1[net]
2# Testing
3#batch=1
4#subdivisions=1
5# Training
6batch=64
7subdivisions=8
8width=416
9height=416
10channels=3
11momentum=0.9
12decay=0.0005
13angle=0
14saturation = 1.5
15exposure = 1.5
16hue=.1
17
18learning_rate=0.001
19burn_in=1000
20max_batches = 500200
21policy=steps
22steps=400000,450000
23scales=.1,.1
24
25### CONV1 - 1 (1)
26# conv1
27[convolutional]
28filters=32
29size=3
30pad=1
31stride=2
32batch_normalize=1
33activation=swish
34
35
36### CONV2 - MBConv1 - 1 (1)
37# conv2_1_expand
38[convolutional]
39filters=32
40size=1
41stride=1
42pad=0
43batch_normalize=1
44activation=swish
45
46# conv2_1_dwise
47[convolutional]
48groups=32
49filters=32
50size=3
51stride=1
52pad=1
53batch_normalize=1
54activation=swish
55
56
57#squeeze-n-excitation
58[avgpool]
59
60# squeeze ratio r=4 (recommended r=16)
61[convolutional]
62filters=8
63size=1
64stride=1
65activation=swish
66
67# excitation
68[convolutional]
69filters=32
70size=1
71stride=1
72activation=logistic
73
74# multiply channels
75[scale_channels]
76from=-4
77
78
79# conv2_1_linear
80[convolutional]
81filters=16
82size=1
83stride=1
84pad=0
85batch_normalize=1
86activation=linear
87
88
89
90### CONV3 - MBConv6 - 1 (2)
91# conv2_2_expand
92[convolutional]
93filters=96
94size=1
95stride=1
96pad=0
97batch_normalize=1
98activation=swish
99
100# conv2_2_dwise
101[convolutional]
102groups=96
103filters=96
104size=3
105pad=1
106stride=2
107batch_normalize=1
108activation=swish
109
110
111#squeeze-n-excitation
112[avgpool]
113
114# squeeze ratio r=8 (recommended r=16)
115[convolutional]
116filters=16
117size=1
118stride=1
119activation=swish
120
121# excitation
122[convolutional]
123filters=96
124size=1
125stride=1
126activation=logistic
127
128# multiply channels
129[scale_channels]
130from=-4
131
132
133# conv2_2_linear
134[convolutional]
135filters=24
136size=1
137stride=1
138pad=0
139batch_normalize=1
140activation=linear
141
142
143### CONV3 - MBConv6 - 2 (2)
144# conv3_1_expand
145[convolutional]
146filters=144
147size=1
148stride=1
149pad=0
150batch_normalize=1
151activation=swish
152
153# conv3_1_dwise
154[convolutional]
155groups=144
156filters=144
157size=3
158stride=1
159pad=1
160batch_normalize=1
161activation=swish
162
163
164#squeeze-n-excitation
165[avgpool]
166
167# squeeze ratio r=16 (recommended r=16)
168[convolutional]
169filters=8
170size=1
171stride=1
172activation=swish
173
174# excitation
175[convolutional]
176filters=144
177size=1
178stride=1
179activation=logistic
180
181# multiply channels
182[scale_channels]
183from=-4
184
185
186# conv3_1_linear
187[convolutional]
188filters=24
189size=1
190stride=1
191pad=0
192batch_normalize=1
193activation=linear
194
195
196
197### CONV4 - MBConv6 - 1 (2)
198# dropout only before residual connection
199[dropout]
200probability=.0
201
202# block_3_1
203[shortcut]
204from=-9
205activation=linear
206
207# conv_3_2_expand
208[convolutional]
209filters=144
210size=1
211stride=1
212pad=0
213batch_normalize=1
214activation=swish
215
216# conv_3_2_dwise
217[convolutional]
218groups=144
219filters=144
220size=5
221pad=1
222stride=2
223batch_normalize=1
224activation=swish
225
226
227#squeeze-n-excitation
228[avgpool]
229
230# squeeze ratio r=16 (recommended r=16)
231[convolutional]
232filters=8
233size=1
234stride=1
235activation=swish
236
237# excitation
238[convolutional]
239filters=144
240size=1
241stride=1
242activation=logistic
243
244# multiply channels
245[scale_channels]
246from=-4
247
248
249# conv_3_2_linear
250[convolutional]
251filters=40
252size=1
253stride=1
254pad=0
255batch_normalize=1
256activation=linear
257
258
259### CONV4 - MBConv6 - 2 (2)
260# conv_4_1_expand
261[convolutional]
262filters=192
263size=1
264stride=1
265pad=0
266batch_normalize=1
267activation=swish
268
269# conv_4_1_dwise
270[convolutional]
271groups=192
272filters=192
273size=5
274stride=1
275pad=1
276batch_normalize=1
277activation=swish
278
279
280#squeeze-n-excitation
281[avgpool]
282
283# squeeze ratio r=16 (recommended r=16)
284[convolutional]
285filters=16
286size=1
287stride=1
288activation=swish
289
290# excitation
291[convolutional]
292filters=192
293size=1
294stride=1
295activation=logistic
296
297# multiply channels
298[scale_channels]
299from=-4
300
301
302# conv_4_1_linear
303[convolutional]
304filters=40
305size=1
306stride=1
307pad=0
308batch_normalize=1
309activation=linear
310
311
312
313
314### CONV5 - MBConv6 - 1 (3)
315# dropout only before residual connection
316[dropout]
317probability=.0
318
319# block_4_2
320[shortcut]
321from=-9
322activation=linear
323
324# conv_4_3_expand
325[convolutional]
326filters=192
327size=1
328stride=1
329pad=0
330batch_normalize=1
331activation=swish
332
333# conv_4_3_dwise
334[convolutional]
335groups=192
336filters=192
337size=3
338stride=1
339pad=1
340batch_normalize=1
341activation=swish
342
343
344#squeeze-n-excitation
345[avgpool]
346
347# squeeze ratio r=16 (recommended r=16)
348[convolutional]
349filters=16
350size=1
351stride=1
352activation=swish
353
354# excitation
355[convolutional]
356filters=192
357size=1
358stride=1
359activation=logistic
360
361# multiply channels
362[scale_channels]
363from=-4
364
365
366# conv_4_3_linear
367[convolutional]
368filters=80
369size=1
370stride=1
371pad=0
372batch_normalize=1
373activation=linear
374
375
376### CONV5 - MBConv6 - 2 (3)
377# conv_4_4_expand
378[convolutional]
379filters=384
380size=1
381stride=1
382pad=0
383batch_normalize=1
384activation=swish
385
386# conv_4_4_dwise
387[convolutional]
388groups=384
389filters=384
390size=3
391stride=1
392pad=1
393batch_normalize=1
394activation=swish
395
396
397#squeeze-n-excitation
398[avgpool]
399
400# squeeze ratio r=16 (recommended r=16)
401[convolutional]
402filters=24
403size=1
404stride=1
405activation=swish
406
407# excitation
408[convolutional]
409filters=384
410size=1
411stride=1
412activation=logistic
413
414# multiply channels
415[scale_channels]
416from=-4
417
418
419# conv_4_4_linear
420[convolutional]
421filters=80
422size=1
423stride=1
424pad=0
425batch_normalize=1
426activation=linear
427
428
429### CONV5 - MBConv6 - 3 (3)
430# dropout only before residual connection
431[dropout]
432probability=.0
433
434# block_4_4
435[shortcut]
436from=-9
437activation=linear
438
439# conv_4_5_expand
440[convolutional]
441filters=384
442size=1
443stride=1
444pad=0
445batch_normalize=1
446activation=swish
447
448# conv_4_5_dwise
449[convolutional]
450groups=384
451filters=384
452size=3
453stride=1
454pad=1
455batch_normalize=1
456activation=swish
457
458
459#squeeze-n-excitation
460[avgpool]
461
462# squeeze ratio r=16 (recommended r=16)
463[convolutional]
464filters=24
465size=1
466stride=1
467activation=swish
468
469# excitation
470[convolutional]
471filters=384
472size=1
473stride=1
474activation=logistic
475
476# multiply channels
477[scale_channels]
478from=-4
479
480
481# conv_4_5_linear
482[convolutional]
483filters=80
484size=1
485stride=1
486pad=0
487batch_normalize=1
488activation=linear
489
490
491
492### CONV6 - MBConv6 - 1 (3)
493# dropout only before residual connection
494[dropout]
495probability=.0
496
497# block_4_6
498[shortcut]
499from=-9
500activation=linear
501
502# conv_4_7_expand
503[convolutional]
504filters=384
505size=1
506stride=1
507pad=0
508batch_normalize=1
509activation=swish
510
511# conv_4_7_dwise
512[convolutional]
513groups=384
514filters=384
515size=5
516pad=1
517stride=2
518batch_normalize=1
519activation=swish
520
521
522#squeeze-n-excitation
523[avgpool]
524
525# squeeze ratio r=16 (recommended r=16)
526[convolutional]
527filters=24
528size=1
529stride=1
530activation=swish
531
532# excitation
533[convolutional]
534filters=384
535size=1
536stride=1
537activation=logistic
538
539# multiply channels
540[scale_channels]
541from=-4
542
543
544# conv_4_7_linear
545[convolutional]
546filters=112
547size=1
548stride=1
549pad=0
550batch_normalize=1
551activation=linear
552
553
554### CONV6 - MBConv6 - 2 (3)
555# conv_5_1_expand
556[convolutional]
557filters=576
558size=1
559stride=1
560pad=0
561batch_normalize=1
562activation=swish
563
564# conv_5_1_dwise
565[convolutional]
566groups=576
567filters=576
568size=5
569stride=1
570pad=1
571batch_normalize=1
572activation=swish
573
574
575#squeeze-n-excitation
576[avgpool]
577
578# squeeze ratio r=16 (recommended r=16)
579[convolutional]
580filters=32
581size=1
582stride=1
583activation=swish
584
585# excitation
586[convolutional]
587filters=576
588size=1
589stride=1
590activation=logistic
591
592# multiply channels
593[scale_channels]
594from=-4
595
596
597# conv_5_1_linear
598[convolutional]
599filters=112
600size=1
601stride=1
602pad=0
603batch_normalize=1
604activation=linear
605
606
607### CONV6 - MBConv6 - 3 (3)
608# dropout only before residual connection
609[dropout]
610probability=.0
611
612# block_5_1
613[shortcut]
614from=-9
615activation=linear
616
617# conv_5_2_expand
618[convolutional]
619filters=576
620size=1
621stride=1
622pad=0
623batch_normalize=1
624activation=swish
625
626# conv_5_2_dwise
627[convolutional]
628groups=576
629filters=576
630size=5
631stride=1
632pad=1
633batch_normalize=1
634activation=swish
635
636
637#squeeze-n-excitation
638[avgpool]
639
640# squeeze ratio r=16 (recommended r=16)
641[convolutional]
642filters=32
643size=1
644stride=1
645activation=swish
646
647# excitation
648[convolutional]
649filters=576
650size=1
651stride=1
652activation=logistic
653
654# multiply channels
655[scale_channels]
656from=-4
657
658
659# conv_5_2_linear
660[convolutional]
661filters=112
662size=1
663stride=1
664pad=0
665batch_normalize=1
666activation=linear
667
668
669### CONV7 - MBConv6 - 1 (4)
670# dropout only before residual connection
671[dropout]
672probability=.0
673
674# block_5_2
675[shortcut]
676from=-9
677activation=linear
678
679# conv_5_3_expand
680[convolutional]
681filters=576
682size=1
683stride=1
684pad=0
685batch_normalize=1
686activation=swish
687
688# conv_5_3_dwise
689[convolutional]
690groups=576
691filters=576
692size=5
693pad=1
694stride=2
695batch_normalize=1
696activation=swish
697
698
699#squeeze-n-excitation
700[avgpool]
701
702# squeeze ratio r=16 (recommended r=16)
703[convolutional]
704filters=32
705size=1
706stride=1
707activation=swish
708
709# excitation
710[convolutional]
711filters=576
712size=1
713stride=1
714activation=logistic
715
716# multiply channels
717[scale_channels]
718from=-4
719
720
721# conv_5_3_linear
722[convolutional]
723filters=192
724size=1
725stride=1
726pad=0
727batch_normalize=1
728activation=linear
729
730
731### CONV7 - MBConv6 - 2 (4)
732# conv_6_1_expand
733[convolutional]
734filters=960
735size=1
736stride=1
737pad=0
738batch_normalize=1
739activation=swish
740
741# conv_6_1_dwise
742[convolutional]
743groups=960
744filters=960
745size=5
746stride=1
747pad=1
748batch_normalize=1
749activation=swish
750
751
752#squeeze-n-excitation
753[avgpool]
754
755# squeeze ratio r=16 (recommended r=16)
756[convolutional]
757filters=64
758size=1
759stride=1
760activation=swish
761
762# excitation
763[convolutional]
764filters=960
765size=1
766stride=1
767activation=logistic
768
769# multiply channels
770[scale_channels]
771from=-4
772
773
774# conv_6_1_linear
775[convolutional]
776filters=192
777size=1
778stride=1
779pad=0
780batch_normalize=1
781activation=linear
782
783
784### CONV7 - MBConv6 - 3 (4)
785# dropout only before residual connection
786[dropout]
787probability=.0
788
789# block_6_1
790[shortcut]
791from=-9
792activation=linear
793
794# conv_6_2_expand
795[convolutional]
796filters=960
797size=1
798stride=1
799pad=0
800batch_normalize=1
801activation=swish
802
803# conv_6_2_dwise
804[convolutional]
805groups=960
806filters=960
807size=5
808stride=1
809pad=1
810batch_normalize=1
811activation=swish
812
813
814#squeeze-n-excitation
815[avgpool]
816
817# squeeze ratio r=16 (recommended r=16)
818[convolutional]
819filters=64
820size=1
821stride=1
822activation=swish
823
824# excitation
825[convolutional]
826filters=960
827size=1
828stride=1
829activation=logistic
830
831# multiply channels
832[scale_channels]
833from=-4
834
835
836# conv_6_2_linear
837[convolutional]
838filters=192
839size=1
840stride=1
841pad=0
842batch_normalize=1
843activation=linear
844
845
846### CONV7 - MBConv6 - 4 (4)
847# dropout only before residual connection
848[dropout]
849probability=.0
850
851# block_6_1
852[shortcut]
853from=-9
854activation=linear
855
856# conv_6_2_expand
857[convolutional]
858filters=960
859size=1
860stride=1
861pad=0
862batch_normalize=1
863activation=swish
864
865# conv_6_2_dwise
866[convolutional]
867groups=960
868filters=960
869size=5
870stride=1
871pad=1
872batch_normalize=1
873activation=swish
874
875
876#squeeze-n-excitation
877[avgpool]
878
879# squeeze ratio r=16 (recommended r=16)
880[convolutional]
881filters=64
882size=1
883stride=1
884activation=swish
885
886# excitation
887[convolutional]
888filters=960
889size=1
890stride=1
891activation=logistic
892
893# multiply channels
894[scale_channels]
895from=-4
896
897
898# conv_6_2_linear
899[convolutional]
900filters=192
901size=1
902stride=1
903pad=0
904batch_normalize=1
905activation=linear
906
907
908
909### CONV8 - MBConv6 - 1 (1)
910# dropout only before residual connection
911[dropout]
912probability=.0
913
914# block_6_2
915[shortcut]
916from=-9
917activation=linear
918
919# conv_6_3_expand
920[convolutional]
921filters=960
922size=1
923stride=1
924pad=0
925batch_normalize=1
926activation=swish
927
928# conv_6_3_dwise
929[convolutional]
930groups=960
931filters=960
932size=3
933stride=1
934pad=1
935batch_normalize=1
936activation=swish
937
938
939#squeeze-n-excitation
940[avgpool]
941
942# squeeze ratio r=16 (recommended r=16)
943[convolutional]
944filters=64
945size=1
946stride=1
947activation=swish
948
949# excitation
950[convolutional]
951filters=960
952size=1
953stride=1
954activation=logistic
955
956# multiply channels
957[scale_channels]
958from=-4
959
960
961# conv_6_3_linear
962[convolutional]
963filters=320
964size=1
965stride=1
966pad=0
967batch_normalize=1
968activation=linear
969
970
971### CONV9 - Conv2d 1x1
972# conv_6_4
973[convolutional]
974filters=1280
975size=1
976stride=1
977pad=0
978batch_normalize=1
979activation=swish
980
981##########################
982
983[convolutional]
984batch_normalize=1
985filters=256
986size=1
987stride=1
988pad=1
989activation=leaky
990
991[convolutional]
992batch_normalize=1
993filters=256
994size=3
995stride=1
996pad=1
997activation=leaky
998
999[shortcut]
1000activation=leaky
1001from=-2
1002
1003[convolutional]
1004size=1
1005stride=1
1006pad=1
1007filters=255
1008activation=linear
1009
1010
1011
1012[yolo]
1013mask = 3,4,5
1014anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
1015classes=80
1016num=6
1017jitter=.3
1018ignore_thresh = .7
1019truth_thresh = 1
1020random=0
1021
1022[route]
1023layers = -4
1024
1025[convolutional]
1026batch_normalize=1
1027filters=128
1028size=1
1029stride=1
1030pad=1
1031activation=leaky
1032
1033[upsample]
1034stride=2
1035
1036[shortcut]
1037activation=leaky
1038from=90
1039
1040[convolutional]
1041batch_normalize=1
1042filters=128
1043size=3
1044stride=1
1045pad=1
1046activation=leaky
1047
1048[shortcut]
1049activation=leaky
1050from=-3
1051
1052[shortcut]
1053activation=leaky
1054from=90
1055
1056[convolutional]
1057size=1
1058stride=1
1059pad=1
1060filters=255
1061activation=linear
1062
1063[yolo]
1064mask = 1,2,3
1065anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
1066classes=80
1067num=6
1068jitter=.3
1069ignore_thresh = .7
1070truth_thresh = 1
1071random=0
1072
1073