1 /* $Id: tif_getimage.c,v 1.82 2012-06-06 00:17:49 fwarmerdam Exp $ */
2 
3 /*
4  * Copyright (c) 1991-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 /*
28  * TIFF Library
29  *
30  * Read and return a packed RGBA image.
31  */
32 #include "tiffiop.h"
33 #include <stdio.h>
34 
35 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
36 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
38 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
39 static int PickContigCase(TIFFRGBAImage*);
40 static int PickSeparateCase(TIFFRGBAImage*);
41 
42 static int BuildMapUaToAa(TIFFRGBAImage* img);
43 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
44 
45 static const char photoTag[] = "PhotometricInterpretation";
46 
47 /*
48  * Helper constants used in Orientation tag handling
49  */
50 #define FLIP_VERTICALLY 0x01
51 #define FLIP_HORIZONTALLY 0x02
52 
53 /*
54  * Color conversion constants. We will define display types here.
55  */
56 
57 static const TIFFDisplay display_sRGB = {
58 	{			/* XYZ -> luminance matrix */
59 		{  3.2410F, -1.5374F, -0.4986F },
60 		{  -0.9692F, 1.8760F, 0.0416F },
61 		{  0.0556F, -0.2040F, 1.0570F }
62 	},
63 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
64 	255, 255, 255,		/* Pixel values for ref. white */
65 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
66 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
67 };
68 
69 /*
70  * Check the image to see if TIFFReadRGBAImage can deal with it.
71  * 1/0 is returned according to whether or not the image can
72  * be handled.  If 0 is returned, emsg contains the reason
73  * why it is being rejected.
74  */
75 int
TIFFRGBAImageOK(TIFF * tif,char emsg[1024])76 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
77 {
78 	TIFFDirectory* td = &tif->tif_dir;
79 	uint16 photometric;
80 	int colorchannels;
81 
82 	if (!tif->tif_decodestatus) {
83 		sprintf(emsg, "Sorry, requested compression method is not configured");
84 		return (0);
85 	}
86 	switch (td->td_bitspersample) {
87 		case 1:
88 		case 2:
89 		case 4:
90 		case 8:
91 		case 16:
92 			break;
93 		default:
94 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
95 			    td->td_bitspersample);
96 			return (0);
97 	}
98 	colorchannels = td->td_samplesperpixel - td->td_extrasamples;
99 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
100 		switch (colorchannels) {
101 			case 1:
102 				photometric = PHOTOMETRIC_MINISBLACK;
103 				break;
104 			case 3:
105 				photometric = PHOTOMETRIC_RGB;
106 				break;
107 			default:
108 				sprintf(emsg, "Missing needed %s tag", photoTag);
109 				return (0);
110 		}
111 	}
112 	switch (photometric) {
113 		case PHOTOMETRIC_MINISWHITE:
114 		case PHOTOMETRIC_MINISBLACK:
115 		case PHOTOMETRIC_PALETTE:
116 			if (td->td_planarconfig == PLANARCONFIG_CONTIG
117 			    && td->td_samplesperpixel != 1
118 			    && td->td_bitspersample < 8 ) {
119 				sprintf(emsg,
120 				    "Sorry, can not handle contiguous data with %s=%d, "
121 				    "and %s=%d and Bits/Sample=%d",
122 				    photoTag, photometric,
123 				    "Samples/pixel", td->td_samplesperpixel,
124 				    td->td_bitspersample);
125 				return (0);
126 			}
127 			/*
128 			 * We should likely validate that any extra samples are either
129 			 * to be ignored, or are alpha, and if alpha we should try to use
130 			 * them.  But for now we won't bother with this.
131 			*/
132 			break;
133 		case PHOTOMETRIC_YCBCR:
134 			/*
135 			 * TODO: if at all meaningful and useful, make more complete
136 			 * support check here, or better still, refactor to let supporting
137 			 * code decide whether there is support and what meaningfull
138 			 * error to return
139 			 */
140 			break;
141 		case PHOTOMETRIC_RGB:
142 			if (colorchannels < 3) {
143 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
144 				    "Color channels", colorchannels);
145 				return (0);
146 			}
147 			break;
148 		case PHOTOMETRIC_SEPARATED:
149 			{
150 				uint16 inkset;
151 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
152 				if (inkset != INKSET_CMYK) {
153 					sprintf(emsg,
154 					    "Sorry, can not handle separated image with %s=%d",
155 					    "InkSet", inkset);
156 					return 0;
157 				}
158 				if (td->td_samplesperpixel < 4) {
159 					sprintf(emsg,
160 					    "Sorry, can not handle separated image with %s=%d",
161 					    "Samples/pixel", td->td_samplesperpixel);
162 					return 0;
163 				}
164 				break;
165 			}
166 		case PHOTOMETRIC_LOGL:
167 			if (td->td_compression != COMPRESSION_SGILOG) {
168 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
169 				    "Compression", COMPRESSION_SGILOG);
170 				return (0);
171 			}
172 			break;
173 		case PHOTOMETRIC_LOGLUV:
174 			if (td->td_compression != COMPRESSION_SGILOG &&
175 			    td->td_compression != COMPRESSION_SGILOG24) {
176 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
177 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
178 				return (0);
179 			}
180 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
181 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
182 				    "Planarconfiguration", td->td_planarconfig);
183 				return (0);
184 			}
185 			break;
186 		case PHOTOMETRIC_CIELAB:
187 			break;
188 		default:
189 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
190 			    photoTag, photometric);
191 			return (0);
192 	}
193 	return (1);
194 }
195 
196 void
TIFFRGBAImageEnd(TIFFRGBAImage * img)197 TIFFRGBAImageEnd(TIFFRGBAImage* img)
198 {
199 	if (img->Map)
200 		_TIFFfree(img->Map), img->Map = NULL;
201 	if (img->BWmap)
202 		_TIFFfree(img->BWmap), img->BWmap = NULL;
203 	if (img->PALmap)
204 		_TIFFfree(img->PALmap), img->PALmap = NULL;
205 	if (img->ycbcr)
206 		_TIFFfree(img->ycbcr), img->ycbcr = NULL;
207 	if (img->cielab)
208 		_TIFFfree(img->cielab), img->cielab = NULL;
209 	if (img->UaToAa)
210 		_TIFFfree(img->UaToAa), img->UaToAa = NULL;
211 	if (img->Bitdepth16To8)
212 		_TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL;
213 
214 	if( img->redcmap ) {
215 		_TIFFfree( img->redcmap );
216 		_TIFFfree( img->greencmap );
217 		_TIFFfree( img->bluecmap );
218                 img->redcmap = img->greencmap = img->bluecmap = NULL;
219 	}
220 }
221 
222 static int
isCCITTCompression(TIFF * tif)223 isCCITTCompression(TIFF* tif)
224 {
225     uint16 compress;
226     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
227     return (compress == COMPRESSION_CCITTFAX3 ||
228 	    compress == COMPRESSION_CCITTFAX4 ||
229 	    compress == COMPRESSION_CCITTRLE ||
230 	    compress == COMPRESSION_CCITTRLEW);
231 }
232 
233 int
TIFFRGBAImageBegin(TIFFRGBAImage * img,TIFF * tif,int stop,char emsg[1024])234 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
235 {
236 	uint16* sampleinfo;
237 	uint16 extrasamples;
238 	uint16 planarconfig;
239 	uint16 compress;
240 	int colorchannels;
241 	uint16 *red_orig, *green_orig, *blue_orig;
242 	int n_color;
243 
244 	/* Initialize to normal values */
245 	img->row_offset = 0;
246 	img->col_offset = 0;
247 	img->redcmap = NULL;
248 	img->greencmap = NULL;
249 	img->bluecmap = NULL;
250 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
251 
252 	img->tif = tif;
253 	img->stoponerr = stop;
254 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
255 	switch (img->bitspersample) {
256 		case 1:
257 		case 2:
258 		case 4:
259 		case 8:
260 		case 16:
261 			break;
262 		default:
263 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
264 			    img->bitspersample);
265 			goto fail_return;
266 	}
267 	img->alpha = 0;
268 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
269 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
270 	    &extrasamples, &sampleinfo);
271 	if (extrasamples >= 1)
272 	{
273 		switch (sampleinfo[0]) {
274 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
275 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */
276 					img->alpha = EXTRASAMPLE_ASSOCALPHA;
277 				break;
278 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
279 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
280 				img->alpha = sampleinfo[0];
281 				break;
282 		}
283 	}
284 
285 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
286 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
287 		img->photometric = PHOTOMETRIC_MINISWHITE;
288 
289 	if( extrasamples == 0
290 	    && img->samplesperpixel == 4
291 	    && img->photometric == PHOTOMETRIC_RGB )
292 	{
293 		img->alpha = EXTRASAMPLE_ASSOCALPHA;
294 		extrasamples = 1;
295 	}
296 #endif
297 
298 	colorchannels = img->samplesperpixel - extrasamples;
299 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
300 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
301 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
302 		switch (colorchannels) {
303 			case 1:
304 				if (isCCITTCompression(tif))
305 					img->photometric = PHOTOMETRIC_MINISWHITE;
306 				else
307 					img->photometric = PHOTOMETRIC_MINISBLACK;
308 				break;
309 			case 3:
310 				img->photometric = PHOTOMETRIC_RGB;
311 				break;
312 			default:
313 				sprintf(emsg, "Missing needed %s tag", photoTag);
314                                 goto fail_return;
315 		}
316 	}
317 	switch (img->photometric) {
318 		case PHOTOMETRIC_PALETTE:
319 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
320 			    &red_orig, &green_orig, &blue_orig)) {
321 				sprintf(emsg, "Missing required \"Colormap\" tag");
322                                 goto fail_return;
323 			}
324 
325 			/* copy the colormaps so we can modify them */
326 			n_color = (1L << img->bitspersample);
327 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
328 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
329 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
330 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
331 				sprintf(emsg, "Out of memory for colormap copy");
332                                 goto fail_return;
333 			}
334 
335 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
336 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
337 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
338 
339 			/* fall thru... */
340 		case PHOTOMETRIC_MINISWHITE:
341 		case PHOTOMETRIC_MINISBLACK:
342 			if (planarconfig == PLANARCONFIG_CONTIG
343 			    && img->samplesperpixel != 1
344 			    && img->bitspersample < 8 ) {
345 				sprintf(emsg,
346 				    "Sorry, can not handle contiguous data with %s=%d, "
347 				    "and %s=%d and Bits/Sample=%d",
348 				    photoTag, img->photometric,
349 				    "Samples/pixel", img->samplesperpixel,
350 				    img->bitspersample);
351                                 goto fail_return;
352 			}
353 			break;
354 		case PHOTOMETRIC_YCBCR:
355 			/* It would probably be nice to have a reality check here. */
356 			if (planarconfig == PLANARCONFIG_CONTIG)
357 				/* can rely on libjpeg to convert to RGB */
358 				/* XXX should restore current state on exit */
359 				switch (compress) {
360 					case COMPRESSION_JPEG:
361 						/*
362 						 * TODO: when complete tests verify complete desubsampling
363 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
364 						 * favor of tif_getimage.c native handling
365 						 */
366 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
367 						img->photometric = PHOTOMETRIC_RGB;
368 						break;
369 					default:
370 						/* do nothing */;
371 						break;
372 				}
373 			/*
374 			 * TODO: if at all meaningful and useful, make more complete
375 			 * support check here, or better still, refactor to let supporting
376 			 * code decide whether there is support and what meaningfull
377 			 * error to return
378 			 */
379 			break;
380 		case PHOTOMETRIC_RGB:
381 			if (colorchannels < 3) {
382 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
383 				    "Color channels", colorchannels);
384                                 goto fail_return;
385 			}
386 			break;
387 		case PHOTOMETRIC_SEPARATED:
388 			{
389 				uint16 inkset;
390 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
391 				if (inkset != INKSET_CMYK) {
392 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
393 					    "InkSet", inkset);
394                                         goto fail_return;
395 				}
396 				if (img->samplesperpixel < 4) {
397 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
398 					    "Samples/pixel", img->samplesperpixel);
399                                         goto fail_return;
400 				}
401 			}
402 			break;
403 		case PHOTOMETRIC_LOGL:
404 			if (compress != COMPRESSION_SGILOG) {
405 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
406 				    "Compression", COMPRESSION_SGILOG);
407                                 goto fail_return;
408 			}
409 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
410 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
411 			img->bitspersample = 8;
412 			break;
413 		case PHOTOMETRIC_LOGLUV:
414 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
415 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
416 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
417                                 goto fail_return;
418 			}
419 			if (planarconfig != PLANARCONFIG_CONTIG) {
420 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
421 				    "Planarconfiguration", planarconfig);
422 				return (0);
423 			}
424 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
425 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
426 			img->bitspersample = 8;
427 			break;
428 		case PHOTOMETRIC_CIELAB:
429 			break;
430 		default:
431 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
432 			    photoTag, img->photometric);
433                         goto fail_return;
434 	}
435 	img->Map = NULL;
436 	img->BWmap = NULL;
437 	img->PALmap = NULL;
438 	img->ycbcr = NULL;
439 	img->cielab = NULL;
440 	img->UaToAa = NULL;
441 	img->Bitdepth16To8 = NULL;
442 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
443 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
444 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
445 	img->isContig =
446 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
447 	if (img->isContig) {
448 		if (!PickContigCase(img)) {
449 			sprintf(emsg, "Sorry, can not handle image");
450 			goto fail_return;
451 		}
452 	} else {
453 		if (!PickSeparateCase(img)) {
454 			sprintf(emsg, "Sorry, can not handle image");
455 			goto fail_return;
456 		}
457 	}
458 	return 1;
459 
460   fail_return:
461         _TIFFfree( img->redcmap );
462         _TIFFfree( img->greencmap );
463         _TIFFfree( img->bluecmap );
464         img->redcmap = img->greencmap = img->bluecmap = NULL;
465         return 0;
466 }
467 
468 int
TIFFRGBAImageGet(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)469 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
470 {
471     if (img->get == NULL) {
472 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
473 		return (0);
474 	}
475 	if (img->put.any == NULL) {
476 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
477 		"No \"put\" routine setupl; probably can not handle image format");
478 		return (0);
479     }
480     return (*img->get)(img, raster, w, h);
481 }
482 
483 /*
484  * Read the specified image into an ABGR-format rastertaking in account
485  * specified orientation.
486  */
487 int
TIFFReadRGBAImageOriented(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int orientation,int stop)488 TIFFReadRGBAImageOriented(TIFF* tif,
489 			  uint32 rwidth, uint32 rheight, uint32* raster,
490 			  int orientation, int stop)
491 {
492     char emsg[1024] = "";
493     TIFFRGBAImage img;
494     int ok;
495 
496 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
497 		img.req_orientation = orientation;
498 		/* XXX verify rwidth and rheight against width and height */
499 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
500 			rwidth, img.height);
501 		TIFFRGBAImageEnd(&img);
502 	} else {
503 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
504 		ok = 0;
505     }
506     return (ok);
507 }
508 
509 /*
510  * Read the specified image into an ABGR-format raster. Use bottom left
511  * origin for raster by default.
512  */
513 int
TIFFReadRGBAImage(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int stop)514 TIFFReadRGBAImage(TIFF* tif,
515 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
516 {
517 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
518 					 ORIENTATION_BOTLEFT, stop);
519 }
520 
521 static int
setorientation(TIFFRGBAImage * img)522 setorientation(TIFFRGBAImage* img)
523 {
524 	switch (img->orientation) {
525 		case ORIENTATION_TOPLEFT:
526 		case ORIENTATION_LEFTTOP:
527 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
528 			    img->req_orientation == ORIENTATION_RIGHTTOP)
529 				return FLIP_HORIZONTALLY;
530 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
531 			    img->req_orientation == ORIENTATION_RIGHTBOT)
532 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
533 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
534 			    img->req_orientation == ORIENTATION_LEFTBOT)
535 				return FLIP_VERTICALLY;
536 			else
537 				return 0;
538 		case ORIENTATION_TOPRIGHT:
539 		case ORIENTATION_RIGHTTOP:
540 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
541 			    img->req_orientation == ORIENTATION_LEFTTOP)
542 				return FLIP_HORIZONTALLY;
543 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
544 			    img->req_orientation == ORIENTATION_RIGHTBOT)
545 				return FLIP_VERTICALLY;
546 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
547 			    img->req_orientation == ORIENTATION_LEFTBOT)
548 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
549 			else
550 				return 0;
551 		case ORIENTATION_BOTRIGHT:
552 		case ORIENTATION_RIGHTBOT:
553 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
554 			    img->req_orientation == ORIENTATION_LEFTTOP)
555 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
556 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
557 			    img->req_orientation == ORIENTATION_RIGHTTOP)
558 				return FLIP_VERTICALLY;
559 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
560 			    img->req_orientation == ORIENTATION_LEFTBOT)
561 				return FLIP_HORIZONTALLY;
562 			else
563 				return 0;
564 		case ORIENTATION_BOTLEFT:
565 		case ORIENTATION_LEFTBOT:
566 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
567 			    img->req_orientation == ORIENTATION_LEFTTOP)
568 				return FLIP_VERTICALLY;
569 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
570 			    img->req_orientation == ORIENTATION_RIGHTTOP)
571 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
572 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
573 			    img->req_orientation == ORIENTATION_RIGHTBOT)
574 				return FLIP_HORIZONTALLY;
575 			else
576 				return 0;
577 		default:	/* NOTREACHED */
578 			return 0;
579 	}
580 }
581 
582 /*
583  * Get an tile-organized image that has
584  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
585  * or
586  *	SamplesPerPixel == 1
587  */
588 static int
gtTileContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)589 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
590 {
591     TIFF* tif = img->tif;
592     tileContigRoutine put = img->put.contig;
593     uint32 col, row, y, rowstoread;
594     tmsize_t pos;
595     uint32 tw, th;
596     unsigned char* buf;
597     int32 fromskew, toskew;
598     uint32 nrow;
599     int ret = 1, flip;
600 
601     buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif));
602     if (buf == 0) {
603 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
604 		return (0);
605     }
606     _TIFFmemset(buf, 0, TIFFTileSize(tif));
607     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
608     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
609 
610     flip = setorientation(img);
611     if (flip & FLIP_VERTICALLY) {
612 	    y = h - 1;
613 	    toskew = -(int32)(tw + w);
614     }
615     else {
616 	    y = 0;
617 	    toskew = -(int32)(tw - w);
618     }
619 
620     for (row = 0; row < h; row += nrow)
621     {
622         rowstoread = th - (row + img->row_offset) % th;
623     	nrow = (row + rowstoread > h ? h - row : rowstoread);
624 	for (col = 0; col < w; col += tw)
625         {
626 	    if (TIFFReadTile(tif, buf, col+img->col_offset,
627 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->stoponerr)
628             {
629                 ret = 0;
630                 break;
631             }
632 
633 	    pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif);
634 
635     	    if (col + tw > w)
636             {
637                 /*
638                  * Tile is clipped horizontally.  Calculate
639                  * visible portion and skewing factors.
640                  */
641                 uint32 npix = w - col;
642                 fromskew = tw - npix;
643                 (*put)(img, raster+y*w+col, col, y,
644                        npix, nrow, fromskew, toskew + fromskew, buf + pos);
645             }
646             else
647             {
648                 (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + pos);
649             }
650         }
651 
652         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
653     }
654     _TIFFfree(buf);
655 
656     if (flip & FLIP_HORIZONTALLY) {
657 	    uint32 line;
658 
659 	    for (line = 0; line < h; line++) {
660 		    uint32 *left = raster + (line * w);
661 		    uint32 *right = left + w - 1;
662 
663 		    while ( left < right ) {
664 			    uint32 temp = *left;
665 			    *left = *right;
666 			    *right = temp;
667 			    left++, right--;
668 		    }
669 	    }
670     }
671 
672     return (ret);
673 }
674 
675 /*
676  * Get an tile-organized image that has
677  *	 SamplesPerPixel > 1
678  *	 PlanarConfiguration separated
679  * We assume that all such images are RGB.
680  */
681 static int
gtTileSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)682 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
683 {
684 	TIFF* tif = img->tif;
685 	tileSeparateRoutine put = img->put.separate;
686 	uint32 col, row, y, rowstoread;
687 	tmsize_t pos;
688 	uint32 tw, th;
689 	unsigned char* buf;
690 	unsigned char* p0;
691 	unsigned char* p1;
692 	unsigned char* p2;
693 	unsigned char* pa;
694 	tmsize_t tilesize;
695 	tmsize_t bufsize;
696 	int32 fromskew, toskew;
697 	int alpha = img->alpha;
698 	uint32 nrow;
699 	int ret = 1, flip;
700         int colorchannels;
701 
702 	tilesize = TIFFTileSize(tif);
703 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
704 	if (bufsize == 0) {
705 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
706 		return (0);
707 	}
708 	buf = (unsigned char*) _TIFFmalloc(bufsize);
709 	if (buf == 0) {
710 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
711 		return (0);
712 	}
713 	_TIFFmemset(buf, 0, bufsize);
714 	p0 = buf;
715 	p1 = p0 + tilesize;
716 	p2 = p1 + tilesize;
717 	pa = (alpha?(p2+tilesize):NULL);
718 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
719 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
720 
721 	flip = setorientation(img);
722 	if (flip & FLIP_VERTICALLY) {
723 		y = h - 1;
724 		toskew = -(int32)(tw + w);
725 	}
726 	else {
727 		y = 0;
728 		toskew = -(int32)(tw - w);
729 	}
730 
731         switch( img->photometric )
732         {
733           case PHOTOMETRIC_MINISWHITE:
734           case PHOTOMETRIC_MINISBLACK:
735           case PHOTOMETRIC_PALETTE:
736             colorchannels = 1;
737             p2 = p1 = p0;
738             break;
739 
740           default:
741             colorchannels = 3;
742             break;
743         }
744 
745 	for (row = 0; row < h; row += nrow)
746 	{
747 		rowstoread = th - (row + img->row_offset) % th;
748 		nrow = (row + rowstoread > h ? h - row : rowstoread);
749 		for (col = 0; col < w; col += tw)
750 		{
751 			if (TIFFReadTile(tif, p0, col+img->col_offset,
752 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
753 			{
754 				ret = 0;
755 				break;
756 			}
757 			if (colorchannels > 1
758                             && TIFFReadTile(tif, p1, col+img->col_offset,
759                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
760                             && img->stoponerr)
761 			{
762 				ret = 0;
763 				break;
764 			}
765 			if (colorchannels > 1
766                             && TIFFReadTile(tif, p2, col+img->col_offset,
767                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
768                             && img->stoponerr)
769 			{
770 				ret = 0;
771 				break;
772 			}
773 			if (alpha
774                             && TIFFReadTile(tif,pa,col+img->col_offset,
775                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
776                             && img->stoponerr)
777                         {
778                             ret = 0;
779                             break;
780 			}
781 
782 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif);
783 
784 			if (col + tw > w)
785 			{
786 				/*
787 				 * Tile is clipped horizontally.  Calculate
788 				 * visible portion and skewing factors.
789 				 */
790 				uint32 npix = w - col;
791 				fromskew = tw - npix;
792 				(*put)(img, raster+y*w+col, col, y,
793 				    npix, nrow, fromskew, toskew + fromskew,
794 				    p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
795 			} else {
796 				(*put)(img, raster+y*w+col, col, y,
797 				    tw, nrow, 0, toskew, p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
798 			}
799 		}
800 
801 		y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow);
802 	}
803 
804 	if (flip & FLIP_HORIZONTALLY) {
805 		uint32 line;
806 
807 		for (line = 0; line < h; line++) {
808 			uint32 *left = raster + (line * w);
809 			uint32 *right = left + w - 1;
810 
811 			while ( left < right ) {
812 				uint32 temp = *left;
813 				*left = *right;
814 				*right = temp;
815 				left++, right--;
816 			}
817 		}
818 	}
819 
820 	_TIFFfree(buf);
821 	return (ret);
822 }
823 
824 /*
825  * Get a strip-organized image that has
826  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
827  * or
828  *	SamplesPerPixel == 1
829  */
830 static int
gtStripContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)831 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
832 {
833 	TIFF* tif = img->tif;
834 	tileContigRoutine put = img->put.contig;
835 	uint32 row, y, nrow, nrowsub, rowstoread;
836 	tmsize_t pos;
837 	unsigned char* buf;
838 	uint32 rowsperstrip;
839 	uint16 subsamplinghor,subsamplingver;
840 	uint32 imagewidth = img->width;
841 	tmsize_t scanline;
842 	int32 fromskew, toskew;
843 	int ret = 1, flip;
844 
845 	buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif));
846 	if (buf == 0) {
847 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer");
848 		return (0);
849 	}
850 	_TIFFmemset(buf, 0, TIFFStripSize(tif));
851 
852 	flip = setorientation(img);
853 	if (flip & FLIP_VERTICALLY) {
854 		y = h - 1;
855 		toskew = -(int32)(w + w);
856 	} else {
857 		y = 0;
858 		toskew = -(int32)(w - w);
859 	}
860 
861 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
862 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
863 	scanline = TIFFScanlineSize(tif);
864 	fromskew = (w < imagewidth ? imagewidth - w : 0);
865 	for (row = 0; row < h; row += nrow)
866 	{
867 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
868 		nrow = (row + rowstoread > h ? h - row : rowstoread);
869 		nrowsub = nrow;
870 		if ((nrowsub%subsamplingver)!=0)
871 			nrowsub+=subsamplingver-nrowsub%subsamplingver;
872 		if (TIFFReadEncodedStrip(tif,
873 		    TIFFComputeStrip(tif,row+img->row_offset, 0),
874 		    buf,
875 		    ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
876 		    && img->stoponerr)
877 		{
878 			ret = 0;
879 			break;
880 		}
881 
882 		pos = ((row + img->row_offset) % rowsperstrip) * scanline;
883 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
884 		y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
885 	}
886 
887 	if (flip & FLIP_HORIZONTALLY) {
888 		uint32 line;
889 
890 		for (line = 0; line < h; line++) {
891 			uint32 *left = raster + (line * w);
892 			uint32 *right = left + w - 1;
893 
894 			while ( left < right ) {
895 				uint32 temp = *left;
896 				*left = *right;
897 				*right = temp;
898 				left++, right--;
899 			}
900 		}
901 	}
902 
903 	_TIFFfree(buf);
904 	return (ret);
905 }
906 
907 /*
908  * Get a strip-organized image with
909  *	 SamplesPerPixel > 1
910  *	 PlanarConfiguration separated
911  * We assume that all such images are RGB.
912  */
913 static int
gtStripSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)914 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
915 {
916 	TIFF* tif = img->tif;
917 	tileSeparateRoutine put = img->put.separate;
918 	unsigned char *buf;
919 	unsigned char *p0, *p1, *p2, *pa;
920 	uint32 row, y, nrow, rowstoread;
921 	tmsize_t pos;
922 	tmsize_t scanline;
923 	uint32 rowsperstrip, offset_row;
924 	uint32 imagewidth = img->width;
925 	tmsize_t stripsize;
926 	tmsize_t bufsize;
927 	int32 fromskew, toskew;
928 	int alpha = img->alpha;
929 	int ret = 1, flip, colorchannels;
930 
931 	stripsize = TIFFStripSize(tif);
932 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
933 	if (bufsize == 0) {
934 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
935 		return (0);
936 	}
937 	p0 = buf = (unsigned char *)_TIFFmalloc(bufsize);
938 	if (buf == 0) {
939 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer");
940 		return (0);
941 	}
942 	_TIFFmemset(buf, 0, bufsize);
943 	p1 = p0 + stripsize;
944 	p2 = p1 + stripsize;
945 	pa = (alpha?(p2+stripsize):NULL);
946 
947 	flip = setorientation(img);
948 	if (flip & FLIP_VERTICALLY) {
949 		y = h - 1;
950 		toskew = -(int32)(w + w);
951 	}
952 	else {
953 		y = 0;
954 		toskew = -(int32)(w - w);
955 	}
956 
957         switch( img->photometric )
958         {
959           case PHOTOMETRIC_MINISWHITE:
960           case PHOTOMETRIC_MINISBLACK:
961           case PHOTOMETRIC_PALETTE:
962             colorchannels = 1;
963             p2 = p1 = p0;
964             break;
965 
966           default:
967             colorchannels = 3;
968             break;
969         }
970 
971 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
972 	scanline = TIFFScanlineSize(tif);
973 	fromskew = (w < imagewidth ? imagewidth - w : 0);
974 	for (row = 0; row < h; row += nrow)
975 	{
976 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
977 		nrow = (row + rowstoread > h ? h - row : rowstoread);
978 		offset_row = row + img->row_offset;
979 		if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
980 		    p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
981 		    && img->stoponerr)
982 		{
983 			ret = 0;
984 			break;
985 		}
986 		if (colorchannels > 1
987                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
988                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
989 		    && img->stoponerr)
990 		{
991 			ret = 0;
992 			break;
993 		}
994 		if (colorchannels > 1
995                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
996                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
997 		    && img->stoponerr)
998 		{
999 			ret = 0;
1000 			break;
1001 		}
1002 		if (alpha)
1003 		{
1004 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1005 			    pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1006 			    && img->stoponerr)
1007 			{
1008 				ret = 0;
1009 				break;
1010 			}
1011 		}
1012 
1013 		pos = ((row + img->row_offset) % rowsperstrip) * scanline;
1014 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1015 		    p2 + pos, (alpha?(pa+pos):NULL));
1016 		y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
1017 	}
1018 
1019 	if (flip & FLIP_HORIZONTALLY) {
1020 		uint32 line;
1021 
1022 		for (line = 0; line < h; line++) {
1023 			uint32 *left = raster + (line * w);
1024 			uint32 *right = left + w - 1;
1025 
1026 			while ( left < right ) {
1027 				uint32 temp = *left;
1028 				*left = *right;
1029 				*right = temp;
1030 				left++, right--;
1031 			}
1032 		}
1033 	}
1034 
1035 	_TIFFfree(buf);
1036 	return (ret);
1037 }
1038 
1039 /*
1040  * The following routines move decoded data returned
1041  * from the TIFF library into rasters filled with packed
1042  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1043  *
1044  * The routines have been created according to the most
1045  * important cases and optimized.  PickContigCase and
1046  * PickSeparateCase analyze the parameters and select
1047  * the appropriate "get" and "put" routine to use.
1048  */
1049 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
1050 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
1051 #define	REPEAT2(op)	op; op
1052 #define	CASE8(x,op)			\
1053     switch (x) {			\
1054     case 7: op; case 6: op; case 5: op;	\
1055     case 4: op; case 3: op; case 2: op;	\
1056     case 1: op;				\
1057     }
1058 #define	CASE4(x,op)	switch (x) { case 3: op; case 2: op; case 1: op; }
1059 #define	NOP
1060 
1061 #define	UNROLL8(w, op1, op2) {		\
1062     uint32 _x;				\
1063     for (_x = w; _x >= 8; _x -= 8) {	\
1064 	op1;				\
1065 	REPEAT8(op2);			\
1066     }					\
1067     if (_x > 0) {			\
1068 	op1;				\
1069 	CASE8(_x,op2);			\
1070     }					\
1071 }
1072 #define	UNROLL4(w, op1, op2) {		\
1073     uint32 _x;				\
1074     for (_x = w; _x >= 4; _x -= 4) {	\
1075 	op1;				\
1076 	REPEAT4(op2);			\
1077     }					\
1078     if (_x > 0) {			\
1079 	op1;				\
1080 	CASE4(_x,op2);			\
1081     }					\
1082 }
1083 #define	UNROLL2(w, op1, op2) {		\
1084     uint32 _x;				\
1085     for (_x = w; _x >= 2; _x -= 2) {	\
1086 	op1;				\
1087 	REPEAT2(op2);			\
1088     }					\
1089     if (_x) {				\
1090 	op1;				\
1091 	op2;				\
1092     }					\
1093 }
1094 
1095 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
1096 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
1097 
1098 #define A1 (((uint32)0xffL)<<24)
1099 #define	PACK(r,g,b)	\
1100 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1101 #define	PACK4(r,g,b,a)	\
1102 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1103 #define W2B(v) (((v)>>8)&0xff)
1104 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1105 #define	PACKW(r,g,b)	\
1106 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1107 #define	PACKW4(r,g,b,a)	\
1108 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1109 
1110 #define	DECLAREContigPutFunc(name) \
1111 static void name(\
1112     TIFFRGBAImage* img, \
1113     uint32* cp, \
1114     uint32 x, uint32 y, \
1115     uint32 w, uint32 h, \
1116     int32 fromskew, int32 toskew, \
1117     unsigned char* pp \
1118 )
1119 
1120 /*
1121  * 8-bit palette => colormap/RGB
1122  */
DECLAREContigPutFunc(put8bitcmaptile)1123 DECLAREContigPutFunc(put8bitcmaptile)
1124 {
1125     uint32** PALmap = img->PALmap;
1126     int samplesperpixel = img->samplesperpixel;
1127 
1128     (void) y;
1129     while (h-- > 0) {
1130 	for (x = w; x-- > 0;)
1131         {
1132 	    *cp++ = PALmap[*pp][0];
1133             pp += samplesperpixel;
1134         }
1135 	cp += toskew;
1136 	pp += fromskew;
1137     }
1138 }
1139 
1140 /*
1141  * 4-bit palette => colormap/RGB
1142  */
DECLAREContigPutFunc(put4bitcmaptile)1143 DECLAREContigPutFunc(put4bitcmaptile)
1144 {
1145     uint32** PALmap = img->PALmap;
1146 
1147     (void) x; (void) y;
1148     fromskew /= 2;
1149     while (h-- > 0) {
1150 	uint32* bw;
1151 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1152 	cp += toskew;
1153 	pp += fromskew;
1154     }
1155 }
1156 
1157 /*
1158  * 2-bit palette => colormap/RGB
1159  */
DECLAREContigPutFunc(put2bitcmaptile)1160 DECLAREContigPutFunc(put2bitcmaptile)
1161 {
1162     uint32** PALmap = img->PALmap;
1163 
1164     (void) x; (void) y;
1165     fromskew /= 4;
1166     while (h-- > 0) {
1167 	uint32* bw;
1168 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1169 	cp += toskew;
1170 	pp += fromskew;
1171     }
1172 }
1173 
1174 /*
1175  * 1-bit palette => colormap/RGB
1176  */
DECLAREContigPutFunc(put1bitcmaptile)1177 DECLAREContigPutFunc(put1bitcmaptile)
1178 {
1179     uint32** PALmap = img->PALmap;
1180 
1181     (void) x; (void) y;
1182     fromskew /= 8;
1183     while (h-- > 0) {
1184 	uint32* bw;
1185 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1186 	cp += toskew;
1187 	pp += fromskew;
1188     }
1189 }
1190 
1191 /*
1192  * 8-bit greyscale => colormap/RGB
1193  */
DECLAREContigPutFunc(putgreytile)1194 DECLAREContigPutFunc(putgreytile)
1195 {
1196     int samplesperpixel = img->samplesperpixel;
1197     uint32** BWmap = img->BWmap;
1198 
1199     (void) y;
1200     while (h-- > 0) {
1201 	for (x = w; x-- > 0;)
1202         {
1203 	    *cp++ = BWmap[*pp][0];
1204             pp += samplesperpixel;
1205         }
1206 	cp += toskew;
1207 	pp += fromskew;
1208     }
1209 }
1210 
1211 /*
1212  * 8-bit greyscale with associated alpha => colormap/RGBA
1213  */
DECLAREContigPutFunc(putagreytile)1214 DECLAREContigPutFunc(putagreytile)
1215 {
1216     int samplesperpixel = img->samplesperpixel;
1217     uint32** BWmap = img->BWmap;
1218 
1219     (void) y;
1220     while (h-- > 0) {
1221 	for (x = w; x-- > 0;)
1222         {
1223             *cp++ = BWmap[*pp][0] & (*(pp+1) << 24 | ~A1);
1224             pp += samplesperpixel;
1225         }
1226 	cp += toskew;
1227 	pp += fromskew;
1228     }
1229 }
1230 
1231 /*
1232  * 16-bit greyscale => colormap/RGB
1233  */
DECLAREContigPutFunc(put16bitbwtile)1234 DECLAREContigPutFunc(put16bitbwtile)
1235 {
1236     int samplesperpixel = img->samplesperpixel;
1237     uint32** BWmap = img->BWmap;
1238 
1239     (void) y;
1240     while (h-- > 0) {
1241         uint16 *wp = (uint16 *) pp;
1242 
1243 	for (x = w; x-- > 0;)
1244         {
1245             /* use high order byte of 16bit value */
1246 
1247 	    *cp++ = BWmap[*wp >> 8][0];
1248             pp += 2 * samplesperpixel;
1249             wp += samplesperpixel;
1250         }
1251 	cp += toskew;
1252 	pp += fromskew;
1253     }
1254 }
1255 
1256 /*
1257  * 1-bit bilevel => colormap/RGB
1258  */
DECLAREContigPutFunc(put1bitbwtile)1259 DECLAREContigPutFunc(put1bitbwtile)
1260 {
1261     uint32** BWmap = img->BWmap;
1262 
1263     (void) x; (void) y;
1264     fromskew /= 8;
1265     while (h-- > 0) {
1266 	uint32* bw;
1267 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1268 	cp += toskew;
1269 	pp += fromskew;
1270     }
1271 }
1272 
1273 /*
1274  * 2-bit greyscale => colormap/RGB
1275  */
DECLAREContigPutFunc(put2bitbwtile)1276 DECLAREContigPutFunc(put2bitbwtile)
1277 {
1278     uint32** BWmap = img->BWmap;
1279 
1280     (void) x; (void) y;
1281     fromskew /= 4;
1282     while (h-- > 0) {
1283 	uint32* bw;
1284 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1285 	cp += toskew;
1286 	pp += fromskew;
1287     }
1288 }
1289 
1290 /*
1291  * 4-bit greyscale => colormap/RGB
1292  */
DECLAREContigPutFunc(put4bitbwtile)1293 DECLAREContigPutFunc(put4bitbwtile)
1294 {
1295     uint32** BWmap = img->BWmap;
1296 
1297     (void) x; (void) y;
1298     fromskew /= 2;
1299     while (h-- > 0) {
1300 	uint32* bw;
1301 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1302 	cp += toskew;
1303 	pp += fromskew;
1304     }
1305 }
1306 
1307 /*
1308  * 8-bit packed samples, no Map => RGB
1309  */
DECLAREContigPutFunc(putRGBcontig8bittile)1310 DECLAREContigPutFunc(putRGBcontig8bittile)
1311 {
1312     int samplesperpixel = img->samplesperpixel;
1313 
1314     (void) x; (void) y;
1315     fromskew *= samplesperpixel;
1316     while (h-- > 0) {
1317 	UNROLL8(w, NOP,
1318 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
1319 	    pp += samplesperpixel);
1320 	cp += toskew;
1321 	pp += fromskew;
1322     }
1323 }
1324 
1325 /*
1326  * 8-bit packed samples => RGBA w/ associated alpha
1327  * (known to have Map == NULL)
1328  */
DECLAREContigPutFunc(putRGBAAcontig8bittile)1329 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1330 {
1331     int samplesperpixel = img->samplesperpixel;
1332 
1333     (void) x; (void) y;
1334     fromskew *= samplesperpixel;
1335     while (h-- > 0) {
1336 	UNROLL8(w, NOP,
1337 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1338 	    pp += samplesperpixel);
1339 	cp += toskew;
1340 	pp += fromskew;
1341     }
1342 }
1343 
1344 /*
1345  * 8-bit packed samples => RGBA w/ unassociated alpha
1346  * (known to have Map == NULL)
1347  */
DECLAREContigPutFunc(putRGBUAcontig8bittile)1348 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1349 {
1350 	int samplesperpixel = img->samplesperpixel;
1351 	(void) y;
1352 	fromskew *= samplesperpixel;
1353 	while (h-- > 0) {
1354 		uint32 r, g, b, a;
1355 		uint8* m;
1356 		for (x = w; x-- > 0;) {
1357 			a = pp[3];
1358 			m = img->UaToAa+(a<<8);
1359 			r = m[pp[0]];
1360 			g = m[pp[1]];
1361 			b = m[pp[2]];
1362 			*cp++ = PACK4(r,g,b,a);
1363 			pp += samplesperpixel;
1364 		}
1365 		cp += toskew;
1366 		pp += fromskew;
1367 	}
1368 }
1369 
1370 /*
1371  * 16-bit packed samples => RGB
1372  */
DECLAREContigPutFunc(putRGBcontig16bittile)1373 DECLAREContigPutFunc(putRGBcontig16bittile)
1374 {
1375 	int samplesperpixel = img->samplesperpixel;
1376 	uint16 *wp = (uint16 *)pp;
1377 	(void) y;
1378 	fromskew *= samplesperpixel;
1379 	while (h-- > 0) {
1380 		for (x = w; x-- > 0;) {
1381 			*cp++ = PACK(img->Bitdepth16To8[wp[0]],
1382 			    img->Bitdepth16To8[wp[1]],
1383 			    img->Bitdepth16To8[wp[2]]);
1384 			wp += samplesperpixel;
1385 		}
1386 		cp += toskew;
1387 		wp += fromskew;
1388 	}
1389 }
1390 
1391 /*
1392  * 16-bit packed samples => RGBA w/ associated alpha
1393  * (known to have Map == NULL)
1394  */
DECLAREContigPutFunc(putRGBAAcontig16bittile)1395 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1396 {
1397 	int samplesperpixel = img->samplesperpixel;
1398 	uint16 *wp = (uint16 *)pp;
1399 	(void) y;
1400 	fromskew *= samplesperpixel;
1401 	while (h-- > 0) {
1402 		for (x = w; x-- > 0;) {
1403 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1404 			    img->Bitdepth16To8[wp[1]],
1405 			    img->Bitdepth16To8[wp[2]],
1406 			    img->Bitdepth16To8[wp[3]]);
1407 			wp += samplesperpixel;
1408 		}
1409 		cp += toskew;
1410 		wp += fromskew;
1411 	}
1412 }
1413 
1414 /*
1415  * 16-bit packed samples => RGBA w/ unassociated alpha
1416  * (known to have Map == NULL)
1417  */
DECLAREContigPutFunc(putRGBUAcontig16bittile)1418 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1419 {
1420 	int samplesperpixel = img->samplesperpixel;
1421 	uint16 *wp = (uint16 *)pp;
1422 	(void) y;
1423 	fromskew *= samplesperpixel;
1424 	while (h-- > 0) {
1425 		uint32 r,g,b,a;
1426 		uint8* m;
1427 		for (x = w; x-- > 0;) {
1428 			a = img->Bitdepth16To8[wp[3]];
1429 			m = img->UaToAa+(a<<8);
1430 			r = m[img->Bitdepth16To8[wp[0]]];
1431 			g = m[img->Bitdepth16To8[wp[1]]];
1432 			b = m[img->Bitdepth16To8[wp[2]]];
1433 			*cp++ = PACK4(r,g,b,a);
1434 			wp += samplesperpixel;
1435 		}
1436 		cp += toskew;
1437 		wp += fromskew;
1438 	}
1439 }
1440 
1441 /*
1442  * 8-bit packed CMYK samples w/o Map => RGB
1443  *
1444  * NB: The conversion of CMYK->RGB is *very* crude.
1445  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)1446 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1447 {
1448     int samplesperpixel = img->samplesperpixel;
1449     uint16 r, g, b, k;
1450 
1451     (void) x; (void) y;
1452     fromskew *= samplesperpixel;
1453     while (h-- > 0) {
1454 	UNROLL8(w, NOP,
1455 	    k = 255 - pp[3];
1456 	    r = (k*(255-pp[0]))/255;
1457 	    g = (k*(255-pp[1]))/255;
1458 	    b = (k*(255-pp[2]))/255;
1459 	    *cp++ = PACK(r, g, b);
1460 	    pp += samplesperpixel);
1461 	cp += toskew;
1462 	pp += fromskew;
1463     }
1464 }
1465 
1466 /*
1467  * 8-bit packed CMYK samples w/Map => RGB
1468  *
1469  * NB: The conversion of CMYK->RGB is *very* crude.
1470  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)1471 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1472 {
1473     int samplesperpixel = img->samplesperpixel;
1474     TIFFRGBValue* Map = img->Map;
1475     uint16 r, g, b, k;
1476 
1477     (void) y;
1478     fromskew *= samplesperpixel;
1479     while (h-- > 0) {
1480 	for (x = w; x-- > 0;) {
1481 	    k = 255 - pp[3];
1482 	    r = (k*(255-pp[0]))/255;
1483 	    g = (k*(255-pp[1]))/255;
1484 	    b = (k*(255-pp[2]))/255;
1485 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
1486 	    pp += samplesperpixel;
1487 	}
1488 	pp += fromskew;
1489 	cp += toskew;
1490     }
1491 }
1492 
1493 #define	DECLARESepPutFunc(name) \
1494 static void name(\
1495     TIFFRGBAImage* img,\
1496     uint32* cp,\
1497     uint32 x, uint32 y, \
1498     uint32 w, uint32 h,\
1499     int32 fromskew, int32 toskew,\
1500     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1501 )
1502 
1503 /*
1504  * 8-bit unpacked samples => RGB
1505  */
DECLARESepPutFunc(putRGBseparate8bittile)1506 DECLARESepPutFunc(putRGBseparate8bittile)
1507 {
1508     (void) img; (void) x; (void) y; (void) a;
1509     while (h-- > 0) {
1510 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1511 	SKEW(r, g, b, fromskew);
1512 	cp += toskew;
1513     }
1514 }
1515 
1516 /*
1517  * 8-bit unpacked samples => RGBA w/ associated alpha
1518  */
DECLARESepPutFunc(putRGBAAseparate8bittile)1519 DECLARESepPutFunc(putRGBAAseparate8bittile)
1520 {
1521 	(void) img; (void) x; (void) y;
1522 	while (h-- > 0) {
1523 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1524 		SKEW4(r, g, b, a, fromskew);
1525 		cp += toskew;
1526 	}
1527 }
1528 
1529 /*
1530  * 8-bit unpacked CMYK samples => RGBA
1531  */
DECLARESepPutFunc(putCMYKseparate8bittile)1532 DECLARESepPutFunc(putCMYKseparate8bittile)
1533 {
1534 	(void) img; (void) y;
1535 	while (h-- > 0) {
1536 		uint32 rv, gv, bv, kv;
1537 		for (x = w; x-- > 0;) {
1538 			kv = 255 - *a++;
1539 			rv = (kv*(255-*r++))/255;
1540 			gv = (kv*(255-*g++))/255;
1541 			bv = (kv*(255-*b++))/255;
1542 			*cp++ = PACK4(rv,gv,bv,255);
1543 		}
1544 		SKEW4(r, g, b, a, fromskew);
1545 		cp += toskew;
1546 	}
1547 }
1548 
1549 /*
1550  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1551  */
DECLARESepPutFunc(putRGBUAseparate8bittile)1552 DECLARESepPutFunc(putRGBUAseparate8bittile)
1553 {
1554 	(void) img; (void) y;
1555 	while (h-- > 0) {
1556 		uint32 rv, gv, bv, av;
1557 		uint8* m;
1558 		for (x = w; x-- > 0;) {
1559 			av = *a++;
1560 			m = img->UaToAa+(av<<8);
1561 			rv = m[*r++];
1562 			gv = m[*g++];
1563 			bv = m[*b++];
1564 			*cp++ = PACK4(rv,gv,bv,av);
1565 		}
1566 		SKEW4(r, g, b, a, fromskew);
1567 		cp += toskew;
1568 	}
1569 }
1570 
1571 /*
1572  * 16-bit unpacked samples => RGB
1573  */
DECLARESepPutFunc(putRGBseparate16bittile)1574 DECLARESepPutFunc(putRGBseparate16bittile)
1575 {
1576 	uint16 *wr = (uint16*) r;
1577 	uint16 *wg = (uint16*) g;
1578 	uint16 *wb = (uint16*) b;
1579 	(void) img; (void) y; (void) a;
1580 	while (h-- > 0) {
1581 		for (x = 0; x < w; x++)
1582 			*cp++ = PACK(img->Bitdepth16To8[*wr++],
1583 			    img->Bitdepth16To8[*wg++],
1584 			    img->Bitdepth16To8[*wb++]);
1585 		SKEW(wr, wg, wb, fromskew);
1586 		cp += toskew;
1587 	}
1588 }
1589 
1590 /*
1591  * 16-bit unpacked samples => RGBA w/ associated alpha
1592  */
DECLARESepPutFunc(putRGBAAseparate16bittile)1593 DECLARESepPutFunc(putRGBAAseparate16bittile)
1594 {
1595 	uint16 *wr = (uint16*) r;
1596 	uint16 *wg = (uint16*) g;
1597 	uint16 *wb = (uint16*) b;
1598 	uint16 *wa = (uint16*) a;
1599 	(void) img; (void) y;
1600 	while (h-- > 0) {
1601 		for (x = 0; x < w; x++)
1602 			*cp++ = PACK4(img->Bitdepth16To8[*wr++],
1603 			    img->Bitdepth16To8[*wg++],
1604 			    img->Bitdepth16To8[*wb++],
1605 			    img->Bitdepth16To8[*wa++]);
1606 		SKEW4(wr, wg, wb, wa, fromskew);
1607 		cp += toskew;
1608 	}
1609 }
1610 
1611 /*
1612  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1613  */
DECLARESepPutFunc(putRGBUAseparate16bittile)1614 DECLARESepPutFunc(putRGBUAseparate16bittile)
1615 {
1616 	uint16 *wr = (uint16*) r;
1617 	uint16 *wg = (uint16*) g;
1618 	uint16 *wb = (uint16*) b;
1619 	uint16 *wa = (uint16*) a;
1620 	(void) img; (void) y;
1621 	while (h-- > 0) {
1622 		uint32 r,g,b,a;
1623 		uint8* m;
1624 		for (x = w; x-- > 0;) {
1625 			a = img->Bitdepth16To8[*wa++];
1626 			m = img->UaToAa+(a<<8);
1627 			r = m[img->Bitdepth16To8[*wr++]];
1628 			g = m[img->Bitdepth16To8[*wg++]];
1629 			b = m[img->Bitdepth16To8[*wb++]];
1630 			*cp++ = PACK4(r,g,b,a);
1631 		}
1632 		SKEW4(wr, wg, wb, wa, fromskew);
1633 		cp += toskew;
1634 	}
1635 }
1636 
1637 /*
1638  * 8-bit packed CIE L*a*b 1976 samples => RGB
1639  */
DECLAREContigPutFunc(putcontig8bitCIELab)1640 DECLAREContigPutFunc(putcontig8bitCIELab)
1641 {
1642 	float X, Y, Z;
1643 	uint32 r, g, b;
1644 	(void) y;
1645 	fromskew *= 3;
1646 	while (h-- > 0) {
1647 		for (x = w; x-- > 0;) {
1648 			TIFFCIELabToXYZ(img->cielab,
1649 					(unsigned char)pp[0],
1650 					(signed char)pp[1],
1651 					(signed char)pp[2],
1652 					&X, &Y, &Z);
1653 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1654 			*cp++ = PACK(r, g, b);
1655 			pp += 3;
1656 		}
1657 		cp += toskew;
1658 		pp += fromskew;
1659 	}
1660 }
1661 
1662 /*
1663  * YCbCr -> RGB conversion and packing routines.
1664  */
1665 
1666 #define	YCbCrtoRGB(dst, Y) {						\
1667 	uint32 r, g, b;							\
1668 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
1669 	dst = PACK(r, g, b);						\
1670 }
1671 
1672 /*
1673  * 8-bit packed YCbCr samples => RGB
1674  * This function is generic for different sampling sizes,
1675  * and can handle blocks sizes that aren't multiples of the
1676  * sampling size.  However, it is substantially less optimized
1677  * than the specific sampling cases.  It is used as a fallback
1678  * for difficult blocks.
1679  */
1680 #ifdef notdef
putcontig8bitYCbCrGenericTile(TIFFRGBAImage * img,uint32 * cp,uint32 x,uint32 y,uint32 w,uint32 h,int32 fromskew,int32 toskew,unsigned char * pp,int h_group,int v_group)1681 static void putcontig8bitYCbCrGenericTile(
1682     TIFFRGBAImage* img,
1683     uint32* cp,
1684     uint32 x, uint32 y,
1685     uint32 w, uint32 h,
1686     int32 fromskew, int32 toskew,
1687     unsigned char* pp,
1688     int h_group,
1689     int v_group )
1690 
1691 {
1692     uint32* cp1 = cp+w+toskew;
1693     uint32* cp2 = cp1+w+toskew;
1694     uint32* cp3 = cp2+w+toskew;
1695     int32 incr = 3*w+4*toskew;
1696     int32   Cb, Cr;
1697     int     group_size = v_group * h_group + 2;
1698 
1699     (void) y;
1700     fromskew = (fromskew * group_size) / h_group;
1701 
1702     for( yy = 0; yy < h; yy++ )
1703     {
1704         unsigned char *pp_line;
1705         int     y_line_group = yy / v_group;
1706         int     y_remainder = yy - y_line_group * v_group;
1707 
1708         pp_line = pp + v_line_group *
1709 
1710 
1711         for( xx = 0; xx < w; xx++ )
1712         {
1713             Cb = pp
1714         }
1715     }
1716     for (; h >= 4; h -= 4) {
1717 	x = w>>2;
1718 	do {
1719 	    Cb = pp[16];
1720 	    Cr = pp[17];
1721 
1722 	    YCbCrtoRGB(cp [0], pp[ 0]);
1723 	    YCbCrtoRGB(cp [1], pp[ 1]);
1724 	    YCbCrtoRGB(cp [2], pp[ 2]);
1725 	    YCbCrtoRGB(cp [3], pp[ 3]);
1726 	    YCbCrtoRGB(cp1[0], pp[ 4]);
1727 	    YCbCrtoRGB(cp1[1], pp[ 5]);
1728 	    YCbCrtoRGB(cp1[2], pp[ 6]);
1729 	    YCbCrtoRGB(cp1[3], pp[ 7]);
1730 	    YCbCrtoRGB(cp2[0], pp[ 8]);
1731 	    YCbCrtoRGB(cp2[1], pp[ 9]);
1732 	    YCbCrtoRGB(cp2[2], pp[10]);
1733 	    YCbCrtoRGB(cp2[3], pp[11]);
1734 	    YCbCrtoRGB(cp3[0], pp[12]);
1735 	    YCbCrtoRGB(cp3[1], pp[13]);
1736 	    YCbCrtoRGB(cp3[2], pp[14]);
1737 	    YCbCrtoRGB(cp3[3], pp[15]);
1738 
1739 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1740 	    pp += 18;
1741 	} while (--x);
1742 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1743 	pp += fromskew;
1744     }
1745 }
1746 #endif
1747 
1748 /*
1749  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1750  */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)1751 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1752 {
1753     uint32* cp1 = cp+w+toskew;
1754     uint32* cp2 = cp1+w+toskew;
1755     uint32* cp3 = cp2+w+toskew;
1756     int32 incr = 3*w+4*toskew;
1757 
1758     (void) y;
1759     /* adjust fromskew */
1760     fromskew = (fromskew * 18) / 4;
1761     if ((h & 3) == 0 && (w & 3) == 0) {
1762         for (; h >= 4; h -= 4) {
1763             x = w>>2;
1764             do {
1765                 int32 Cb = pp[16];
1766                 int32 Cr = pp[17];
1767 
1768                 YCbCrtoRGB(cp [0], pp[ 0]);
1769                 YCbCrtoRGB(cp [1], pp[ 1]);
1770                 YCbCrtoRGB(cp [2], pp[ 2]);
1771                 YCbCrtoRGB(cp [3], pp[ 3]);
1772                 YCbCrtoRGB(cp1[0], pp[ 4]);
1773                 YCbCrtoRGB(cp1[1], pp[ 5]);
1774                 YCbCrtoRGB(cp1[2], pp[ 6]);
1775                 YCbCrtoRGB(cp1[3], pp[ 7]);
1776                 YCbCrtoRGB(cp2[0], pp[ 8]);
1777                 YCbCrtoRGB(cp2[1], pp[ 9]);
1778                 YCbCrtoRGB(cp2[2], pp[10]);
1779                 YCbCrtoRGB(cp2[3], pp[11]);
1780                 YCbCrtoRGB(cp3[0], pp[12]);
1781                 YCbCrtoRGB(cp3[1], pp[13]);
1782                 YCbCrtoRGB(cp3[2], pp[14]);
1783                 YCbCrtoRGB(cp3[3], pp[15]);
1784 
1785                 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1786                 pp += 18;
1787             } while (--x);
1788             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1789             pp += fromskew;
1790         }
1791     } else {
1792         while (h > 0) {
1793             for (x = w; x > 0;) {
1794                 int32 Cb = pp[16];
1795                 int32 Cr = pp[17];
1796                 switch (x) {
1797                 default:
1798                     switch (h) {
1799                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1800                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1801                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1802                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1803                     }                                    /* FALLTHROUGH */
1804                 case 3:
1805                     switch (h) {
1806                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1807                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1808                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1809                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1810                     }                                    /* FALLTHROUGH */
1811                 case 2:
1812                     switch (h) {
1813                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1814                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1815                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1816                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1817                     }                                    /* FALLTHROUGH */
1818                 case 1:
1819                     switch (h) {
1820                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1821                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1822                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1823                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1824                     }                                    /* FALLTHROUGH */
1825                 }
1826                 if (x < 4) {
1827                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1828                     x = 0;
1829                 }
1830                 else {
1831                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1832                     x -= 4;
1833                 }
1834                 pp += 18;
1835             }
1836             if (h <= 4)
1837                 break;
1838             h -= 4;
1839             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1840             pp += fromskew;
1841         }
1842     }
1843 }
1844 
1845 /*
1846  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1847  */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)1848 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1849 {
1850     uint32* cp1 = cp+w+toskew;
1851     int32 incr = 2*toskew+w;
1852 
1853     (void) y;
1854     fromskew = (fromskew * 10) / 4;
1855     if ((h & 3) == 0 && (w & 1) == 0) {
1856         for (; h >= 2; h -= 2) {
1857             x = w>>2;
1858             do {
1859                 int32 Cb = pp[8];
1860                 int32 Cr = pp[9];
1861 
1862                 YCbCrtoRGB(cp [0], pp[0]);
1863                 YCbCrtoRGB(cp [1], pp[1]);
1864                 YCbCrtoRGB(cp [2], pp[2]);
1865                 YCbCrtoRGB(cp [3], pp[3]);
1866                 YCbCrtoRGB(cp1[0], pp[4]);
1867                 YCbCrtoRGB(cp1[1], pp[5]);
1868                 YCbCrtoRGB(cp1[2], pp[6]);
1869                 YCbCrtoRGB(cp1[3], pp[7]);
1870 
1871                 cp += 4, cp1 += 4;
1872                 pp += 10;
1873             } while (--x);
1874             cp += incr, cp1 += incr;
1875             pp += fromskew;
1876         }
1877     } else {
1878         while (h > 0) {
1879             for (x = w; x > 0;) {
1880                 int32 Cb = pp[8];
1881                 int32 Cr = pp[9];
1882                 switch (x) {
1883                 default:
1884                     switch (h) {
1885                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1886                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1887                     }                                    /* FALLTHROUGH */
1888                 case 3:
1889                     switch (h) {
1890                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1891                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1892                     }                                    /* FALLTHROUGH */
1893                 case 2:
1894                     switch (h) {
1895                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1896                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1897                     }                                    /* FALLTHROUGH */
1898                 case 1:
1899                     switch (h) {
1900                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1901                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1902                     }                                    /* FALLTHROUGH */
1903                 }
1904                 if (x < 4) {
1905                     cp += x; cp1 += x;
1906                     x = 0;
1907                 }
1908                 else {
1909                     cp += 4; cp1 += 4;
1910                     x -= 4;
1911                 }
1912                 pp += 10;
1913             }
1914             if (h <= 2)
1915                 break;
1916             h -= 2;
1917             cp += incr, cp1 += incr;
1918             pp += fromskew;
1919         }
1920     }
1921 }
1922 
1923 /*
1924  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
1925  */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)1926 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
1927 {
1928     (void) y;
1929     /* XXX adjust fromskew */
1930     do {
1931 	x = w>>2;
1932 	do {
1933 	    int32 Cb = pp[4];
1934 	    int32 Cr = pp[5];
1935 
1936 	    YCbCrtoRGB(cp [0], pp[0]);
1937 	    YCbCrtoRGB(cp [1], pp[1]);
1938 	    YCbCrtoRGB(cp [2], pp[2]);
1939 	    YCbCrtoRGB(cp [3], pp[3]);
1940 
1941 	    cp += 4;
1942 	    pp += 6;
1943 	} while (--x);
1944 
1945         if( (w&3) != 0 )
1946         {
1947 	    int32 Cb = pp[4];
1948 	    int32 Cr = pp[5];
1949 
1950             switch( (w&3) ) {
1951               case 3: YCbCrtoRGB(cp [2], pp[2]);
1952               case 2: YCbCrtoRGB(cp [1], pp[1]);
1953               case 1: YCbCrtoRGB(cp [0], pp[0]);
1954               case 0: break;
1955             }
1956 
1957             cp += (w&3);
1958             pp += 6;
1959         }
1960 
1961 	cp += toskew;
1962 	pp += fromskew;
1963     } while (--h);
1964 
1965 }
1966 
1967 /*
1968  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
1969  */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)1970 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
1971 {
1972 	uint32* cp2;
1973 	int32 incr = 2*toskew+w;
1974 	(void) y;
1975 	fromskew = (fromskew / 2) * 6;
1976 	cp2 = cp+w+toskew;
1977 	while (h>=2) {
1978 		x = w;
1979 		while (x>=2) {
1980 			uint32 Cb = pp[4];
1981 			uint32 Cr = pp[5];
1982 			YCbCrtoRGB(cp[0], pp[0]);
1983 			YCbCrtoRGB(cp[1], pp[1]);
1984 			YCbCrtoRGB(cp2[0], pp[2]);
1985 			YCbCrtoRGB(cp2[1], pp[3]);
1986 			cp += 2;
1987 			cp2 += 2;
1988 			pp += 6;
1989 			x -= 2;
1990 		}
1991 		if (x==1) {
1992 			uint32 Cb = pp[4];
1993 			uint32 Cr = pp[5];
1994 			YCbCrtoRGB(cp[0], pp[0]);
1995 			YCbCrtoRGB(cp2[0], pp[2]);
1996 			cp ++ ;
1997 			cp2 ++ ;
1998 			pp += 6;
1999 		}
2000 		cp += incr;
2001 		cp2 += incr;
2002 		pp += fromskew;
2003 		h-=2;
2004 	}
2005 	if (h==1) {
2006 		x = w;
2007 		while (x>=2) {
2008 			uint32 Cb = pp[4];
2009 			uint32 Cr = pp[5];
2010 			YCbCrtoRGB(cp[0], pp[0]);
2011 			YCbCrtoRGB(cp[1], pp[1]);
2012 			cp += 2;
2013 			cp2 += 2;
2014 			pp += 6;
2015 			x -= 2;
2016 		}
2017 		if (x==1) {
2018 			uint32 Cb = pp[4];
2019 			uint32 Cr = pp[5];
2020 			YCbCrtoRGB(cp[0], pp[0]);
2021 		}
2022 	}
2023 }
2024 
2025 /*
2026  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2027  */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)2028 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2029 {
2030 	(void) y;
2031 	fromskew = (fromskew * 4) / 2;
2032 	do {
2033 		x = w>>1;
2034 		do {
2035 			int32 Cb = pp[2];
2036 			int32 Cr = pp[3];
2037 
2038 			YCbCrtoRGB(cp[0], pp[0]);
2039 			YCbCrtoRGB(cp[1], pp[1]);
2040 
2041 			cp += 2;
2042 			pp += 4;
2043 		} while (--x);
2044 
2045 		if( (w&1) != 0 )
2046 		{
2047 			int32 Cb = pp[2];
2048 			int32 Cr = pp[3];
2049 
2050 			YCbCrtoRGB(cp[0], pp[0]);
2051 
2052 			cp += 1;
2053 			pp += 4;
2054 		}
2055 
2056 		cp += toskew;
2057 		pp += fromskew;
2058 	} while (--h);
2059 }
2060 
2061 /*
2062  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2063  */
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)2064 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2065 {
2066 	uint32* cp2;
2067 	int32 incr = 2*toskew+w;
2068 	(void) y;
2069 	fromskew = (fromskew / 2) * 4;
2070 	cp2 = cp+w+toskew;
2071 	while (h>=2) {
2072 		x = w;
2073 		do {
2074 			uint32 Cb = pp[2];
2075 			uint32 Cr = pp[3];
2076 			YCbCrtoRGB(cp[0], pp[0]);
2077 			YCbCrtoRGB(cp2[0], pp[1]);
2078 			cp ++;
2079 			cp2 ++;
2080 			pp += 4;
2081 		} while (--x);
2082 		cp += incr;
2083 		cp2 += incr;
2084 		pp += fromskew;
2085 		h-=2;
2086 	}
2087 	if (h==1) {
2088 		x = w;
2089 		do {
2090 			uint32 Cb = pp[2];
2091 			uint32 Cr = pp[3];
2092 			YCbCrtoRGB(cp[0], pp[0]);
2093 			cp ++;
2094 			pp += 4;
2095 		} while (--x);
2096 	}
2097 }
2098 
2099 /*
2100  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2101  */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)2102 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2103 {
2104 	(void) y;
2105 	fromskew *= 3;
2106 	do {
2107 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2108 		do {
2109 			int32 Cb = pp[1];
2110 			int32 Cr = pp[2];
2111 
2112 			YCbCrtoRGB(*cp++, pp[0]);
2113 
2114 			pp += 3;
2115 		} while (--x);
2116 		cp += toskew;
2117 		pp += fromskew;
2118 	} while (--h);
2119 }
2120 
2121 /*
2122  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2123  */
DECLARESepPutFunc(putseparate8bitYCbCr11tile)2124 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2125 {
2126 	(void) y;
2127 	(void) a;
2128 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2129 	while (h-- > 0) {
2130 		x = w;
2131 		do {
2132 			uint32 dr, dg, db;
2133 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2134 			*cp++ = PACK(dr,dg,db);
2135 		} while (--x);
2136 		SKEW(r, g, b, fromskew);
2137 		cp += toskew;
2138 	}
2139 }
2140 #undef YCbCrtoRGB
2141 
2142 static int
initYCbCrConversion(TIFFRGBAImage * img)2143 initYCbCrConversion(TIFFRGBAImage* img)
2144 {
2145 	static const char module[] = "initYCbCrConversion";
2146 
2147 	float *luma, *refBlackWhite;
2148 
2149 	if (img->ycbcr == NULL) {
2150 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2151 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2152 		    + 4*256*sizeof (TIFFRGBValue)
2153 		    + 2*256*sizeof (int)
2154 		    + 3*256*sizeof (int32)
2155 		    );
2156 		if (img->ycbcr == NULL) {
2157 			TIFFErrorExt(img->tif->tif_clientdata, module,
2158 			    "No space for YCbCr->RGB conversion state");
2159 			return (0);
2160 		}
2161 	}
2162 
2163 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2164 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2165 	    &refBlackWhite);
2166 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2167 		return(0);
2168 	return (1);
2169 }
2170 
2171 static tileContigRoutine
initCIELabConversion(TIFFRGBAImage * img)2172 initCIELabConversion(TIFFRGBAImage* img)
2173 {
2174 	static const char module[] = "initCIELabConversion";
2175 
2176 	float   *whitePoint;
2177 	float   refWhite[3];
2178 
2179 	if (!img->cielab) {
2180 		img->cielab = (TIFFCIELabToRGB *)
2181 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
2182 		if (!img->cielab) {
2183 			TIFFErrorExt(img->tif->tif_clientdata, module,
2184 			    "No space for CIE L*a*b*->RGB conversion state.");
2185 			return NULL;
2186 		}
2187 	}
2188 
2189 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2190 	refWhite[1] = 100.0F;
2191 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2192 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2193 		      / whitePoint[1] * refWhite[1];
2194 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2195 		TIFFErrorExt(img->tif->tif_clientdata, module,
2196 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
2197 		_TIFFfree(img->cielab);
2198 		return NULL;
2199 	}
2200 
2201 	return putcontig8bitCIELab;
2202 }
2203 
2204 /*
2205  * Greyscale images with less than 8 bits/sample are handled
2206  * with a table to avoid lots of shifts and masks.  The table
2207  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2208  * pixel values simply by indexing into the table with one
2209  * number.
2210  */
2211 static int
makebwmap(TIFFRGBAImage * img)2212 makebwmap(TIFFRGBAImage* img)
2213 {
2214     TIFFRGBValue* Map = img->Map;
2215     int bitspersample = img->bitspersample;
2216     int nsamples = 8 / bitspersample;
2217     int i;
2218     uint32* p;
2219 
2220     if( nsamples == 0 )
2221         nsamples = 1;
2222 
2223     img->BWmap = (uint32**) _TIFFmalloc(
2224 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2225     if (img->BWmap == NULL) {
2226 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2227 		return (0);
2228     }
2229     p = (uint32*)(img->BWmap + 256);
2230     for (i = 0; i < 256; i++) {
2231 	TIFFRGBValue c;
2232 	img->BWmap[i] = p;
2233 	switch (bitspersample) {
2234 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
2235 	case 1:
2236 	    GREY(i>>7);
2237 	    GREY((i>>6)&1);
2238 	    GREY((i>>5)&1);
2239 	    GREY((i>>4)&1);
2240 	    GREY((i>>3)&1);
2241 	    GREY((i>>2)&1);
2242 	    GREY((i>>1)&1);
2243 	    GREY(i&1);
2244 	    break;
2245 	case 2:
2246 	    GREY(i>>6);
2247 	    GREY((i>>4)&3);
2248 	    GREY((i>>2)&3);
2249 	    GREY(i&3);
2250 	    break;
2251 	case 4:
2252 	    GREY(i>>4);
2253 	    GREY(i&0xf);
2254 	    break;
2255 	case 8:
2256         case 16:
2257 	    GREY(i);
2258 	    break;
2259 	}
2260 #undef	GREY
2261     }
2262     return (1);
2263 }
2264 
2265 /*
2266  * Construct a mapping table to convert from the range
2267  * of the data samples to [0,255] --for display.  This
2268  * process also handles inverting B&W images when needed.
2269  */
2270 static int
setupMap(TIFFRGBAImage * img)2271 setupMap(TIFFRGBAImage* img)
2272 {
2273     int32 x, range;
2274 
2275     range = (int32)((1L<<img->bitspersample)-1);
2276 
2277     /* treat 16 bit the same as eight bit */
2278     if( img->bitspersample == 16 )
2279         range = (int32) 255;
2280 
2281     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2282     if (img->Map == NULL) {
2283 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2284 			"No space for photometric conversion table");
2285 		return (0);
2286     }
2287     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2288 	for (x = 0; x <= range; x++)
2289 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2290     } else {
2291 	for (x = 0; x <= range; x++)
2292 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2293     }
2294     if (img->bitspersample <= 16 &&
2295 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
2296 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2297 	/*
2298 	 * Use photometric mapping table to construct
2299 	 * unpacking tables for samples <= 8 bits.
2300 	 */
2301 	if (!makebwmap(img))
2302 	    return (0);
2303 	/* no longer need Map, free it */
2304 	_TIFFfree(img->Map), img->Map = NULL;
2305     }
2306     return (1);
2307 }
2308 
2309 static int
checkcmap(TIFFRGBAImage * img)2310 checkcmap(TIFFRGBAImage* img)
2311 {
2312     uint16* r = img->redcmap;
2313     uint16* g = img->greencmap;
2314     uint16* b = img->bluecmap;
2315     long n = 1L<<img->bitspersample;
2316 
2317     while (n-- > 0)
2318 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2319 	    return (16);
2320     return (8);
2321 }
2322 
2323 static void
cvtcmap(TIFFRGBAImage * img)2324 cvtcmap(TIFFRGBAImage* img)
2325 {
2326     uint16* r = img->redcmap;
2327     uint16* g = img->greencmap;
2328     uint16* b = img->bluecmap;
2329     long i;
2330 
2331     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2332 #define	CVT(x)		((uint16)((x)>>8))
2333 	r[i] = CVT(r[i]);
2334 	g[i] = CVT(g[i]);
2335 	b[i] = CVT(b[i]);
2336 #undef	CVT
2337     }
2338 }
2339 
2340 /*
2341  * Palette images with <= 8 bits/sample are handled
2342  * with a table to avoid lots of shifts and masks.  The table
2343  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2344  * pixel values simply by indexing into the table with one
2345  * number.
2346  */
2347 static int
makecmap(TIFFRGBAImage * img)2348 makecmap(TIFFRGBAImage* img)
2349 {
2350     int bitspersample = img->bitspersample;
2351     int nsamples = 8 / bitspersample;
2352     uint16* r = img->redcmap;
2353     uint16* g = img->greencmap;
2354     uint16* b = img->bluecmap;
2355     uint32 *p;
2356     int i;
2357 
2358     img->PALmap = (uint32**) _TIFFmalloc(
2359 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2360     if (img->PALmap == NULL) {
2361 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2362 		return (0);
2363 	}
2364     p = (uint32*)(img->PALmap + 256);
2365     for (i = 0; i < 256; i++) {
2366 	TIFFRGBValue c;
2367 	img->PALmap[i] = p;
2368 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2369 	switch (bitspersample) {
2370 	case 1:
2371 	    CMAP(i>>7);
2372 	    CMAP((i>>6)&1);
2373 	    CMAP((i>>5)&1);
2374 	    CMAP((i>>4)&1);
2375 	    CMAP((i>>3)&1);
2376 	    CMAP((i>>2)&1);
2377 	    CMAP((i>>1)&1);
2378 	    CMAP(i&1);
2379 	    break;
2380 	case 2:
2381 	    CMAP(i>>6);
2382 	    CMAP((i>>4)&3);
2383 	    CMAP((i>>2)&3);
2384 	    CMAP(i&3);
2385 	    break;
2386 	case 4:
2387 	    CMAP(i>>4);
2388 	    CMAP(i&0xf);
2389 	    break;
2390 	case 8:
2391 	    CMAP(i);
2392 	    break;
2393 	}
2394 #undef CMAP
2395     }
2396     return (1);
2397 }
2398 
2399 /*
2400  * Construct any mapping table used
2401  * by the associated put routine.
2402  */
2403 static int
buildMap(TIFFRGBAImage * img)2404 buildMap(TIFFRGBAImage* img)
2405 {
2406     switch (img->photometric) {
2407     case PHOTOMETRIC_RGB:
2408     case PHOTOMETRIC_YCBCR:
2409     case PHOTOMETRIC_SEPARATED:
2410 	if (img->bitspersample == 8)
2411 	    break;
2412 	/* fall thru... */
2413     case PHOTOMETRIC_MINISBLACK:
2414     case PHOTOMETRIC_MINISWHITE:
2415 	if (!setupMap(img))
2416 	    return (0);
2417 	break;
2418     case PHOTOMETRIC_PALETTE:
2419 	/*
2420 	 * Convert 16-bit colormap to 8-bit (unless it looks
2421 	 * like an old-style 8-bit colormap).
2422 	 */
2423 	if (checkcmap(img) == 16)
2424 	    cvtcmap(img);
2425 	else
2426 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2427 	/*
2428 	 * Use mapping table and colormap to construct
2429 	 * unpacking tables for samples < 8 bits.
2430 	 */
2431 	if (img->bitspersample <= 8 && !makecmap(img))
2432 	    return (0);
2433 	break;
2434     }
2435     return (1);
2436 }
2437 
2438 /*
2439  * Select the appropriate conversion routine for packed data.
2440  */
2441 static int
PickContigCase(TIFFRGBAImage * img)2442 PickContigCase(TIFFRGBAImage* img)
2443 {
2444 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2445 	img->put.contig = NULL;
2446 	switch (img->photometric) {
2447 		case PHOTOMETRIC_RGB:
2448 			switch (img->bitspersample) {
2449 				case 8:
2450 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2451 						img->put.contig = putRGBAAcontig8bittile;
2452 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2453 					{
2454 						if (BuildMapUaToAa(img))
2455 							img->put.contig = putRGBUAcontig8bittile;
2456 					}
2457 					else
2458 						img->put.contig = putRGBcontig8bittile;
2459 					break;
2460 				case 16:
2461 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2462 					{
2463 						if (BuildMapBitdepth16To8(img))
2464 							img->put.contig = putRGBAAcontig16bittile;
2465 					}
2466 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2467 					{
2468 						if (BuildMapBitdepth16To8(img) &&
2469 						    BuildMapUaToAa(img))
2470 							img->put.contig = putRGBUAcontig16bittile;
2471 					}
2472 					else
2473 					{
2474 						if (BuildMapBitdepth16To8(img))
2475 							img->put.contig = putRGBcontig16bittile;
2476 					}
2477 					break;
2478 			}
2479 			break;
2480 		case PHOTOMETRIC_SEPARATED:
2481 			if (buildMap(img)) {
2482 				if (img->bitspersample == 8) {
2483 					if (!img->Map)
2484 						img->put.contig = putRGBcontig8bitCMYKtile;
2485 					else
2486 						img->put.contig = putRGBcontig8bitCMYKMaptile;
2487 				}
2488 			}
2489 			break;
2490 		case PHOTOMETRIC_PALETTE:
2491 			if (buildMap(img)) {
2492 				switch (img->bitspersample) {
2493 					case 8:
2494 						img->put.contig = put8bitcmaptile;
2495 						break;
2496 					case 4:
2497 						img->put.contig = put4bitcmaptile;
2498 						break;
2499 					case 2:
2500 						img->put.contig = put2bitcmaptile;
2501 						break;
2502 					case 1:
2503 						img->put.contig = put1bitcmaptile;
2504 						break;
2505 				}
2506 			}
2507 			break;
2508 		case PHOTOMETRIC_MINISWHITE:
2509 		case PHOTOMETRIC_MINISBLACK:
2510 			if (buildMap(img)) {
2511 				switch (img->bitspersample) {
2512 					case 16:
2513 						img->put.contig = put16bitbwtile;
2514 						break;
2515 					case 8:
2516 						if (img->alpha && img->samplesperpixel == 2)
2517 							img->put.contig = putagreytile;
2518 						else
2519 							img->put.contig = putgreytile;
2520 						break;
2521 					case 4:
2522 						img->put.contig = put4bitbwtile;
2523 						break;
2524 					case 2:
2525 						img->put.contig = put2bitbwtile;
2526 						break;
2527 					case 1:
2528 						img->put.contig = put1bitbwtile;
2529 						break;
2530 				}
2531 			}
2532 			break;
2533 		case PHOTOMETRIC_YCBCR:
2534 			if ((img->bitspersample==8) && (img->samplesperpixel==3))
2535 			{
2536 				if (initYCbCrConversion(img)!=0)
2537 				{
2538 					/*
2539 					 * The 6.0 spec says that subsampling must be
2540 					 * one of 1, 2, or 4, and that vertical subsampling
2541 					 * must always be <= horizontal subsampling; so
2542 					 * there are only a few possibilities and we just
2543 					 * enumerate the cases.
2544 					 * Joris: added support for the [1,2] case, nonetheless, to accomodate
2545 					 * some OJPEG files
2546 					 */
2547 					uint16 SubsamplingHor;
2548 					uint16 SubsamplingVer;
2549 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2550 					switch ((SubsamplingHor<<4)|SubsamplingVer) {
2551 						case 0x44:
2552 							img->put.contig = putcontig8bitYCbCr44tile;
2553 							break;
2554 						case 0x42:
2555 							img->put.contig = putcontig8bitYCbCr42tile;
2556 							break;
2557 						case 0x41:
2558 							img->put.contig = putcontig8bitYCbCr41tile;
2559 							break;
2560 						case 0x22:
2561 							img->put.contig = putcontig8bitYCbCr22tile;
2562 							break;
2563 						case 0x21:
2564 							img->put.contig = putcontig8bitYCbCr21tile;
2565 							break;
2566 						case 0x12:
2567 							img->put.contig = putcontig8bitYCbCr12tile;
2568 							break;
2569 						case 0x11:
2570 							img->put.contig = putcontig8bitYCbCr11tile;
2571 							break;
2572 					}
2573 				}
2574 			}
2575 			break;
2576 		case PHOTOMETRIC_CIELAB:
2577 			if (buildMap(img)) {
2578 				if (img->bitspersample == 8)
2579 					img->put.contig = initCIELabConversion(img);
2580 				break;
2581 			}
2582 	}
2583 	return ((img->get!=NULL) && (img->put.contig!=NULL));
2584 }
2585 
2586 /*
2587  * Select the appropriate conversion routine for unpacked data.
2588  *
2589  * NB: we assume that unpacked single channel data is directed
2590  *	 to the "packed routines.
2591  */
2592 static int
PickSeparateCase(TIFFRGBAImage * img)2593 PickSeparateCase(TIFFRGBAImage* img)
2594 {
2595 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2596 	img->put.separate = NULL;
2597 	switch (img->photometric) {
2598 	case PHOTOMETRIC_MINISWHITE:
2599 	case PHOTOMETRIC_MINISBLACK:
2600 		/* greyscale images processed pretty much as RGB by gtTileSeparate */
2601 	case PHOTOMETRIC_RGB:
2602 		switch (img->bitspersample) {
2603 		case 8:
2604 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2605 				img->put.separate = putRGBAAseparate8bittile;
2606 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2607 			{
2608 				if (BuildMapUaToAa(img))
2609 					img->put.separate = putRGBUAseparate8bittile;
2610 			}
2611 			else
2612 				img->put.separate = putRGBseparate8bittile;
2613 			break;
2614 		case 16:
2615 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2616 			{
2617 				if (BuildMapBitdepth16To8(img))
2618 					img->put.separate = putRGBAAseparate16bittile;
2619 			}
2620 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2621 			{
2622 				if (BuildMapBitdepth16To8(img) &&
2623 				    BuildMapUaToAa(img))
2624 					img->put.separate = putRGBUAseparate16bittile;
2625 			}
2626 			else
2627 			{
2628 				if (BuildMapBitdepth16To8(img))
2629 					img->put.separate = putRGBseparate16bittile;
2630 			}
2631 			break;
2632 		}
2633 		break;
2634 	case PHOTOMETRIC_SEPARATED:
2635 		if (img->bitspersample == 8 && img->samplesperpixel == 4)
2636 		{
2637 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2638 			img->put.separate = putCMYKseparate8bittile;
2639 		}
2640 		break;
2641 	case PHOTOMETRIC_YCBCR:
2642 		if ((img->bitspersample==8) && (img->samplesperpixel==3))
2643 		{
2644 			if (initYCbCrConversion(img)!=0)
2645 			{
2646 				uint16 hs, vs;
2647 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2648 				switch ((hs<<4)|vs) {
2649 				case 0x11:
2650 					img->put.separate = putseparate8bitYCbCr11tile;
2651 					break;
2652 					/* TODO: add other cases here */
2653 				}
2654 			}
2655 		}
2656 		break;
2657 	}
2658 	return ((img->get!=NULL) && (img->put.separate!=NULL));
2659 }
2660 
2661 static int
BuildMapUaToAa(TIFFRGBAImage * img)2662 BuildMapUaToAa(TIFFRGBAImage* img)
2663 {
2664 	static const char module[]="BuildMapUaToAa";
2665 	uint8* m;
2666 	uint16 na,nv;
2667 	assert(img->UaToAa==NULL);
2668 	img->UaToAa=_TIFFmalloc(65536);
2669 	if (img->UaToAa==NULL)
2670 	{
2671 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2672 		return(0);
2673 	}
2674 	m=img->UaToAa;
2675 	for (na=0; na<256; na++)
2676 	{
2677 		for (nv=0; nv<256; nv++)
2678 			*m++=(nv*na+127)/255;
2679 	}
2680 	return(1);
2681 }
2682 
2683 static int
BuildMapBitdepth16To8(TIFFRGBAImage * img)2684 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2685 {
2686 	static const char module[]="BuildMapBitdepth16To8";
2687 	uint8* m;
2688 	uint32 n;
2689 	assert(img->Bitdepth16To8==NULL);
2690 	img->Bitdepth16To8=_TIFFmalloc(65536);
2691 	if (img->Bitdepth16To8==NULL)
2692 	{
2693 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2694 		return(0);
2695 	}
2696 	m=img->Bitdepth16To8;
2697 	for (n=0; n<65536; n++)
2698 		*m++=(n+128)/257;
2699 	return(1);
2700 }
2701 
2702 
2703 /*
2704  * Read a whole strip off data from the file, and convert to RGBA form.
2705  * If this is the last strip, then it will only contain the portion of
2706  * the strip that is actually within the image space.  The result is
2707  * organized in bottom to top form.
2708  */
2709 
2710 
2711 int
TIFFReadRGBAStrip(TIFF * tif,uint32 row,uint32 * raster)2712 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2713 
2714 {
2715     char 	emsg[1024] = "";
2716     TIFFRGBAImage img;
2717     int 	ok;
2718     uint32	rowsperstrip, rows_to_read;
2719 
2720     if( TIFFIsTiled( tif ) )
2721     {
2722 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2723                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2724 	return (0);
2725     }
2726 
2727     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2728     if( (row % rowsperstrip) != 0 )
2729     {
2730 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2731 				"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2732 		return (0);
2733     }
2734 
2735     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2736 
2737         img.row_offset = row;
2738         img.col_offset = 0;
2739 
2740         if( row + rowsperstrip > img.height )
2741             rows_to_read = img.height - row;
2742         else
2743             rows_to_read = rowsperstrip;
2744 
2745 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2746 
2747 	TIFFRGBAImageEnd(&img);
2748     } else {
2749 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2750 		ok = 0;
2751     }
2752 
2753     return (ok);
2754 }
2755 
2756 /*
2757  * Read a whole tile off data from the file, and convert to RGBA form.
2758  * The returned RGBA data is organized from bottom to top of tile,
2759  * and may include zeroed areas if the tile extends off the image.
2760  */
2761 
2762 int
TIFFReadRGBATile(TIFF * tif,uint32 col,uint32 row,uint32 * raster)2763 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2764 
2765 {
2766     char 	emsg[1024] = "";
2767     TIFFRGBAImage img;
2768     int 	ok;
2769     uint32	tile_xsize, tile_ysize;
2770     uint32	read_xsize, read_ysize;
2771     uint32	i_row;
2772 
2773     /*
2774      * Verify that our request is legal - on a tile file, and on a
2775      * tile boundary.
2776      */
2777 
2778     if( !TIFFIsTiled( tif ) )
2779     {
2780 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2781 				  "Can't use TIFFReadRGBATile() with stripped file.");
2782 		return (0);
2783     }
2784 
2785     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2786     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2787     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2788     {
2789 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2790                   "Row/col passed to TIFFReadRGBATile() must be top"
2791                   "left corner of a tile.");
2792 	return (0);
2793     }
2794 
2795     /*
2796      * Setup the RGBA reader.
2797      */
2798 
2799     if (!TIFFRGBAImageOK(tif, emsg)
2800 	|| !TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2801 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2802 	    return( 0 );
2803     }
2804 
2805     /*
2806      * The TIFFRGBAImageGet() function doesn't allow us to get off the
2807      * edge of the image, even to fill an otherwise valid tile.  So we
2808      * figure out how much we can read, and fix up the tile buffer to
2809      * a full tile configuration afterwards.
2810      */
2811 
2812     if( row + tile_ysize > img.height )
2813         read_ysize = img.height - row;
2814     else
2815         read_ysize = tile_ysize;
2816 
2817     if( col + tile_xsize > img.width )
2818         read_xsize = img.width - col;
2819     else
2820         read_xsize = tile_xsize;
2821 
2822     /*
2823      * Read the chunk of imagery.
2824      */
2825 
2826     img.row_offset = row;
2827     img.col_offset = col;
2828 
2829     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
2830 
2831     TIFFRGBAImageEnd(&img);
2832 
2833     /*
2834      * If our read was incomplete we will need to fix up the tile by
2835      * shifting the data around as if a full tile of data is being returned.
2836      *
2837      * This is all the more complicated because the image is organized in
2838      * bottom to top format.
2839      */
2840 
2841     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
2842         return( ok );
2843 
2844     for( i_row = 0; i_row < read_ysize; i_row++ ) {
2845         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
2846                  raster + (read_ysize - i_row - 1) * read_xsize,
2847                  read_xsize * sizeof(uint32) );
2848         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
2849                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
2850     }
2851 
2852     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
2853         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
2854                      0, sizeof(uint32) * tile_xsize );
2855     }
2856 
2857     return (ok);
2858 }
2859 
2860 /* vim: set ts=8 sts=8 sw=8 noet: */
2861 /*
2862  * Local Variables:
2863  * mode: c
2864  * c-basic-offset: 8
2865  * fill-column: 78
2866  * End:
2867  */
2868