1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
2  *
3  * This file is a part of LEMON, a generic C++ optimization library.
4  *
5  * Copyright (C) 2003-2013
6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
8  *
9  * Permission to use, modify and distribute this software is granted
10  * provided that this copyright notice appears in all copies. For
11  * precise terms see the accompanying LICENSE file.
12  *
13  * This software is provided "AS IS" with no warranty of any kind,
14  * express or implied, and with no claim as to its suitability for any
15  * purpose.
16  *
17  */
18 
19 #ifndef LEMON_CYCLE_CANCELING_H
20 #define LEMON_CYCLE_CANCELING_H
21 
22 /// \ingroup min_cost_flow_algs
23 /// \file
24 /// \brief Cycle-canceling algorithms for finding a minimum cost flow.
25 
26 #include <vector>
27 #include <limits>
28 
29 #include <lemon/core.h>
30 #include <lemon/maps.h>
31 #include <lemon/path.h>
32 #include <lemon/math.h>
33 #include <lemon/static_graph.h>
34 #include <lemon/adaptors.h>
35 #include <lemon/circulation.h>
36 #include <lemon/bellman_ford.h>
37 #include <lemon/howard_mmc.h>
38 #include <lemon/hartmann_orlin_mmc.h>
39 
40 namespace lemon {
41 
42   /// \addtogroup min_cost_flow_algs
43   /// @{
44 
45   /// \brief Implementation of cycle-canceling algorithms for
46   /// finding a \ref min_cost_flow "minimum cost flow".
47   ///
48   /// \ref CycleCanceling implements three different cycle-canceling
49   /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
50   /// \cite amo93networkflows, \cite klein67primal,
51   /// \cite goldberg89cyclecanceling.
52   /// The most efficent one is the \ref CANCEL_AND_TIGHTEN
53   /// "Cancel-and-Tighten" algorithm, thus it is the default method.
54   /// It runs in strongly polynomial time \f$O(n^2 m^2 \log n)\f$,
55   /// but in practice, it is typically orders of magnitude slower than
56   /// the scaling algorithms and \ref NetworkSimplex.
57   /// (For more information, see \ref min_cost_flow_algs "the module page".)
58   ///
59   /// Most of the parameters of the problem (except for the digraph)
60   /// can be given using separate functions, and the algorithm can be
61   /// executed using the \ref run() function. If some parameters are not
62   /// specified, then default values will be used.
63   ///
64   /// \tparam GR The digraph type the algorithm runs on.
65   /// \tparam V The number type used for flow amounts, capacity bounds
66   /// and supply values in the algorithm. By default, it is \c int.
67   /// \tparam C The number type used for costs and potentials in the
68   /// algorithm. By default, it is the same as \c V.
69   ///
70   /// \warning Both \c V and \c C must be signed number types.
71   /// \warning All input data (capacities, supply values, and costs) must
72   /// be integer.
73   /// \warning This algorithm does not support negative costs for
74   /// arcs having infinite upper bound.
75   ///
76   /// \note For more information about the three available methods,
77   /// see \ref Method.
78 #ifdef DOXYGEN
79   template <typename GR, typename V, typename C>
80 #else
81   template <typename GR, typename V = int, typename C = V>
82 #endif
83   class CycleCanceling
84   {
85   public:
86 
87     /// The type of the digraph
88     typedef GR Digraph;
89     /// The type of the flow amounts, capacity bounds and supply values
90     typedef V Value;
91     /// The type of the arc costs
92     typedef C Cost;
93 
94   public:
95 
96     /// \brief Problem type constants for the \c run() function.
97     ///
98     /// Enum type containing the problem type constants that can be
99     /// returned by the \ref run() function of the algorithm.
100     enum ProblemType {
101       /// The problem has no feasible solution (flow).
102       INFEASIBLE,
103       /// The problem has optimal solution (i.e. it is feasible and
104       /// bounded), and the algorithm has found optimal flow and node
105       /// potentials (primal and dual solutions).
106       OPTIMAL,
107       /// The digraph contains an arc of negative cost and infinite
108       /// upper bound. It means that the objective function is unbounded
109       /// on that arc, however, note that it could actually be bounded
110       /// over the feasible flows, but this algroithm cannot handle
111       /// these cases.
112       UNBOUNDED
113     };
114 
115     /// \brief Constants for selecting the used method.
116     ///
117     /// Enum type containing constants for selecting the used method
118     /// for the \ref run() function.
119     ///
120     /// \ref CycleCanceling provides three different cycle-canceling
121     /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel-and-Tighten"
122     /// is used, which is by far the most efficient and the most robust.
123     /// However, the other methods can be selected using the \ref run()
124     /// function with the proper parameter.
125     enum Method {
126       /// A simple cycle-canceling method, which uses the
127       /// \ref BellmanFord "Bellman-Ford" algorithm for detecting negative
128       /// cycles in the residual network.
129       /// The number of Bellman-Ford iterations is bounded by a successively
130       /// increased limit.
131       SIMPLE_CYCLE_CANCELING,
132       /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
133       /// well-known strongly polynomial method
134       /// \cite goldberg89cyclecanceling. It improves along a
135       /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
136       /// Its running time complexity is \f$O(n^2 m^3 \log n)\f$.
137       MINIMUM_MEAN_CYCLE_CANCELING,
138       /// The "Cancel-and-Tighten" algorithm, which can be viewed as an
139       /// improved version of the previous method
140       /// \cite goldberg89cyclecanceling.
141       /// It is faster both in theory and in practice, its running time
142       /// complexity is \f$O(n^2 m^2 \log n)\f$.
143       CANCEL_AND_TIGHTEN
144     };
145 
146   private:
147 
148     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
149 
150     typedef std::vector<int> IntVector;
151     typedef std::vector<double> DoubleVector;
152     typedef std::vector<Value> ValueVector;
153     typedef std::vector<Cost> CostVector;
154     typedef std::vector<char> BoolVector;
155     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
156 
157   private:
158 
159     template <typename KT, typename VT>
160     class StaticVectorMap {
161     public:
162       typedef KT Key;
163       typedef VT Value;
164 
StaticVectorMap(std::vector<Value> & v)165       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
166 
167       const Value& operator[](const Key& key) const {
168         return _v[StaticDigraph::id(key)];
169       }
170 
171       Value& operator[](const Key& key) {
172         return _v[StaticDigraph::id(key)];
173       }
174 
set(const Key & key,const Value & val)175       void set(const Key& key, const Value& val) {
176         _v[StaticDigraph::id(key)] = val;
177       }
178 
179     private:
180       std::vector<Value>& _v;
181     };
182 
183     typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
184     typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
185 
186   private:
187 
188 
189     // Data related to the underlying digraph
190     const GR &_graph;
191     int _node_num;
192     int _arc_num;
193     int _res_node_num;
194     int _res_arc_num;
195     int _root;
196 
197     // Parameters of the problem
198     bool _have_lower;
199     Value _sum_supply;
200 
201     // Data structures for storing the digraph
202     IntNodeMap _node_id;
203     IntArcMap _arc_idf;
204     IntArcMap _arc_idb;
205     IntVector _first_out;
206     BoolVector _forward;
207     IntVector _source;
208     IntVector _target;
209     IntVector _reverse;
210 
211     // Node and arc data
212     ValueVector _lower;
213     ValueVector _upper;
214     CostVector _cost;
215     ValueVector _supply;
216 
217     ValueVector _res_cap;
218     CostVector _pi;
219 
220     // Data for a StaticDigraph structure
221     typedef std::pair<int, int> IntPair;
222     StaticDigraph _sgr;
223     std::vector<IntPair> _arc_vec;
224     std::vector<Cost> _cost_vec;
225     IntVector _id_vec;
226     CostArcMap _cost_map;
227     CostNodeMap _pi_map;
228 
229   public:
230 
231     /// \brief Constant for infinite upper bounds (capacities).
232     ///
233     /// Constant for infinite upper bounds (capacities).
234     /// It is \c std::numeric_limits<Value>::infinity() if available,
235     /// \c std::numeric_limits<Value>::max() otherwise.
236     const Value INF;
237 
238   public:
239 
240     /// \brief Constructor.
241     ///
242     /// The constructor of the class.
243     ///
244     /// \param graph The digraph the algorithm runs on.
CycleCanceling(const GR & graph)245     CycleCanceling(const GR& graph) :
246       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
247       _cost_map(_cost_vec), _pi_map(_pi),
248       INF(std::numeric_limits<Value>::has_infinity ?
249           std::numeric_limits<Value>::infinity() :
250           std::numeric_limits<Value>::max())
251     {
252       // Check the number types
253       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
254         "The flow type of CycleCanceling must be signed");
255       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
256         "The cost type of CycleCanceling must be signed");
257 
258       // Reset data structures
259       reset();
260     }
261 
262     /// \name Parameters
263     /// The parameters of the algorithm can be specified using these
264     /// functions.
265 
266     /// @{
267 
268     /// \brief Set the lower bounds on the arcs.
269     ///
270     /// This function sets the lower bounds on the arcs.
271     /// If it is not used before calling \ref run(), the lower bounds
272     /// will be set to zero on all arcs.
273     ///
274     /// \param map An arc map storing the lower bounds.
275     /// Its \c Value type must be convertible to the \c Value type
276     /// of the algorithm.
277     ///
278     /// \return <tt>(*this)</tt>
279     template <typename LowerMap>
lowerMap(const LowerMap & map)280     CycleCanceling& lowerMap(const LowerMap& map) {
281       _have_lower = true;
282       for (ArcIt a(_graph); a != INVALID; ++a) {
283         _lower[_arc_idf[a]] = map[a];
284         _lower[_arc_idb[a]] = map[a];
285       }
286       return *this;
287     }
288 
289     /// \brief Set the upper bounds (capacities) on the arcs.
290     ///
291     /// This function sets the upper bounds (capacities) on the arcs.
292     /// If it is not used before calling \ref run(), the upper bounds
293     /// will be set to \ref INF on all arcs (i.e. the flow value will be
294     /// unbounded from above).
295     ///
296     /// \param map An arc map storing the upper bounds.
297     /// Its \c Value type must be convertible to the \c Value type
298     /// of the algorithm.
299     ///
300     /// \return <tt>(*this)</tt>
301     template<typename UpperMap>
upperMap(const UpperMap & map)302     CycleCanceling& upperMap(const UpperMap& map) {
303       for (ArcIt a(_graph); a != INVALID; ++a) {
304         _upper[_arc_idf[a]] = map[a];
305       }
306       return *this;
307     }
308 
309     /// \brief Set the costs of the arcs.
310     ///
311     /// This function sets the costs of the arcs.
312     /// If it is not used before calling \ref run(), the costs
313     /// will be set to \c 1 on all arcs.
314     ///
315     /// \param map An arc map storing the costs.
316     /// Its \c Value type must be convertible to the \c Cost type
317     /// of the algorithm.
318     ///
319     /// \return <tt>(*this)</tt>
320     template<typename CostMap>
costMap(const CostMap & map)321     CycleCanceling& costMap(const CostMap& map) {
322       for (ArcIt a(_graph); a != INVALID; ++a) {
323         _cost[_arc_idf[a]] =  map[a];
324         _cost[_arc_idb[a]] = -map[a];
325       }
326       return *this;
327     }
328 
329     /// \brief Set the supply values of the nodes.
330     ///
331     /// This function sets the supply values of the nodes.
332     /// If neither this function nor \ref stSupply() is used before
333     /// calling \ref run(), the supply of each node will be set to zero.
334     ///
335     /// \param map A node map storing the supply values.
336     /// Its \c Value type must be convertible to the \c Value type
337     /// of the algorithm.
338     ///
339     /// \return <tt>(*this)</tt>
340     template<typename SupplyMap>
supplyMap(const SupplyMap & map)341     CycleCanceling& supplyMap(const SupplyMap& map) {
342       for (NodeIt n(_graph); n != INVALID; ++n) {
343         _supply[_node_id[n]] = map[n];
344       }
345       return *this;
346     }
347 
348     /// \brief Set single source and target nodes and a supply value.
349     ///
350     /// This function sets a single source node and a single target node
351     /// and the required flow value.
352     /// If neither this function nor \ref supplyMap() is used before
353     /// calling \ref run(), the supply of each node will be set to zero.
354     ///
355     /// Using this function has the same effect as using \ref supplyMap()
356     /// with a map in which \c k is assigned to \c s, \c -k is
357     /// assigned to \c t and all other nodes have zero supply value.
358     ///
359     /// \param s The source node.
360     /// \param t The target node.
361     /// \param k The required amount of flow from node \c s to node \c t
362     /// (i.e. the supply of \c s and the demand of \c t).
363     ///
364     /// \return <tt>(*this)</tt>
stSupply(const Node & s,const Node & t,Value k)365     CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
366       for (int i = 0; i != _res_node_num; ++i) {
367         _supply[i] = 0;
368       }
369       _supply[_node_id[s]] =  k;
370       _supply[_node_id[t]] = -k;
371       return *this;
372     }
373 
374     /// @}
375 
376     /// \name Execution control
377     /// The algorithm can be executed using \ref run().
378 
379     /// @{
380 
381     /// \brief Run the algorithm.
382     ///
383     /// This function runs the algorithm.
384     /// The paramters can be specified using functions \ref lowerMap(),
385     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
386     /// For example,
387     /// \code
388     ///   CycleCanceling<ListDigraph> cc(graph);
389     ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
390     ///     .supplyMap(sup).run();
391     /// \endcode
392     ///
393     /// This function can be called more than once. All the given parameters
394     /// are kept for the next call, unless \ref resetParams() or \ref reset()
395     /// is used, thus only the modified parameters have to be set again.
396     /// If the underlying digraph was also modified after the construction
397     /// of the class (or the last \ref reset() call), then the \ref reset()
398     /// function must be called.
399     ///
400     /// \param method The cycle-canceling method that will be used.
401     /// For more information, see \ref Method.
402     ///
403     /// \return \c INFEASIBLE if no feasible flow exists,
404     /// \n \c OPTIMAL if the problem has optimal solution
405     /// (i.e. it is feasible and bounded), and the algorithm has found
406     /// optimal flow and node potentials (primal and dual solutions),
407     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
408     /// and infinite upper bound. It means that the objective function
409     /// is unbounded on that arc, however, note that it could actually be
410     /// bounded over the feasible flows, but this algroithm cannot handle
411     /// these cases.
412     ///
413     /// \see ProblemType, Method
414     /// \see resetParams(), reset()
415     ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
416       ProblemType pt = init();
417       if (pt != OPTIMAL) return pt;
418       start(method);
419       return OPTIMAL;
420     }
421 
422     /// \brief Reset all the parameters that have been given before.
423     ///
424     /// This function resets all the paramaters that have been given
425     /// before using functions \ref lowerMap(), \ref upperMap(),
426     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
427     ///
428     /// It is useful for multiple \ref run() calls. Basically, all the given
429     /// parameters are kept for the next \ref run() call, unless
430     /// \ref resetParams() or \ref reset() is used.
431     /// If the underlying digraph was also modified after the construction
432     /// of the class or the last \ref reset() call, then the \ref reset()
433     /// function must be used, otherwise \ref resetParams() is sufficient.
434     ///
435     /// For example,
436     /// \code
437     ///   CycleCanceling<ListDigraph> cs(graph);
438     ///
439     ///   // First run
440     ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
441     ///     .supplyMap(sup).run();
442     ///
443     ///   // Run again with modified cost map (resetParams() is not called,
444     ///   // so only the cost map have to be set again)
445     ///   cost[e] += 100;
446     ///   cc.costMap(cost).run();
447     ///
448     ///   // Run again from scratch using resetParams()
449     ///   // (the lower bounds will be set to zero on all arcs)
450     ///   cc.resetParams();
451     ///   cc.upperMap(capacity).costMap(cost)
452     ///     .supplyMap(sup).run();
453     /// \endcode
454     ///
455     /// \return <tt>(*this)</tt>
456     ///
457     /// \see reset(), run()
resetParams()458     CycleCanceling& resetParams() {
459       for (int i = 0; i != _res_node_num; ++i) {
460         _supply[i] = 0;
461       }
462       int limit = _first_out[_root];
463       for (int j = 0; j != limit; ++j) {
464         _lower[j] = 0;
465         _upper[j] = INF;
466         _cost[j] = _forward[j] ? 1 : -1;
467       }
468       for (int j = limit; j != _res_arc_num; ++j) {
469         _lower[j] = 0;
470         _upper[j] = INF;
471         _cost[j] = 0;
472         _cost[_reverse[j]] = 0;
473       }
474       _have_lower = false;
475       return *this;
476     }
477 
478     /// \brief Reset the internal data structures and all the parameters
479     /// that have been given before.
480     ///
481     /// This function resets the internal data structures and all the
482     /// paramaters that have been given before using functions \ref lowerMap(),
483     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
484     ///
485     /// It is useful for multiple \ref run() calls. Basically, all the given
486     /// parameters are kept for the next \ref run() call, unless
487     /// \ref resetParams() or \ref reset() is used.
488     /// If the underlying digraph was also modified after the construction
489     /// of the class or the last \ref reset() call, then the \ref reset()
490     /// function must be used, otherwise \ref resetParams() is sufficient.
491     ///
492     /// See \ref resetParams() for examples.
493     ///
494     /// \return <tt>(*this)</tt>
495     ///
496     /// \see resetParams(), run()
reset()497     CycleCanceling& reset() {
498       // Resize vectors
499       _node_num = countNodes(_graph);
500       _arc_num = countArcs(_graph);
501       _res_node_num = _node_num + 1;
502       _res_arc_num = 2 * (_arc_num + _node_num);
503       _root = _node_num;
504 
505       _first_out.resize(_res_node_num + 1);
506       _forward.resize(_res_arc_num);
507       _source.resize(_res_arc_num);
508       _target.resize(_res_arc_num);
509       _reverse.resize(_res_arc_num);
510 
511       _lower.resize(_res_arc_num);
512       _upper.resize(_res_arc_num);
513       _cost.resize(_res_arc_num);
514       _supply.resize(_res_node_num);
515 
516       _res_cap.resize(_res_arc_num);
517       _pi.resize(_res_node_num);
518 
519       _arc_vec.reserve(_res_arc_num);
520       _cost_vec.reserve(_res_arc_num);
521       _id_vec.reserve(_res_arc_num);
522 
523       // Copy the graph
524       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
525       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
526         _node_id[n] = i;
527       }
528       i = 0;
529       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
530         _first_out[i] = j;
531         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
532           _arc_idf[a] = j;
533           _forward[j] = true;
534           _source[j] = i;
535           _target[j] = _node_id[_graph.runningNode(a)];
536         }
537         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
538           _arc_idb[a] = j;
539           _forward[j] = false;
540           _source[j] = i;
541           _target[j] = _node_id[_graph.runningNode(a)];
542         }
543         _forward[j] = false;
544         _source[j] = i;
545         _target[j] = _root;
546         _reverse[j] = k;
547         _forward[k] = true;
548         _source[k] = _root;
549         _target[k] = i;
550         _reverse[k] = j;
551         ++j; ++k;
552       }
553       _first_out[i] = j;
554       _first_out[_res_node_num] = k;
555       for (ArcIt a(_graph); a != INVALID; ++a) {
556         int fi = _arc_idf[a];
557         int bi = _arc_idb[a];
558         _reverse[fi] = bi;
559         _reverse[bi] = fi;
560       }
561 
562       // Reset parameters
563       resetParams();
564       return *this;
565     }
566 
567     /// @}
568 
569     /// \name Query Functions
570     /// The results of the algorithm can be obtained using these
571     /// functions.\n
572     /// The \ref run() function must be called before using them.
573 
574     /// @{
575 
576     /// \brief Return the total cost of the found flow.
577     ///
578     /// This function returns the total cost of the found flow.
579     /// Its complexity is O(m).
580     ///
581     /// \note The return type of the function can be specified as a
582     /// template parameter. For example,
583     /// \code
584     ///   cc.totalCost<double>();
585     /// \endcode
586     /// It is useful if the total cost cannot be stored in the \c Cost
587     /// type of the algorithm, which is the default return type of the
588     /// function.
589     ///
590     /// \pre \ref run() must be called before using this function.
591     template <typename Number>
totalCost()592     Number totalCost() const {
593       Number c = 0;
594       for (ArcIt a(_graph); a != INVALID; ++a) {
595         int i = _arc_idb[a];
596         c += static_cast<Number>(_res_cap[i]) *
597              (-static_cast<Number>(_cost[i]));
598       }
599       return c;
600     }
601 
602 #ifndef DOXYGEN
totalCost()603     Cost totalCost() const {
604       return totalCost<Cost>();
605     }
606 #endif
607 
608     /// \brief Return the flow on the given arc.
609     ///
610     /// This function returns the flow on the given arc.
611     ///
612     /// \pre \ref run() must be called before using this function.
flow(const Arc & a)613     Value flow(const Arc& a) const {
614       return _res_cap[_arc_idb[a]];
615     }
616 
617     /// \brief Copy the flow values (the primal solution) into the
618     /// given map.
619     ///
620     /// This function copies the flow value on each arc into the given
621     /// map. The \c Value type of the algorithm must be convertible to
622     /// the \c Value type of the map.
623     ///
624     /// \pre \ref run() must be called before using this function.
625     template <typename FlowMap>
flowMap(FlowMap & map)626     void flowMap(FlowMap &map) const {
627       for (ArcIt a(_graph); a != INVALID; ++a) {
628         map.set(a, _res_cap[_arc_idb[a]]);
629       }
630     }
631 
632     /// \brief Return the potential (dual value) of the given node.
633     ///
634     /// This function returns the potential (dual value) of the
635     /// given node.
636     ///
637     /// \pre \ref run() must be called before using this function.
potential(const Node & n)638     Cost potential(const Node& n) const {
639       return static_cast<Cost>(_pi[_node_id[n]]);
640     }
641 
642     /// \brief Copy the potential values (the dual solution) into the
643     /// given map.
644     ///
645     /// This function copies the potential (dual value) of each node
646     /// into the given map.
647     /// The \c Cost type of the algorithm must be convertible to the
648     /// \c Value type of the map.
649     ///
650     /// \pre \ref run() must be called before using this function.
651     template <typename PotentialMap>
potentialMap(PotentialMap & map)652     void potentialMap(PotentialMap &map) const {
653       for (NodeIt n(_graph); n != INVALID; ++n) {
654         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
655       }
656     }
657 
658     /// @}
659 
660   private:
661 
662     // Initialize the algorithm
init()663     ProblemType init() {
664       if (_res_node_num <= 1) return INFEASIBLE;
665 
666       // Check the sum of supply values
667       _sum_supply = 0;
668       for (int i = 0; i != _root; ++i) {
669         _sum_supply += _supply[i];
670       }
671       if (_sum_supply > 0) return INFEASIBLE;
672 
673       // Check lower and upper bounds
674       LEMON_DEBUG(checkBoundMaps(),
675           "Upper bounds must be greater or equal to the lower bounds");
676 
677 
678       // Initialize vectors
679       for (int i = 0; i != _res_node_num; ++i) {
680         _pi[i] = 0;
681       }
682       ValueVector excess(_supply);
683 
684       // Remove infinite upper bounds and check negative arcs
685       const Value MAX = std::numeric_limits<Value>::max();
686       int last_out;
687       if (_have_lower) {
688         for (int i = 0; i != _root; ++i) {
689           last_out = _first_out[i+1];
690           for (int j = _first_out[i]; j != last_out; ++j) {
691             if (_forward[j]) {
692               Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
693               if (c >= MAX) return UNBOUNDED;
694               excess[i] -= c;
695               excess[_target[j]] += c;
696             }
697           }
698         }
699       } else {
700         for (int i = 0; i != _root; ++i) {
701           last_out = _first_out[i+1];
702           for (int j = _first_out[i]; j != last_out; ++j) {
703             if (_forward[j] && _cost[j] < 0) {
704               Value c = _upper[j];
705               if (c >= MAX) return UNBOUNDED;
706               excess[i] -= c;
707               excess[_target[j]] += c;
708             }
709           }
710         }
711       }
712       Value ex, max_cap = 0;
713       for (int i = 0; i != _res_node_num; ++i) {
714         ex = excess[i];
715         if (ex < 0) max_cap -= ex;
716       }
717       for (int j = 0; j != _res_arc_num; ++j) {
718         if (_upper[j] >= MAX) _upper[j] = max_cap;
719       }
720 
721       // Initialize maps for Circulation and remove non-zero lower bounds
722       ConstMap<Arc, Value> low(0);
723       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
724       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
725       ValueArcMap cap(_graph), flow(_graph);
726       ValueNodeMap sup(_graph);
727       for (NodeIt n(_graph); n != INVALID; ++n) {
728         sup[n] = _supply[_node_id[n]];
729       }
730       if (_have_lower) {
731         for (ArcIt a(_graph); a != INVALID; ++a) {
732           int j = _arc_idf[a];
733           Value c = _lower[j];
734           cap[a] = _upper[j] - c;
735           sup[_graph.source(a)] -= c;
736           sup[_graph.target(a)] += c;
737         }
738       } else {
739         for (ArcIt a(_graph); a != INVALID; ++a) {
740           cap[a] = _upper[_arc_idf[a]];
741         }
742       }
743 
744       // Find a feasible flow using Circulation
745       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
746         circ(_graph, low, cap, sup);
747       if (!circ.flowMap(flow).run()) return INFEASIBLE;
748 
749       // Set residual capacities and handle GEQ supply type
750       if (_sum_supply < 0) {
751         for (ArcIt a(_graph); a != INVALID; ++a) {
752           Value fa = flow[a];
753           _res_cap[_arc_idf[a]] = cap[a] - fa;
754           _res_cap[_arc_idb[a]] = fa;
755           sup[_graph.source(a)] -= fa;
756           sup[_graph.target(a)] += fa;
757         }
758         for (NodeIt n(_graph); n != INVALID; ++n) {
759           excess[_node_id[n]] = sup[n];
760         }
761         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
762           int u = _target[a];
763           int ra = _reverse[a];
764           _res_cap[a] = -_sum_supply + 1;
765           _res_cap[ra] = -excess[u];
766           _cost[a] = 0;
767           _cost[ra] = 0;
768         }
769       } else {
770         for (ArcIt a(_graph); a != INVALID; ++a) {
771           Value fa = flow[a];
772           _res_cap[_arc_idf[a]] = cap[a] - fa;
773           _res_cap[_arc_idb[a]] = fa;
774         }
775         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
776           int ra = _reverse[a];
777           _res_cap[a] = 1;
778           _res_cap[ra] = 0;
779           _cost[a] = 0;
780           _cost[ra] = 0;
781         }
782       }
783 
784       return OPTIMAL;
785     }
786 
787     // Check if the upper bound is greater or equal to the lower bound
788     // on each arc.
checkBoundMaps()789     bool checkBoundMaps() {
790       for (int j = 0; j != _res_arc_num; ++j) {
791         if (_upper[j] < _lower[j]) return false;
792       }
793       return true;
794     }
795 
796     // Build a StaticDigraph structure containing the current
797     // residual network
buildResidualNetwork()798     void buildResidualNetwork() {
799       _arc_vec.clear();
800       _cost_vec.clear();
801       _id_vec.clear();
802       for (int j = 0; j != _res_arc_num; ++j) {
803         if (_res_cap[j] > 0) {
804           _arc_vec.push_back(IntPair(_source[j], _target[j]));
805           _cost_vec.push_back(_cost[j]);
806           _id_vec.push_back(j);
807         }
808       }
809       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
810     }
811 
812     // Execute the algorithm and transform the results
start(Method method)813     void start(Method method) {
814       // Execute the algorithm
815       switch (method) {
816         case SIMPLE_CYCLE_CANCELING:
817           startSimpleCycleCanceling();
818           break;
819         case MINIMUM_MEAN_CYCLE_CANCELING:
820           startMinMeanCycleCanceling();
821           break;
822         case CANCEL_AND_TIGHTEN:
823           startCancelAndTighten();
824           break;
825       }
826 
827       // Compute node potentials
828       if (method != SIMPLE_CYCLE_CANCELING) {
829         buildResidualNetwork();
830         typename BellmanFord<StaticDigraph, CostArcMap>
831           ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
832         bf.distMap(_pi_map);
833         bf.init(0);
834         bf.start();
835       }
836 
837       // Handle non-zero lower bounds
838       if (_have_lower) {
839         int limit = _first_out[_root];
840         for (int j = 0; j != limit; ++j) {
841           if (!_forward[j]) _res_cap[j] += _lower[j];
842         }
843       }
844     }
845 
846     // Execute the "Simple Cycle Canceling" method
startSimpleCycleCanceling()847     void startSimpleCycleCanceling() {
848       // Constants for computing the iteration limits
849       const int BF_FIRST_LIMIT  = 2;
850       const double BF_LIMIT_FACTOR = 1.5;
851 
852       typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
853       typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
854       typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
855       typedef typename BellmanFord<ResDigraph, CostArcMap>
856         ::template SetDistMap<CostNodeMap>
857         ::template SetPredMap<PredMap>::Create BF;
858 
859       // Build the residual network
860       _arc_vec.clear();
861       _cost_vec.clear();
862       for (int j = 0; j != _res_arc_num; ++j) {
863         _arc_vec.push_back(IntPair(_source[j], _target[j]));
864         _cost_vec.push_back(_cost[j]);
865       }
866       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
867 
868       FilterMap filter_map(_res_cap);
869       ResDigraph rgr(_sgr, filter_map);
870       std::vector<int> cycle;
871       std::vector<StaticDigraph::Arc> pred(_res_arc_num);
872       PredMap pred_map(pred);
873       BF bf(rgr, _cost_map);
874       bf.distMap(_pi_map).predMap(pred_map);
875 
876       int length_bound = BF_FIRST_LIMIT;
877       bool optimal = false;
878       while (!optimal) {
879         bf.init(0);
880         int iter_num = 0;
881         bool cycle_found = false;
882         while (!cycle_found) {
883           // Perform some iterations of the Bellman-Ford algorithm
884           int curr_iter_num = iter_num + length_bound <= _node_num ?
885             length_bound : _node_num - iter_num;
886           iter_num += curr_iter_num;
887           int real_iter_num = curr_iter_num;
888           for (int i = 0; i < curr_iter_num; ++i) {
889             if (bf.processNextWeakRound()) {
890               real_iter_num = i;
891               break;
892             }
893           }
894           if (real_iter_num < curr_iter_num) {
895             // Optimal flow is found
896             optimal = true;
897             break;
898           } else {
899             // Search for node disjoint negative cycles
900             std::vector<int> state(_res_node_num, 0);
901             int id = 0;
902             for (int u = 0; u != _res_node_num; ++u) {
903               if (state[u] != 0) continue;
904               ++id;
905               int v = u;
906               for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
907                    -1 : rgr.id(rgr.source(pred[v]))) {
908                 state[v] = id;
909               }
910               if (v != -1 && state[v] == id) {
911                 // A negative cycle is found
912                 cycle_found = true;
913                 cycle.clear();
914                 StaticDigraph::Arc a = pred[v];
915                 Value d, delta = _res_cap[rgr.id(a)];
916                 cycle.push_back(rgr.id(a));
917                 while (rgr.id(rgr.source(a)) != v) {
918                   a = pred_map[rgr.source(a)];
919                   d = _res_cap[rgr.id(a)];
920                   if (d < delta) delta = d;
921                   cycle.push_back(rgr.id(a));
922                 }
923 
924                 // Augment along the cycle
925                 for (int i = 0; i < int(cycle.size()); ++i) {
926                   int j = cycle[i];
927                   _res_cap[j] -= delta;
928                   _res_cap[_reverse[j]] += delta;
929                 }
930               }
931             }
932           }
933 
934           // Increase iteration limit if no cycle is found
935           if (!cycle_found) {
936             length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
937           }
938         }
939       }
940     }
941 
942     // Execute the "Minimum Mean Cycle Canceling" method
startMinMeanCycleCanceling()943     void startMinMeanCycleCanceling() {
944       typedef Path<StaticDigraph> SPath;
945       typedef typename SPath::ArcIt SPathArcIt;
946       typedef typename HowardMmc<StaticDigraph, CostArcMap>
947         ::template SetPath<SPath>::Create HwMmc;
948       typedef typename HartmannOrlinMmc<StaticDigraph, CostArcMap>
949         ::template SetPath<SPath>::Create HoMmc;
950 
951       const double HW_ITER_LIMIT_FACTOR = 1.0;
952       const int HW_ITER_LIMIT_MIN_VALUE = 5;
953 
954       const int hw_iter_limit =
955           std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
956                    HW_ITER_LIMIT_MIN_VALUE);
957 
958       SPath cycle;
959       HwMmc hw_mmc(_sgr, _cost_map);
960       hw_mmc.cycle(cycle);
961       buildResidualNetwork();
962       while (true) {
963 
964         typename HwMmc::TerminationCause hw_tc =
965             hw_mmc.findCycleMean(hw_iter_limit);
966         if (hw_tc == HwMmc::ITERATION_LIMIT) {
967           // Howard's algorithm reached the iteration limit, start a
968           // strongly polynomial algorithm instead
969           HoMmc ho_mmc(_sgr, _cost_map);
970           ho_mmc.cycle(cycle);
971           // Find a minimum mean cycle (Hartmann-Orlin algorithm)
972           if (!(ho_mmc.findCycleMean() && ho_mmc.cycleCost() < 0)) break;
973           ho_mmc.findCycle();
974         } else {
975           // Find a minimum mean cycle (Howard algorithm)
976           if (!(hw_tc == HwMmc::OPTIMAL && hw_mmc.cycleCost() < 0)) break;
977           hw_mmc.findCycle();
978         }
979 
980         // Compute delta value
981         Value delta = INF;
982         for (SPathArcIt a(cycle); a != INVALID; ++a) {
983           Value d = _res_cap[_id_vec[_sgr.id(a)]];
984           if (d < delta) delta = d;
985         }
986 
987         // Augment along the cycle
988         for (SPathArcIt a(cycle); a != INVALID; ++a) {
989           int j = _id_vec[_sgr.id(a)];
990           _res_cap[j] -= delta;
991           _res_cap[_reverse[j]] += delta;
992         }
993 
994         // Rebuild the residual network
995         buildResidualNetwork();
996       }
997     }
998 
999     // Execute the "Cancel-and-Tighten" method
startCancelAndTighten()1000     void startCancelAndTighten() {
1001       // Constants for the min mean cycle computations
1002       const double LIMIT_FACTOR = 1.0;
1003       const int MIN_LIMIT = 5;
1004       const double HW_ITER_LIMIT_FACTOR = 1.0;
1005       const int HW_ITER_LIMIT_MIN_VALUE = 5;
1006 
1007       const int hw_iter_limit =
1008           std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
1009                    HW_ITER_LIMIT_MIN_VALUE);
1010 
1011       // Contruct auxiliary data vectors
1012       DoubleVector pi(_res_node_num, 0.0);
1013       IntVector level(_res_node_num);
1014       BoolVector reached(_res_node_num);
1015       BoolVector processed(_res_node_num);
1016       IntVector pred_node(_res_node_num);
1017       IntVector pred_arc(_res_node_num);
1018       std::vector<int> stack(_res_node_num);
1019       std::vector<int> proc_vector(_res_node_num);
1020 
1021       // Initialize epsilon
1022       double epsilon = 0;
1023       for (int a = 0; a != _res_arc_num; ++a) {
1024         if (_res_cap[a] > 0 && -_cost[a] > epsilon)
1025           epsilon = -_cost[a];
1026       }
1027 
1028       // Start phases
1029       Tolerance<double> tol;
1030       tol.epsilon(1e-6);
1031       int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
1032       if (limit < MIN_LIMIT) limit = MIN_LIMIT;
1033       int iter = limit;
1034       while (epsilon * _res_node_num >= 1) {
1035         // Find and cancel cycles in the admissible network using DFS
1036         for (int u = 0; u != _res_node_num; ++u) {
1037           reached[u] = false;
1038           processed[u] = false;
1039         }
1040         int stack_head = -1;
1041         int proc_head = -1;
1042         for (int start = 0; start != _res_node_num; ++start) {
1043           if (reached[start]) continue;
1044 
1045           // New start node
1046           reached[start] = true;
1047           pred_arc[start] = -1;
1048           pred_node[start] = -1;
1049 
1050           // Find the first admissible outgoing arc
1051           double p = pi[start];
1052           int a = _first_out[start];
1053           int last_out = _first_out[start+1];
1054           for (; a != last_out && (_res_cap[a] == 0 ||
1055                !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1056           if (a == last_out) {
1057             processed[start] = true;
1058             proc_vector[++proc_head] = start;
1059             continue;
1060           }
1061           stack[++stack_head] = a;
1062 
1063           while (stack_head >= 0) {
1064             int sa = stack[stack_head];
1065             int u = _source[sa];
1066             int v = _target[sa];
1067 
1068             if (!reached[v]) {
1069               // A new node is reached
1070               reached[v] = true;
1071               pred_node[v] = u;
1072               pred_arc[v] = sa;
1073               p = pi[v];
1074               a = _first_out[v];
1075               last_out = _first_out[v+1];
1076               for (; a != last_out && (_res_cap[a] == 0 ||
1077                    !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1078               stack[++stack_head] = a == last_out ? -1 : a;
1079             } else {
1080               if (!processed[v]) {
1081                 // A cycle is found
1082                 int n, w = u;
1083                 Value d, delta = _res_cap[sa];
1084                 for (n = u; n != v; n = pred_node[n]) {
1085                   d = _res_cap[pred_arc[n]];
1086                   if (d <= delta) {
1087                     delta = d;
1088                     w = pred_node[n];
1089                   }
1090                 }
1091 
1092                 // Augment along the cycle
1093                 _res_cap[sa] -= delta;
1094                 _res_cap[_reverse[sa]] += delta;
1095                 for (n = u; n != v; n = pred_node[n]) {
1096                   int pa = pred_arc[n];
1097                   _res_cap[pa] -= delta;
1098                   _res_cap[_reverse[pa]] += delta;
1099                 }
1100                 for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
1101                   --stack_head;
1102                   reached[n] = false;
1103                 }
1104                 u = w;
1105               }
1106               v = u;
1107 
1108               // Find the next admissible outgoing arc
1109               p = pi[v];
1110               a = stack[stack_head] + 1;
1111               last_out = _first_out[v+1];
1112               for (; a != last_out && (_res_cap[a] == 0 ||
1113                    !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1114               stack[stack_head] = a == last_out ? -1 : a;
1115             }
1116 
1117             while (stack_head >= 0 && stack[stack_head] == -1) {
1118               processed[v] = true;
1119               proc_vector[++proc_head] = v;
1120               if (--stack_head >= 0) {
1121                 // Find the next admissible outgoing arc
1122                 v = _source[stack[stack_head]];
1123                 p = pi[v];
1124                 a = stack[stack_head] + 1;
1125                 last_out = _first_out[v+1];
1126                 for (; a != last_out && (_res_cap[a] == 0 ||
1127                      !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1128                 stack[stack_head] = a == last_out ? -1 : a;
1129               }
1130             }
1131           }
1132         }
1133 
1134         // Tighten potentials and epsilon
1135         if (--iter > 0) {
1136           for (int u = 0; u != _res_node_num; ++u) {
1137             level[u] = 0;
1138           }
1139           for (int i = proc_head; i > 0; --i) {
1140             int u = proc_vector[i];
1141             double p = pi[u];
1142             int l = level[u] + 1;
1143             int last_out = _first_out[u+1];
1144             for (int a = _first_out[u]; a != last_out; ++a) {
1145               int v = _target[a];
1146               if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
1147                   l > level[v]) level[v] = l;
1148             }
1149           }
1150 
1151           // Modify potentials
1152           double q = std::numeric_limits<double>::max();
1153           for (int u = 0; u != _res_node_num; ++u) {
1154             int lu = level[u];
1155             double p, pu = pi[u];
1156             int last_out = _first_out[u+1];
1157             for (int a = _first_out[u]; a != last_out; ++a) {
1158               if (_res_cap[a] == 0) continue;
1159               int v = _target[a];
1160               int ld = lu - level[v];
1161               if (ld > 0) {
1162                 p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
1163                 if (p < q) q = p;
1164               }
1165             }
1166           }
1167           for (int u = 0; u != _res_node_num; ++u) {
1168             pi[u] -= q * level[u];
1169           }
1170 
1171           // Modify epsilon
1172           epsilon = 0;
1173           for (int u = 0; u != _res_node_num; ++u) {
1174             double curr, pu = pi[u];
1175             int last_out = _first_out[u+1];
1176             for (int a = _first_out[u]; a != last_out; ++a) {
1177               if (_res_cap[a] == 0) continue;
1178               curr = _cost[a] + pu - pi[_target[a]];
1179               if (-curr > epsilon) epsilon = -curr;
1180             }
1181           }
1182         } else {
1183           typedef HowardMmc<StaticDigraph, CostArcMap> HwMmc;
1184           typedef HartmannOrlinMmc<StaticDigraph, CostArcMap> HoMmc;
1185           typedef typename BellmanFord<StaticDigraph, CostArcMap>
1186             ::template SetDistMap<CostNodeMap>::Create BF;
1187 
1188           // Set epsilon to the minimum cycle mean
1189           Cost cycle_cost = 0;
1190           int cycle_size = 1;
1191           buildResidualNetwork();
1192           HwMmc hw_mmc(_sgr, _cost_map);
1193           if (hw_mmc.findCycleMean(hw_iter_limit) == HwMmc::ITERATION_LIMIT) {
1194             // Howard's algorithm reached the iteration limit, start a
1195             // strongly polynomial algorithm instead
1196             HoMmc ho_mmc(_sgr, _cost_map);
1197             ho_mmc.findCycleMean();
1198             epsilon = -ho_mmc.cycleMean();
1199             cycle_cost = ho_mmc.cycleCost();
1200             cycle_size = ho_mmc.cycleSize();
1201           } else {
1202             // Set epsilon
1203             epsilon = -hw_mmc.cycleMean();
1204             cycle_cost = hw_mmc.cycleCost();
1205             cycle_size = hw_mmc.cycleSize();
1206           }
1207 
1208           // Compute feasible potentials for the current epsilon
1209           for (int i = 0; i != int(_cost_vec.size()); ++i) {
1210             _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
1211           }
1212           BF bf(_sgr, _cost_map);
1213           bf.distMap(_pi_map);
1214           bf.init(0);
1215           bf.start();
1216           for (int u = 0; u != _res_node_num; ++u) {
1217             pi[u] = static_cast<double>(_pi[u]) / cycle_size;
1218           }
1219 
1220           iter = limit;
1221         }
1222       }
1223     }
1224 
1225   }; //class CycleCanceling
1226 
1227   ///@}
1228 
1229 } //namespace lemon
1230 
1231 #endif //LEMON_CYCLE_CANCELING_H
1232