1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains routines that merge one tdata_t tree, called the child,
30  * into another, called the parent.  Note that these names are used mainly for
31  * convenience and to represent the direction of the merge.  They are not meant
32  * to imply any relationship between the tdata_t graphs prior to the merge.
33  *
34  * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35  * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36  * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37  * clean up loose ends.
38  *
39  * The algorithm is as follows:
40  *
41  * 1. Mapping iidesc_t nodes
42  *
43  * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44  * against the tdesc_t graph in the parent.  For each node in the child subgraph
45  * that exists in the parent, a mapping between the two (between their type IDs)
46  * is established.  For the child nodes that cannot be mapped onto existing
47  * parent nodes, a mapping is established between the child node ID and a
48  * newly-allocated ID that the node will use when it is re-created in the
49  * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50  * Added) hash, which tracks nodes that need to be created in the parent.
51  *
52  * If all of the nodes in the subgraph for an iidesc_t in the child can be
53  * mapped to existing nodes in the parent, then we can try to map the child
54  * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55  * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56  * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57  * list tracks iidesc_t nodes that are to be created in the parent.
58  *
59  * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60  * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61  * may be a structure or union definition in the child with the same name as the
62  * forward declaration in the parent.  If we find such a node, we record an
63  * association in the md_fdida (Forward => Definition ID Association) list
64  * between the parent ID of the forward declaration and the ID that the
65  * definition will use when re-created in the parent.
66  *
67  * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68  *
69  * We have now attempted to map all tdesc_t nodes from the child into the
70  * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71  * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72  * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73  * node, conjuring requires two steps - the copying of the common tdesc_t data
74  * (name, type, etc) from the child node, and the creation of links from the
75  * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76  * to by node being conjured.  Note that in some cases, the targets of these
77  * links will be on the md_tdtba hash themselves, and may not have been created
78  * yet.  As such, we can't establish the links from these new nodes into the
79  * parent graph.  We therefore conjure them with links to nodes in the *child*
80  * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81  * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82  * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83  *
84  * 3. Creating new iidesc_t nodes (the md_iitba list)
85  *
86  * When we have completed step 2, all tdesc_t nodes have been created (or
87  * already existed) in the parent.  Some of them may have incorrect links (the
88  * members of the md_tdtbr list), but they've all been created.  As such, we can
89  * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90  * pointers correctly.  We create each node, and attach the pointers to the
91  * appropriate parts of the parent tdesc_t graph.
92  *
93  * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94  *
95  * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96  * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97  * the parent will be established.  As saved in the md_tdtbr list, these
98  * pointers point into the child tdesc_t subgraph.  We can thus get the target
99  * type ID from the child, look at the ID mapping to determine the desired link
100  * target, and redirect the link accordingly.
101  *
102  * 5. Parent => child forward declaration resolution
103  *
104  * If entries were made in the md_fdida list in step 1, we have forward
105  * declarations in the parent that need to be resolved to their definitions
106  * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107  * the definition for the forward declaration, and we can redirect all inbound
108  * edges to the forward declaration node to the actual definition.
109  *
110  * A pox on the house of anyone who changes the algorithm without updating
111  * this comment.
112  */
113 
114 #if HAVE_NBTOOL_CONFIG_H
115 # include "nbtool_config.h"
116 #endif
117 
118 #include <stdio.h>
119 #include <strings.h>
120 #include <assert.h>
121 #include <pthread.h>
122 
123 #include "ctf_headers.h"
124 #include "ctftools.h"
125 #include "list.h"
126 #include "alist.h"
127 #include "memory.h"
128 #include "traverse.h"
129 
130 typedef struct equiv_data equiv_data_t;
131 typedef struct merge_cb_data merge_cb_data_t;
132 
133 /*
134  * There are two traversals in this file, for equivalency and for tdesc_t
135  * re-creation, that do not fit into the tdtraverse() framework.  We have our
136  * own traversal mechanism and ops vector here for those two cases.
137  */
138 typedef struct tdesc_ops {
139 	const char *name;
140 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
141 	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
142 } tdesc_ops_t;
143 extern tdesc_ops_t tdesc_ops[];
144 
145 /*
146  * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
147  * processed during various phases of the merge algorithm.
148  */
149 struct merge_cb_data {
150 	tdata_t *md_parent;
151 	tdata_t *md_tgt;
152 	alist_t *md_ta;		/* Type Association */
153 	alist_t *md_fdida;	/* Forward -> Definition ID Association */
154 	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
155 	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
156 	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
157 	int md_flags;
158 }; /* merge_cb_data_t */
159 
160 /*
161  * When we first create a tdata_t from stabs data, we will have duplicate nodes.
162  * Normal merges, however, assume that the child tdata_t is already self-unique,
163  * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
164  * the merge algorithm will self-uniquify by avoiding the insertion of
165  * duplicates in the md_tdtdba list.
166  */
167 #define	MCD_F_SELFUNIQUIFY	0x1
168 
169 /*
170  * When we merge the CTF data for the modules, we don't want it to contain any
171  * data that can be found in the reference module (usually genunix).  If this
172  * flag is set, we're doing a merge between the fully merged tdata_t for this
173  * module and the tdata_t for the reference module, with the data unique to this
174  * module ending up in a third tdata_t.  It is this third tdata_t that will end
175  * up in the .SUNW_ctf section for the module.
176  */
177 #define	MCD_F_REFMERGE	0x2
178 
179 /*
180  * Mapping of child type IDs to parent type IDs
181  */
182 
183 static void
add_mapping(alist_t * ta,tid_t srcid,tid_t tgtid)184 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
185 {
186 	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
187 
188 	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
189 	assert(srcid != 0 && tgtid != 0);
190 
191 	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
192 }
193 
194 static tid_t
get_mapping(alist_t * ta,int srcid)195 get_mapping(alist_t *ta, int srcid)
196 {
197 	void *ltgtid;
198 
199 	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
200 		return ((uintptr_t)ltgtid);
201 	else
202 		return (0);
203 }
204 
205 /*
206  * Determining equivalence of tdesc_t subgraphs
207  */
208 
209 struct equiv_data {
210 	alist_t *ed_ta;
211 	tdesc_t *ed_node;
212 	tdesc_t *ed_tgt;
213 
214 	int ed_clear_mark;
215 	int ed_cur_mark;
216 	int ed_selfuniquify;
217 }; /* equiv_data_t */
218 
219 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
220 
221 /*ARGSUSED2*/
222 static int
equiv_intrinsic(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed __unused)223 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
224 {
225 	intr_t *si = stdp->t_intr;
226 	intr_t *ti = ttdp->t_intr;
227 
228 	if (si->intr_type != ti->intr_type ||
229 	    si->intr_signed != ti->intr_signed ||
230 	    si->intr_offset != ti->intr_offset ||
231 	    si->intr_nbits != ti->intr_nbits)
232 		return (0);
233 
234 	if (si->intr_type == INTR_INT &&
235 	    si->intr_iformat != ti->intr_iformat)
236 		return (0);
237 	else if (si->intr_type == INTR_REAL &&
238 	    si->intr_fformat != ti->intr_fformat)
239 		return (0);
240 
241 	return (1);
242 }
243 
244 static int
equiv_plain(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed)245 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
246 {
247 	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
248 }
249 
250 static int
equiv_function(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed)251 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
252 {
253 	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
254 	int i;
255 
256 	if (fn1->fn_nargs != fn2->fn_nargs ||
257 	    fn1->fn_vargs != fn2->fn_vargs)
258 		return (0);
259 
260 	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
261 		return (0);
262 
263 	for (i = 0; i < (int) fn1->fn_nargs; i++) {
264 		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
265 			return (0);
266 	}
267 
268 	return (1);
269 }
270 
271 static int
equiv_array(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed)272 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
273 {
274 	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
275 
276 	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
277 	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
278 		return (0);
279 
280 	if (ar1->ad_nelems != ar2->ad_nelems)
281 		return (0);
282 
283 	return (1);
284 }
285 
286 static int
equiv_su(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed)287 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
288 {
289 	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
290 	mlist_t *olm1 = NULL;
291 
292 	while (ml1 && ml2) {
293 		if (ml1->ml_offset != ml2->ml_offset ||
294 		    strcmp(ml1->ml_name, ml2->ml_name) != 0)
295 			return (0);
296 
297 		/*
298 		 * Don't do the recursive equivalency checking more than
299 		 * we have to.
300 		 */
301 		if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
302 			if (ml1->ml_size != ml2->ml_size ||
303 			    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
304 				return (0);
305 		}
306 
307 		olm1 = ml1;
308 		ml1 = ml1->ml_next;
309 		ml2 = ml2->ml_next;
310 	}
311 
312 	if (ml1 || ml2)
313 		return (0);
314 
315 	return (1);
316 }
317 
318 /*ARGSUSED2*/
319 static int
equiv_enum(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed __unused)320 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
321 {
322 	elist_t *el1 = stdp->t_emem;
323 	elist_t *el2 = ttdp->t_emem;
324 
325 	while (el1 && el2) {
326 		if (el1->el_number != el2->el_number ||
327 		    strcmp(el1->el_name, el2->el_name) != 0)
328 			return (0);
329 
330 		el1 = el1->el_next;
331 		el2 = el2->el_next;
332 	}
333 
334 	if (el1 || el2)
335 		return (0);
336 
337 	return (1);
338 }
339 
340 /*ARGSUSED*/
341 static int
equiv_assert(tdesc_t * stdp __unused,tdesc_t * ttdp __unused,equiv_data_t * ed __unused)342 equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
343 {
344 	/* foul, evil, and very bad - this is a "shouldn't happen" */
345 	assert(1 == 0);
346 
347 	return (0);
348 }
349 
350 static int
fwd_equiv(tdesc_t * ctdp,tdesc_t * mtdp)351 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
352 {
353 	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
354 
355 	return (defn->t_type == STRUCT || defn->t_type == UNION);
356 }
357 
358 static int
equiv_node(tdesc_t * ctdp,tdesc_t * mtdp,equiv_data_t * ed)359 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
360 {
361 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
362 	int mapping;
363 
364 	if (ctdp->t_emark > ed->ed_clear_mark &&
365 	    mtdp->t_emark > ed->ed_clear_mark)
366 		return (ctdp->t_emark == mtdp->t_emark);
367 
368 	/*
369 	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
370 	 * checking on a subgraph that has already been checked.  If a mapping
371 	 * has already been established for a given child node, we can simply
372 	 * compare the mapping for the child node with the ID of the parent
373 	 * node.  If we are in self-uniquify mode, then we're comparing two
374 	 * subgraphs within the child graph, and thus need to ignore any
375 	 * type mappings that have been created, as they are only valid into the
376 	 * parent.
377 	 */
378 	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
379 	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
380 		return (1);
381 
382 	if (!streq(ctdp->t_name, mtdp->t_name))
383 		return (0);
384 
385 	if (ctdp->t_type != mtdp->t_type) {
386 		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
387 			return (fwd_equiv(ctdp, mtdp));
388 		else
389 			return (0);
390 	}
391 
392 	ctdp->t_emark = ed->ed_cur_mark;
393 	mtdp->t_emark = ed->ed_cur_mark;
394 	ed->ed_cur_mark++;
395 
396 	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
397 		return (equiv(ctdp, mtdp, ed));
398 
399 	return (1);
400 }
401 
402 /*
403  * We perform an equivalency check on two subgraphs by traversing through them
404  * in lockstep.  If a given node is equivalent in both the parent and the child,
405  * we mark it in both subgraphs, using the t_emark field, with a monotonically
406  * increasing number.  If, in the course of the traversal, we reach a node that
407  * we have visited and numbered during this equivalency check, we have a cycle.
408  * If the previously-visited nodes don't have the same emark, then the edges
409  * that brought us to these nodes are not equivalent, and so the check ends.
410  * If the emarks are the same, the edges are equivalent.  We then backtrack and
411  * continue the traversal.  If we have exhausted all edges in the subgraph, and
412  * have not found any inequivalent nodes, then the subgraphs are equivalent.
413  */
414 static int
equiv_cb(void * bucket,void * arg)415 equiv_cb(void *bucket, void *arg)
416 {
417 	equiv_data_t *ed = arg;
418 	tdesc_t *mtdp = bucket;
419 	tdesc_t *ctdp = ed->ed_node;
420 
421 	ed->ed_clear_mark = ed->ed_cur_mark + 1;
422 	ed->ed_cur_mark = ed->ed_clear_mark + 1;
423 
424 	if (equiv_node(ctdp, mtdp, ed)) {
425 		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
426 		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
427 		ed->ed_tgt = mtdp;
428 		/* matched.  stop looking */
429 		return (-1);
430 	}
431 
432 	return (0);
433 }
434 
435 /*ARGSUSED1*/
436 static int
map_td_tree_pre(tdesc_t * ctdp,tdesc_t ** ctdpp __unused,void * private)437 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
438 {
439 	merge_cb_data_t *mcd = private;
440 
441 	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
442 		return (0);
443 
444 	return (1);
445 }
446 
447 /*ARGSUSED1*/
448 static int
map_td_tree_post(tdesc_t * ctdp,tdesc_t ** ctdpp __unused,void * private)449 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
450 {
451 	merge_cb_data_t *mcd = private;
452 	equiv_data_t ed;
453 
454 	ed.ed_ta = mcd->md_ta;
455 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
456 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
457 	ed.ed_node = ctdp;
458 	ed.ed_selfuniquify = 0;
459 
460 	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
461 
462 	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
463 	    equiv_cb, &ed) < 0) {
464 		/* We found an equivalent node */
465 		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
466 			int id = mcd->md_tgt->td_nextid++;
467 
468 			debug(3, "Creating new defn type %d <%x>\n", id, id);
469 			add_mapping(mcd->md_ta, ctdp->t_id, id);
470 			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
471 			    (void *)(ulong_t)id);
472 			hash_add(mcd->md_tdtba, ctdp);
473 		} else
474 			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
475 
476 	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
477 	    equiv_cb, &ed) < 0) {
478 		/*
479 		 * We didn't find an equivalent node by looking through the
480 		 * layout hash, but we somehow found it by performing an
481 		 * exhaustive search through the entire graph.  This usually
482 		 * means that the "name" hash function is broken.
483 		 */
484 		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
485 		    tdesc_name(ctdp), ed.ed_tgt->t_id);
486 	} else {
487 		int id = mcd->md_tgt->td_nextid++;
488 
489 		debug(3, "Creating new type %d <%x>\n", id, id);
490 		add_mapping(mcd->md_ta, ctdp->t_id, id);
491 		hash_add(mcd->md_tdtba, ctdp);
492 	}
493 
494 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
495 
496 	return (1);
497 }
498 
499 /*ARGSUSED1*/
500 static int
map_td_tree_self_post(tdesc_t * ctdp,tdesc_t ** ctdpp __unused,void * private)501 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
502 {
503 	merge_cb_data_t *mcd = private;
504 	equiv_data_t ed;
505 
506 	ed.ed_ta = mcd->md_ta;
507 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
508 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
509 	ed.ed_node = ctdp;
510 	ed.ed_selfuniquify = 1;
511 	ed.ed_tgt = NULL;
512 
513 	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
514 		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
515 		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
516 		add_mapping(mcd->md_ta, ctdp->t_id,
517 		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
518 	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
519 	    equiv_cb, &ed) < 0) {
520 		/*
521 		 * We didn't find an equivalent node using the quick way (going
522 		 * through the hash normally), but we did find it by iterating
523 		 * through the entire hash.  This usually means that the hash
524 		 * function is broken.
525 		 */
526 		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
527 		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
528 		    ed.ed_tgt->t_id);
529 	} else {
530 		int id = mcd->md_tgt->td_nextid++;
531 
532 		debug(3, "Creating new type %d <%x>\n", id, id);
533 		add_mapping(mcd->md_ta, ctdp->t_id, id);
534 		hash_add(mcd->md_tdtba, ctdp);
535 	}
536 
537 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
538 
539 	return (1);
540 }
541 
542 static tdtrav_cb_f map_pre[] = {
543 	NULL,
544 	map_td_tree_pre,	/* intrinsic */
545 	map_td_tree_pre,	/* pointer */
546 	map_td_tree_pre,	/* reference */
547 	map_td_tree_pre,	/* array */
548 	map_td_tree_pre,	/* function */
549 	map_td_tree_pre,	/* struct */
550 	map_td_tree_pre,	/* union */
551 	map_td_tree_pre,	/* class */
552 	map_td_tree_pre,	/* enum */
553 	map_td_tree_pre,	/* forward */
554 	map_td_tree_pre,	/* typedef */
555 	tdtrav_assert,		/* typedef_unres */
556 	map_td_tree_pre,	/* volatile */
557 	map_td_tree_pre,	/* const */
558 	map_td_tree_pre		/* restrict */
559 };
560 
561 static tdtrav_cb_f map_post[] = {
562 	NULL,
563 	map_td_tree_post,	/* intrinsic */
564 	map_td_tree_post,	/* pointer */
565 	map_td_tree_post,	/* reference */
566 	map_td_tree_post,	/* array */
567 	map_td_tree_post,	/* function */
568 	map_td_tree_post,	/* struct */
569 	map_td_tree_post,	/* union */
570 	map_td_tree_post,	/* class */
571 	map_td_tree_post,	/* enum */
572 	map_td_tree_post,	/* forward */
573 	map_td_tree_post,	/* typedef */
574 	tdtrav_assert,		/* typedef_unres */
575 	map_td_tree_post,	/* volatile */
576 	map_td_tree_post,	/* const */
577 	map_td_tree_post	/* restrict */
578 };
579 
580 static tdtrav_cb_f map_self_post[] = {
581 	NULL,
582 	map_td_tree_self_post,	/* intrinsic */
583 	map_td_tree_self_post,	/* pointer */
584 	map_td_tree_self_post,	/* reference */
585 	map_td_tree_self_post,	/* array */
586 	map_td_tree_self_post,	/* function */
587 	map_td_tree_self_post,	/* struct */
588 	map_td_tree_self_post,	/* union */
589 	map_td_tree_self_post,	/* class */
590 	map_td_tree_self_post,	/* enum */
591 	map_td_tree_self_post,	/* forward */
592 	map_td_tree_self_post,	/* typedef */
593 	tdtrav_assert,		/* typedef_unres */
594 	map_td_tree_self_post,	/* volatile */
595 	map_td_tree_self_post,	/* const */
596 	map_td_tree_self_post	/* restrict */
597 };
598 
599 /*
600  * Determining equivalence of iidesc_t nodes
601  */
602 
603 typedef struct iifind_data {
604 	iidesc_t *iif_template;
605 	alist_t *iif_ta;
606 	int iif_newidx;
607 	int iif_refmerge;
608 } iifind_data_t;
609 
610 /*
611  * Check to see if this iidesc_t (node) - the current one on the list we're
612  * iterating through - matches the target one (iif->iif_template).  Return -1
613  * if it matches, to stop the iteration.
614  */
615 static int
iidesc_match(void * data,void * arg)616 iidesc_match(void *data, void *arg)
617 {
618 	iidesc_t *node = data;
619 	iifind_data_t *iif = arg;
620 	int i;
621 
622 	if (node->ii_type != iif->iif_template->ii_type ||
623 	    !streq(node->ii_name, iif->iif_template->ii_name) ||
624 	    node->ii_dtype->t_id != iif->iif_newidx)
625 		return (0);
626 
627 	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
628 	    !streq(node->ii_owner, iif->iif_template->ii_owner))
629 		return (0);
630 
631 	if (node->ii_nargs != iif->iif_template->ii_nargs)
632 		return (0);
633 
634 	for (i = 0; i < node->ii_nargs; i++) {
635 		if (get_mapping(iif->iif_ta,
636 		    iif->iif_template->ii_args[i]->t_id) !=
637 		    node->ii_args[i]->t_id)
638 			return (0);
639 	}
640 
641 	if (iif->iif_refmerge) {
642 		switch (iif->iif_template->ii_type) {
643 		case II_GFUN:
644 		case II_SFUN:
645 		case II_GVAR:
646 		case II_SVAR:
647 			debug(3, "suppressing duping of %d %s from %s\n",
648 			    iif->iif_template->ii_type,
649 			    iif->iif_template->ii_name,
650 			    (iif->iif_template->ii_owner ?
651 			    iif->iif_template->ii_owner : "NULL"));
652 			return (0);
653 		case II_NOT:
654 		case II_PSYM:
655 		case II_SOU:
656 		case II_TYPE:
657 			break;
658 		}
659 	}
660 
661 	return (-1);
662 }
663 
664 static int
merge_type_cb(void * data,void * arg)665 merge_type_cb(void *data, void *arg)
666 {
667 	iidesc_t *sii = data;
668 	merge_cb_data_t *mcd = arg;
669 	iifind_data_t iif;
670 	tdtrav_cb_f *post;
671 
672 	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
673 
674 	/* Map the tdesc nodes */
675 	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
676 	    mcd);
677 
678 	/* Map the iidesc nodes */
679 	iif.iif_template = sii;
680 	iif.iif_ta = mcd->md_ta;
681 	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
682 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
683 
684 	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
685 	    &iif) == 1)
686 		/* successfully mapped */
687 		return (1);
688 
689 	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
690 	    sii->ii_type);
691 
692 	list_add(mcd->md_iitba, sii);
693 
694 	return (0);
695 }
696 
697 static int
remap_node(tdesc_t ** tgtp,tdesc_t * oldtgt,int selftid,tdesc_t * newself,merge_cb_data_t * mcd)698 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
699     merge_cb_data_t *mcd)
700 {
701 	tdesc_t *tgt = NULL;
702 	tdesc_t template;
703 	int oldid = oldtgt->t_id;
704 
705 	if (oldid == selftid) {
706 		*tgtp = newself;
707 		return (1);
708 	}
709 
710 	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
711 		aborterr("failed to get mapping for tid %d (%s) <%x>\n", oldid,
712 		    oldtgt->t_name, oldid);
713 
714 	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
715 	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
716 	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
717 	    (void *)&tgt))) {
718 		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
719 		    template.t_id, oldid, oldid);
720 		*tgtp = oldtgt;
721 		list_add(mcd->md_tdtbr, tgtp);
722 		return (0);
723 	}
724 
725 	*tgtp = tgt;
726 	return (1);
727 }
728 
729 static tdesc_t *
conjure_template(tdesc_t * old,int newselfid)730 conjure_template(tdesc_t *old, int newselfid)
731 {
732 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
733 
734 	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
735 	new->t_type = old->t_type;
736 	new->t_size = old->t_size;
737 	new->t_id = newselfid;
738 	new->t_flags = old->t_flags;
739 
740 	return (new);
741 }
742 
743 /*ARGSUSED2*/
744 static tdesc_t *
conjure_intrinsic(tdesc_t * old,int newselfid,merge_cb_data_t * mcd __unused)745 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
746 {
747 	tdesc_t *new = conjure_template(old, newselfid);
748 
749 	new->t_intr = xmalloc(sizeof (intr_t));
750 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
751 
752 	return (new);
753 }
754 
755 static tdesc_t *
conjure_plain(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)756 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
757 {
758 	tdesc_t *new = conjure_template(old, newselfid);
759 
760 	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
761 
762 	return (new);
763 }
764 
765 static tdesc_t *
conjure_function(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)766 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
767 {
768 	tdesc_t *new = conjure_template(old, newselfid);
769 	fndef_t *nfn = xmalloc(sizeof (fndef_t));
770 	fndef_t *ofn = old->t_fndef;
771 	int i;
772 
773 	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
774 
775 	nfn->fn_nargs = ofn->fn_nargs;
776 	nfn->fn_vargs = ofn->fn_vargs;
777 
778 	if (nfn->fn_nargs > 0)
779 		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
780 
781 	for (i = 0; i < (int) ofn->fn_nargs; i++) {
782 		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
783 		    new, mcd);
784 	}
785 
786 	new->t_fndef = nfn;
787 
788 	return (new);
789 }
790 
791 static tdesc_t *
conjure_array(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)792 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
793 {
794 	tdesc_t *new = conjure_template(old, newselfid);
795 	ardef_t *nar = xmalloc(sizeof (ardef_t));
796 	ardef_t *oar = old->t_ardef;
797 
798 	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
799 	    mcd);
800 	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
801 	    mcd);
802 
803 	nar->ad_nelems = oar->ad_nelems;
804 
805 	new->t_ardef = nar;
806 
807 	return (new);
808 }
809 
810 static tdesc_t *
conjure_su(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)811 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
812 {
813 	tdesc_t *new = conjure_template(old, newselfid);
814 	mlist_t *omem, **nmemp;
815 
816 	for (omem = old->t_members, nmemp = &new->t_members;
817 	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
818 		*nmemp = xmalloc(sizeof (mlist_t));
819 		(*nmemp)->ml_offset = omem->ml_offset;
820 		(*nmemp)->ml_size = omem->ml_size;
821 		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
822 		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
823 		    old->t_id, new, mcd);
824 	}
825 	*nmemp = NULL;
826 
827 	return (new);
828 }
829 
830 /*ARGSUSED2*/
831 static tdesc_t *
conjure_enum(tdesc_t * old,int newselfid,merge_cb_data_t * mcd __unused)832 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
833 {
834 	tdesc_t *new = conjure_template(old, newselfid);
835 	elist_t *oel, **nelp;
836 
837 	for (oel = old->t_emem, nelp = &new->t_emem;
838 	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
839 		*nelp = xmalloc(sizeof (elist_t));
840 		(*nelp)->el_name = xstrdup(oel->el_name);
841 		(*nelp)->el_number = oel->el_number;
842 	}
843 	*nelp = NULL;
844 
845 	return (new);
846 }
847 
848 /*ARGSUSED2*/
849 static tdesc_t *
conjure_forward(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)850 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
851 {
852 	tdesc_t *new = conjure_template(old, newselfid);
853 
854 	list_add(&mcd->md_tgt->td_fwdlist, new);
855 
856 	return (new);
857 }
858 
859 /*ARGSUSED*/
860 static tdesc_t *
conjure_assert(tdesc_t * old __unused,int newselfid __unused,merge_cb_data_t * mcd __unused)861 conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
862 {
863 	assert(1 == 0);
864 	return (NULL);
865 }
866 
867 static iidesc_t *
conjure_iidesc(iidesc_t * old,merge_cb_data_t * mcd)868 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
869 {
870 	iidesc_t *new = iidesc_dup(old);
871 	int i;
872 
873 	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
874 	for (i = 0; i < new->ii_nargs; i++) {
875 		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
876 		    mcd);
877 	}
878 
879 	return (new);
880 }
881 
882 static int
fwd_redir(tdesc_t * fwd,tdesc_t ** fwdp,void * private)883 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
884 {
885 	alist_t *map = private;
886 	void *defn;
887 
888 	if (!alist_find(map, (void *)fwd, (void **)&defn))
889 		return (0);
890 
891 	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
892 
893 	*fwdp = defn;
894 
895 	return (1);
896 }
897 
898 static tdtrav_cb_f fwd_redir_cbs[] = {
899 	NULL,
900 	NULL,			/* intrinsic */
901 	NULL,			/* pointer */
902 	NULL,			/* reference */
903 	NULL,			/* array */
904 	NULL,			/* function */
905 	NULL,			/* struct */
906 	NULL,			/* union */
907 	NULL,			/* class */
908 	NULL,			/* enum */
909 	fwd_redir,		/* forward */
910 	NULL,			/* typedef */
911 	tdtrav_assert,		/* typedef_unres */
912 	NULL,			/* volatile */
913 	NULL,			/* const */
914 	NULL			/* restrict */
915 };
916 
917 typedef struct redir_mstr_data {
918 	tdata_t *rmd_tgt;
919 	alist_t *rmd_map;
920 } redir_mstr_data_t;
921 
922 static int
redir_mstr_fwd_cb(void * name,void * value,void * arg)923 redir_mstr_fwd_cb(void *name, void *value, void *arg)
924 {
925 	tdesc_t *fwd = name;
926 	int defnid = (uintptr_t)value;
927 	redir_mstr_data_t *rmd = arg;
928 	tdesc_t template;
929 	tdesc_t *defn;
930 
931 	template.t_id = defnid;
932 
933 	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
934 	    (void *)&defn)) {
935 		aborterr("Couldn't unforward %d (%s)\n", defnid,
936 		    tdesc_name(defn));
937 	}
938 
939 	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
940 
941 	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
942 
943 	return (1);
944 }
945 
946 static void
redir_mstr_fwds(merge_cb_data_t * mcd)947 redir_mstr_fwds(merge_cb_data_t *mcd)
948 {
949 	redir_mstr_data_t rmd;
950 	alist_t *map = alist_new(NULL, NULL);
951 
952 	rmd.rmd_tgt = mcd->md_tgt;
953 	rmd.rmd_map = map;
954 
955 	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
956 		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
957 		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
958 	}
959 
960 	alist_free(map);
961 }
962 
963 static int
add_iitba_cb(void * data,void * private)964 add_iitba_cb(void *data, void *private)
965 {
966 	merge_cb_data_t *mcd = private;
967 	iidesc_t *tba = data;
968 	iidesc_t *new;
969 	iifind_data_t iif;
970 	int newidx;
971 
972 	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
973 	assert(newidx != -1);
974 
975 	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
976 
977 	iif.iif_template = tba;
978 	iif.iif_ta = mcd->md_ta;
979 	iif.iif_newidx = newidx;
980 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
981 
982 	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
983 	    &iif) == 1) {
984 		debug(3, "iidesc_t %s already exists\n",
985 		    (tba->ii_name ? tba->ii_name : "(anon)"));
986 		return (1);
987 	}
988 
989 	new = conjure_iidesc(tba, mcd);
990 	hash_add(mcd->md_tgt->td_iihash, new);
991 
992 	return (1);
993 }
994 
995 static int
add_tdesc(tdesc_t * oldtdp,int newid,merge_cb_data_t * mcd)996 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
997 {
998 	tdesc_t *newtdp;
999 	tdesc_t template;
1000 
1001 	template.t_id = newid;
1002 	assert(hash_find(mcd->md_parent->td_idhash,
1003 	    (void *)&template, NULL) == 0);
1004 
1005 	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
1006 	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
1007 	    oldtdp->t_id, newid, newid);
1008 
1009 	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
1010 	    mcd)) == NULL)
1011 		/* couldn't map everything */
1012 		return (0);
1013 
1014 	debug(3, "succeeded\n");
1015 
1016 	hash_add(mcd->md_tgt->td_idhash, newtdp);
1017 	hash_add(mcd->md_tgt->td_layouthash, newtdp);
1018 
1019 	return (1);
1020 }
1021 
1022 static int
add_tdtba_cb(void * data,void * arg)1023 add_tdtba_cb(void *data, void *arg)
1024 {
1025 	tdesc_t *tdp = data;
1026 	merge_cb_data_t *mcd = arg;
1027 	int newid;
1028 	int rc;
1029 
1030 	newid = get_mapping(mcd->md_ta, tdp->t_id);
1031 	assert(newid != -1);
1032 
1033 	if ((rc = add_tdesc(tdp, newid, mcd)))
1034 		hash_remove(mcd->md_tdtba, (void *)tdp);
1035 
1036 	return (rc);
1037 }
1038 
1039 static int
add_tdtbr_cb(void * data,void * arg)1040 add_tdtbr_cb(void *data, void *arg)
1041 {
1042 	tdesc_t **tdpp = data;
1043 	merge_cb_data_t *mcd = arg;
1044 
1045 	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1046 
1047 	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1048 		return (0);
1049 
1050 	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1051 	return (1);
1052 }
1053 
1054 static void
merge_types(hash_t * src,merge_cb_data_t * mcd)1055 merge_types(hash_t *src, merge_cb_data_t *mcd)
1056 {
1057 	list_t *iitba = NULL;
1058 	list_t *tdtbr = NULL;
1059 	int iirc, tdrc;
1060 
1061 	mcd->md_iitba = &iitba;
1062 	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1063 	    tdesc_layoutcmp);
1064 	mcd->md_tdtbr = &tdtbr;
1065 
1066 	(void) hash_iter(src, merge_type_cb, mcd);
1067 
1068 	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1069 	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1070 
1071 	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1072 	debug(3, "add_iitba_cb added %d items\n", iirc);
1073 
1074 	assert(list_count(*mcd->md_iitba) == 0 &&
1075 	    hash_count(mcd->md_tdtba) == 0);
1076 
1077 	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1078 	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1079 
1080 	if (list_count(*mcd->md_tdtbr) != 0)
1081 		aborterr("Couldn't remap all nodes\n");
1082 
1083 	/*
1084 	 * We now have an alist of master forwards and the ids of the new master
1085 	 * definitions for those forwards in mcd->md_fdida.  By this point,
1086 	 * we're guaranteed that all of the master definitions referenced in
1087 	 * fdida have been added to the master tree.  We now traverse through
1088 	 * the master tree, redirecting all edges inbound to forwards that have
1089 	 * definitions to those definitions.
1090 	 */
1091 	if (mcd->md_parent == mcd->md_tgt) {
1092 		redir_mstr_fwds(mcd);
1093 	}
1094 }
1095 
1096 void
merge_into_master(tdata_t * cur,tdata_t * mstr,tdata_t * tgt,int selfuniquify)1097 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1098 {
1099 	merge_cb_data_t mcd;
1100 
1101 	cur->td_ref++;
1102 	mstr->td_ref++;
1103 	if (tgt)
1104 		tgt->td_ref++;
1105 
1106 	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1107 	    (tgt == NULL || tgt->td_ref == 1));
1108 
1109 	mcd.md_parent = mstr;
1110 	mcd.md_tgt = (tgt ? tgt : mstr);
1111 	mcd.md_ta = alist_new(NULL, NULL);
1112 	mcd.md_fdida = alist_new(NULL, NULL);
1113 	mcd.md_flags = 0;
1114 
1115 	if (selfuniquify)
1116 		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1117 	if (tgt)
1118 		mcd.md_flags |= MCD_F_REFMERGE;
1119 
1120 	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1121 	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1122 
1123 	merge_types(cur->td_iihash, &mcd);
1124 
1125 	if (debug_level >= 3) {
1126 		debug(3, "Type association stats\n");
1127 		alist_stats(mcd.md_ta, 0);
1128 		debug(3, "Layout hash stats\n");
1129 		hash_stats(mcd.md_tgt->td_layouthash, 1);
1130 	}
1131 
1132 	alist_free(mcd.md_fdida);
1133 	alist_free(mcd.md_ta);
1134 
1135 	cur->td_ref--;
1136 	mstr->td_ref--;
1137 	if (tgt)
1138 		tgt->td_ref--;
1139 }
1140 
1141 tdesc_ops_t tdesc_ops[] = {
1142 	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1143 	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1144 	{ "pointer", 		equiv_plain,		conjure_plain },
1145 	{ "reference", 		equiv_plain,		conjure_plain },
1146 	{ "array", 		equiv_array,		conjure_array },
1147 	{ "function", 		equiv_function,		conjure_function },
1148 	{ "struct",		equiv_su,		conjure_su },
1149 	{ "union",		equiv_su,		conjure_su },
1150 	{ "class",		equiv_su,		conjure_su },
1151 	{ "enum",		equiv_enum,		conjure_enum },
1152 	{ "forward",		NULL,			conjure_forward },
1153 	{ "typedef",		equiv_plain,		conjure_plain },
1154 	{ "typedef_unres",	equiv_assert,		conjure_assert },
1155 	{ "volatile",		equiv_plain,		conjure_plain },
1156 	{ "const", 		equiv_plain,		conjure_plain },
1157 	{ "restrict",		equiv_plain,		conjure_plain }
1158 };
1159