it only affects the
174// benchmark function that calls ReportAllocs.
175func (b *B) ReportAllocs() {
176	b.showAllocResult = true
177}
178
179// runN runs a single benchmark for the specified number of iterations.
180func (b *B) runN(n int) {
181	benchmarkLock.Lock()
182	defer benchmarkLock.Unlock()
183	defer b.runCleanup(normalPanic)
184	// Try to get a comparable environment for each run
185	// by clearing garbage from previous runs.
186	runtime.GC()
187	b.raceErrors = -race.Errors()
188	b.N = n
189	b.parallelism = 1
190	b.ResetTimer()
191	b.StartTimer()
192	b.benchFunc(b)
193	b.StopTimer()
194	b.previousN = n
195	b.previousDuration = b.duration
196	b.raceErrors += race.Errors()
197	if b.raceErrors > 0 {
198		b.Errorf("race detected during execution of benchmark")
199	}
200}
201
202func min(x, y int64) int64 {
203	if x > y {
204		return y
205	}
206	return x
207}
208
209func max(x, y int64) int64 {
210	if x < y {
211		return y
212	}
213	return x
214}
215
216// run1 runs the first iteration of benchFunc. It reports whether more
217// iterations of this benchmarks should be run.
218func (b *B) run1() bool {
219	if ctx := b.context; ctx != nil {
220		// Extend maxLen, if needed.
221		if n := len(b.name) + ctx.extLen + 1; n > ctx.maxLen {
222			ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size.
223		}
224	}
225	go func() {
226		// Signal that we're done whether we return normally
227		// or by FailNow's runtime.Goexit.
228		defer func() {
229			b.signal <- true
230		}()
231
232		b.runN(1)
233	}()
234	<-b.signal
235	if b.failed {
236		fmt.Fprintf(b.w, "--- FAIL: %s\n%s", b.name, b.output)
237		return false
238	}
239	// Only print the output if we know we are not going to proceed.
240	// Otherwise it is printed in processBench.
241	if atomic.LoadInt32(&b.hasSub) != 0 || b.finished {
242		tag := "BENCH"
243		if b.skipped {
244			tag = "SKIP"
245		}
246		if b.chatty != nil && (len(b.output) > 0 || b.finished) {
247			b.trimOutput()
248			fmt.Fprintf(b.w, "--- %s: %s\n%s", tag, b.name, b.output)
249		}
250		return false
251	}
252	return true
253}
254
255var labelsOnce sync.Once
256
257// run executes the benchmark in a separate goroutine, including all of its
258// subbenchmarks. b must not have subbenchmarks.
259func (b *B) run() {
260	labelsOnce.Do(func() {
261		fmt.Fprintf(b.w, "goos: %s\n", runtime.GOOS)
262		fmt.Fprintf(b.w, "goarch: %s\n", runtime.GOARCH)
263		if b.importPath != "" {
264			fmt.Fprintf(b.w, "pkg: %s\n", b.importPath)
265		}
266		if cpu := sysinfo.CPU.Name(); cpu != "" {
267			fmt.Fprintf(b.w, "cpu: %s\n", cpu)
268		}
269	})
270	if b.context != nil {
271		// Running go test --test.bench
272		b.context.processBench(b) // Must call doBench.
273	} else {
274		// Running func Benchmark.
275		b.doBench()
276	}
277}
278
279func (b *B) doBench() BenchmarkResult {
280	go b.launch()
281	<-b.signal
282	return b.result
283}
284
285// launch launches the benchmark function. It gradually increases the number
286// of benchmark iterations until the benchmark runs for the requested benchtime.
287// launch is run by the doBench function as a separate goroutine.
288// run1 must have been called on b.
289func (b *B) launch() {
290	// Signal that we're done whether we return normally
291	// or by FailNow's runtime.Goexit.
292	defer func() {
293		b.signal <- true
294	}()
295
296	// Run the benchmark for at least the specified amount of time.
297	if b.benchTime.n > 0 {
298		b.runN(b.benchTime.n)
299	} else {
300		d := b.benchTime.d
301		for n := int64(1); !b.failed && b.duration < d && n < 1e9; {
302			last := n
303			// Predict required iterations.
304			goalns := d.Nanoseconds()
305			prevIters := int64(b.N)
306			prevns := b.duration.Nanoseconds()
307			if prevns <= 0 {
308				// Round up, to avoid div by zero.
309				prevns = 1
310			}
311			// Order of operations matters.
312			// For very fast benchmarks, prevIters ~= prevns.
313			// If you divide first, you get 0 or 1,
314			// which can hide an order of magnitude in execution time.
315			// So multiply first, then divide.
316			n = goalns * prevIters / prevns
317			// Run more iterations than we think we'll need (1.2x).
318			n += n / 5
319			// Don't grow too fast in case we had timing errors previously.
320			n = min(n, 100*last)
321			// Be sure to run at least one more than last time.
322			n = max(n, last+1)
323			// Don't run more than 1e9 times. (This also keeps n in int range on 32 bit platforms.)
324			n = min(n, 1e9)
325			b.runN(int(n))
326		}
327	}
328	b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes, b.extra}
329}
330
331// ReportMetric adds "n unit" to the reported benchmark results.
332// If the metric is per-iteration, the caller should divide by b.N,
333// and by convention units should end in "/op".
334// ReportMetric overrides any previously reported value for the same unit.
335// ReportMetric panics if unit is the empty string or if unit contains
336// any whitespace.
337// If unit is a unit normally reported by the benchmark framework itself
338// (such as "allocs/op"), ReportMetric will override that metric.
339// Setting "ns/op" to 0 will suppress that built-in metric.
340func (b *B) ReportMetric(n float64, unit string) {
341	if unit == "" {
342		panic("metric unit must not be empty")
343	}
344	if strings.IndexFunc(unit, unicode.IsSpace) >= 0 {
345		panic("metric unit must not contain whitespace")
346	}
347	b.extra[unit] = n
348}
349
350// BenchmarkResult contains the results of a benchmark run.
351type BenchmarkResult struct {
352	N         int           // The number of iterations.
353	T         time.Duration // The total time taken.
354	Bytes     int64         // Bytes processed in one iteration.
355	MemAllocs uint64        // The total number of memory allocations.
356	MemBytes  uint64        // The total number of bytes allocated.
357
358	// Extra records additional metrics reported by ReportMetric.
359	Extra map[string]float64
360}
361
362// NsPerOp returns the "ns/op" metric.
363func (r BenchmarkResult) NsPerOp() int64 {
364	if v, ok := r.Extra["ns/op"]; ok {
365		return int64(v)
366	}
367	if r.N <= 0 {
368		return 0
369	}
370	return r.T.Nanoseconds() / int64(r.N)
371}
372
373// mbPerSec returns the "MB/s" metric.
374func (r BenchmarkResult) mbPerSec() float64 {
375	if v, ok := r.Extra["MB/s"]; ok {
376		return v
377	}
378	if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
379		return 0
380	}
381	return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
382}
383
384// AllocsPerOp returns the "allocs/op" metric,
385// which is calculated as r.MemAllocs / r.N.
386func (r BenchmarkResult) AllocsPerOp() int64 {
387	if v, ok := r.Extra["allocs/op"]; ok {
388		return int64(v)
389	}
390	if r.N <= 0 {
391		return 0
392	}
393	return int64(r.MemAllocs) / int64(r.N)
394}
395
396// AllocedBytesPerOp returns the "B/op" metric,
397// which is calculated as r.MemBytes / r.N.
398func (r BenchmarkResult) AllocedBytesPerOp() int64 {
399	if v, ok := r.Extra["B/op"]; ok {
400		return int64(v)
401	}
402	if r.N <= 0 {
403		return 0
404	}
405	return int64(r.MemBytes) / int64(r.N)
406}
407
408// String returns a summary of the benchmark results.
409// It follows the benchmark result line format from
410// https://golang.org/design/14313-benchmark-format, not including the
411// benchmark name.
412// Extra metrics override built-in metrics of the same name.
413// String does not include allocs/op or B/op, since those are reported
414// by MemString.
415func (r BenchmarkResult) String() string {
416	buf := new(strings.Builder)
417	fmt.Fprintf(buf, "%8d", r.N)
418
419	// Get ns/op as a float.
420	ns, ok := r.Extra["ns/op"]
421	if !ok {
422		ns = float64(r.T.Nanoseconds()) / float64(r.N)
423	}
424	if ns != 0 {
425		buf.WriteByte('\t')
426		prettyPrint(buf, ns, "ns/op")
427	}
428
429	if mbs := r.mbPerSec(); mbs != 0 {
430		fmt.Fprintf(buf, "\t%7.2f MB/s", mbs)
431	}
432
433	// Print extra metrics that aren't represented in the standard
434	// metrics.
435	var extraKeys []string
436	for k := range r.Extra {
437		switch k {
438		case "ns/op", "MB/s", "B/op", "allocs/op":
439			// Built-in metrics reported elsewhere.
440			continue
441		}
442		extraKeys = append(extraKeys, k)
443	}
444	sort.Strings(extraKeys)
445	for _, k := range extraKeys {
446		buf.WriteByte('\t')
447		prettyPrint(buf, r.Extra[k], k)
448	}
449	return buf.String()
450}
451
452func prettyPrint(w io.Writer, x float64, unit string) {
453	// Print all numbers with 10 places before the decimal point
454	// and small numbers with four sig figs. Field widths are
455	// chosen to fit the whole part in 10 places while aligning
456	// the decimal point of all fractional formats.
457	var format string
458	switch y := math.Abs(x); {
459	case y == 0 || y >= 999.95:
460		format = "%10.0f %s"
461	case y >= 99.995:
462		format = "%12.1f %s"
463	case y >= 9.9995:
464		format = "%13.2f %s"
465	case y >= 0.99995:
466		format = "%14.3f %s"
467	case y >= 0.099995:
468		format = "%15.4f %s"
469	case y >= 0.0099995:
470		format = "%16.5f %s"
471	case y >= 0.00099995:
472		format = "%17.6f %s"
473	default:
474		format = "%18.7f %s"
475	}
476	fmt.Fprintf(w, format, x, unit)
477}
478
479// MemString returns r.AllocedBytesPerOp and r.AllocsPerOp in the same format as 'go test'.
480func (r BenchmarkResult) MemString() string {
481	return fmt.Sprintf("%8d B/op\t%8d allocs/op",
482		r.AllocedBytesPerOp(), r.AllocsPerOp())
483}
484
485// benchmarkName returns full name of benchmark including procs suffix.
486func benchmarkName(name string, n int) string {
487	if n != 1 {
488		return fmt.Sprintf("%s-%d", name, n)
489	}
490	return name
491}
492
493type benchContext struct {
494	match *matcher
495
496	maxLen int // The largest recorded benchmark name.
497	extLen int // Maximum extension length.
498}
499
500// RunBenchmarks is an internal function but exported because it is cross-package;
501// it is part of the implementation of the "go test" command.
502func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) {
503	runBenchmarks("", matchString, benchmarks)
504}
505
506func runBenchmarks(importPath string, matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool {
507	// If no flag was specified, don't run benchmarks.
508	if len(*matchBenchmarks) == 0 {
509		return true
510	}
511	// Collect matching benchmarks and determine longest name.
512	maxprocs := 1
513	for _, procs := range cpuList {
514		if procs > maxprocs {
515			maxprocs = procs
516		}
517	}
518	ctx := &benchContext{
519		match:  newMatcher(matchString, *matchBenchmarks, "-test.bench"),
520		extLen: len(benchmarkName("", maxprocs)),
521	}
522	var bs []InternalBenchmark
523	for _, Benchmark := range benchmarks {
524		if _, matched, _ := ctx.match.fullName(nil, Benchmark.Name); matched {
525			bs = append(bs, Benchmark)
526			benchName := benchmarkName(Benchmark.Name, maxprocs)
527			if l := len(benchName) + ctx.extLen + 1; l > ctx.maxLen {
528				ctx.maxLen = l
529			}
530		}
531	}
532	main := &B{
533		common: common{
534			name:  "Main",
535			w:     os.Stdout,
536			bench: true,
537		},
538		importPath: importPath,
539		benchFunc: func(b *B) {
540			for _, Benchmark := range bs {
541				b.Run(Benchmark.Name, Benchmark.F)
542			}
543		},
544		benchTime: benchTime,
545		context:   ctx,
546	}
547	if Verbose() {
548		main.chatty = newChattyPrinter(main.w)
549	}
550	main.runN(1)
551	return !main.failed
552}
553
554// processBench runs bench b for the configured CPU counts and prints the results.
555func (ctx *benchContext) processBench(b *B) {
556	for i, procs := range cpuList {
557		for j := uint(0); j < *count; j++ {
558			runtime.GOMAXPROCS(procs)
559			benchName := benchmarkName(b.name, procs)
560
561			// If it's chatty, we've already printed this information.
562			if b.chatty == nil {
563				fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName)
564			}
565			// Recompute the running time for all but the first iteration.
566			if i > 0 || j > 0 {
567				b = &B{
568					common: common{
569						signal: make(chan bool),
570						name:   b.name,
571						w:      b.w,
572						chatty: b.chatty,
573						bench:  true,
574					},
575					benchFunc: b.benchFunc,
576					benchTime: b.benchTime,
577				}
578				b.run1()
579			}
580			r := b.doBench()
581			if b.failed {
582				// The output could be very long here, but probably isn't.
583				// We print it all, regardless, because we don't want to trim the reason
584				// the benchmark failed.
585				fmt.Fprintf(b.w, "--- FAIL: %s\n%s", benchName, b.output)
586				continue
587			}
588			results := r.String()
589			if b.chatty != nil {
590				fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName)
591			}
592			if *benchmarkMemory || b.showAllocResult {
593				results += "\t" + r.MemString()
594			}
595			fmt.Fprintln(b.w, results)
596			// Unlike with tests, we ignore the -chatty flag and always print output for
597			// benchmarks since the output generation time will skew the results.
598			if len(b.output) > 0 {
599				b.trimOutput()
600				fmt.Fprintf(b.w, "--- BENCH: %s\n%s", benchName, b.output)
601			}
602			if p := runtime.GOMAXPROCS(-1); p != procs {
603				fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p)
604			}
605		}
606	}
607}
608
609// Run benchmarks f as a subbenchmark with the given name. It reports
610// whether there were any failures.
611//
612// A subbenchmark is like any other benchmark. A benchmark that calls Run at
613// least once will not be measured itself and will be called once with N=1.
614func (b *B) Run(name string, f func(b *B)) bool {
615	// Since b has subbenchmarks, we will no longer run it as a benchmark itself.
616	// Release the lock and acquire it on exit to ensure locks stay paired.
617	atomic.StoreInt32(&b.hasSub, 1)
618	benchmarkLock.Unlock()
619	defer benchmarkLock.Lock()
620
621	benchName, ok, partial := b.name, true, false
622	if b.context != nil {
623		benchName, ok, partial = b.context.match.fullName(&b.common, name)
624	}
625	if !ok {
626		return true
627	}
628	var pc [maxStackLen]uintptr
629	n := runtime.Callers(2, pc[:])
630	sub := &B{
631		common: common{
632			signal:  make(chan bool),
633			name:    benchName,
634			parent:  &b.common,
635			level:   b.level + 1,
636			creator: pc[:n],
637			w:       b.w,
638			chatty:  b.chatty,
639			bench:   true,
640		},
641		importPath: b.importPath,
642		benchFunc:  f,
643		benchTime:  b.benchTime,
644		context:    b.context,
645	}
646	if partial {
647		// Partial name match, like -bench=X/Y matching BenchmarkX.
648		// Only process sub-benchmarks, if any.
649		atomic.StoreInt32(&sub.hasSub, 1)
650	}
651
652	if b.chatty != nil {
653		labelsOnce.Do(func() {
654			fmt.Printf("goos: %s\n", runtime.GOOS)
655			fmt.Printf("goarch: %s\n", runtime.GOARCH)
656			if b.importPath != "" {
657				fmt.Printf("pkg: %s\n", b.importPath)
658			}
659			if cpu := sysinfo.CPU.Name(); cpu != "" {
660				fmt.Printf("cpu: %s\n", cpu)
661			}
662		})
663
664		fmt.Println(benchName)
665	}
666
667	if sub.run1() {
668		sub.run()
669	}
670	b.add(sub.result)
671	return !sub.failed
672}
673
674// add simulates running benchmarks in sequence in a single iteration. It is
675// used to give some meaningful results in case func Benchmark is used in
676// combination with Run.
677func (b *B) add(other BenchmarkResult) {
678	r := &b.result
679	// The aggregated BenchmarkResults resemble running all subbenchmarks as
680	// in sequence in a single benchmark.
681	r.N = 1
682	r.T += time.Duration(other.NsPerOp())
683	if other.Bytes == 0 {
684		// Summing Bytes is meaningless in aggregate if not all subbenchmarks
685		// set it.
686		b.missingBytes = true
687		r.Bytes = 0
688	}
689	if !b.missingBytes {
690		r.Bytes += other.Bytes
691	}
692	r.MemAllocs += uint64(other.AllocsPerOp())
693	r.MemBytes += uint64(other.AllocedBytesPerOp())
694}
695
696// trimOutput shortens the output from a benchmark, which can be very long.
697func (b *B) trimOutput() {
698	// The output is likely to appear multiple times because the benchmark
699	// is run multiple times, but at least it will be seen. This is not a big deal
700	// because benchmarks rarely print, but just in case, we trim it if it's too long.
701	const maxNewlines = 10
702	for nlCount, j := 0, 0; j < len(b.output); j++ {
703		if b.output[j] == '\n' {
704			nlCount++
705			if nlCount >= maxNewlines {
706				b.output = append(b.output[:j], "\n\t... [output truncated]\n"...)
707				break
708			}
709		}
710	}
711}
712
713// A PB is used by RunParallel for running parallel benchmarks.
714type PB struct {
715	globalN *uint64 // shared between all worker goroutines iteration counter
716	grain   uint64  // acquire that many iterations from globalN at once
717	cache   uint64  // local cache of acquired iterations
718	bN      uint64  // total number of iterations to execute (b.N)
719}
720
721// Next reports whether there are more iterations to execute.
722func (pb *PB) Next() bool {
723	if pb.cache == 0 {
724		n := atomic.AddUint64(pb.globalN, pb.grain)
725		if n <= pb.bN {
726			pb.cache = pb.grain
727		} else if n < pb.bN+pb.grain {
728			pb.cache = pb.bN + pb.grain - n
729		} else {
730			return false
731		}
732	}
733	pb.cache--
734	return true
735}
736
737// RunParallel runs a benchmark in parallel.
738// It creates multiple goroutines and distributes b.N iterations among them.
739// The number of goroutines defaults to GOMAXPROCS. To increase parallelism for
740// non-CPU-bound benchmarks, call SetParallelism before RunParallel.
741// RunParallel is usually used with the go test -cpu flag.
742//
743// The body function will be run in each goroutine. It should set up any
744// goroutine-local state and then iterate until pb.Next returns false.
745// It should not use the StartTimer, StopTimer, or ResetTimer functions,
746// because they have global effect. It should also not call Run.
747func (b *B) RunParallel(body func(*PB)) {
748	if b.N == 0 {
749		return // Nothing to do when probing.
750	}
751	// Calculate grain size as number of iterations that take ~100µs.
752	// 100µs is enough to amortize the overhead and provide sufficient
753	// dynamic load balancing.
754	grain := uint64(0)
755	if b.previousN > 0 && b.previousDuration > 0 {
756		grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration)
757	}
758	if grain < 1 {
759		grain = 1
760	}
761	// We expect the inner loop and function call to take at least 10ns,
762	// so do not do more than 100µs/10ns=1e4 iterations.
763	if grain > 1e4 {
764		grain = 1e4
765	}
766
767	n := uint64(0)
768	numProcs := b.parallelism * runtime.GOMAXPROCS(0)
769	var wg sync.WaitGroup
770	wg.Add(numProcs)
771	for p := 0; p < numProcs; p++ {
772		go func() {
773			defer wg.Done()
774			pb := &PB{
775				globalN: &n,
776				grain:   grain,
777				bN:      uint64(b.N),
778			}
779			body(pb)
780		}()
781	}
782	wg.Wait()
783	if n <= uint64(b.N) && !b.Failed() {
784		b.Fatal("RunParallel: body exited without pb.Next() == false")
785	}
786}
787
788// SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS.
789// There is usually no need to call SetParallelism for CPU-bound benchmarks.
790// If p is less than 1, this call will have no effect.
791func (b *B) SetParallelism(p int) {
792	if p >= 1 {
793		b.parallelism = p
794	}
795}
796
797// Benchmark benchmarks a single function. It is useful for creating
798// custom benchmarks that do not use the "go test" command.
799//
800// If f depends on testing flags, then Init must be used to register
801// those flags before calling Benchmark and before calling flag.Parse.
802//
803// If f calls Run, the result will be an estimate of running all its
804// subbenchmarks that don't call Run in sequence in a single benchmark.
805func Benchmark(f func(b *B)) BenchmarkResult {
806	b := &B{
807		common: common{
808			signal: make(chan bool),
809			w:      discard{},
810		},
811		benchFunc: f,
812		benchTime: benchTime,
813	}
814	if b.run1() {
815		b.run()
816	}
817	return b.result
818}
819
820type discard struct{}
821
822func (discard) Write(b []byte) (n int, err error) { return len(b), nil }
823