1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/u8_textprep.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/kmem.h>
42 #include <sys/errno.h>
43 #include <sys/unistd.h>
44 #include <sys/atomic.h>
45 #include <sys/zfs_dir.h>
46 #include <sys/zfs_acl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zfs_rlock.h>
49 #include <sys/zfs_fuid.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/kidmap.h>
52 #endif /* _KERNEL */
53 
54 #include <sys/dmu.h>
55 #include <sys/refcount.h>
56 #include <sys/stat.h>
57 #include <sys/zap.h>
58 #include <sys/zfs_znode.h>
59 
60 #include "zfs_prop.h"
61 
62 #if defined(_KERNEL) && defined(__NetBSD__)
63 #include <miscfs/specfs/specdev.h>
64 static const struct genfs_ops zfs_genfsops = {
65 	.gop_write = genfs_compat_gop_write,
66 };
67 
68 #endif
69 
70 extern int (**zfs_vnodeop_p)(void *);
71 extern int (**zfs_fifoop_p)(void *);
72 extern int (**zfs_specop_p)(void *);
73 
74 /*
75  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
76  * turned on when DEBUG is also defined.
77  */
78 #ifdef	DEBUG
79 #define	ZNODE_STATS
80 #endif	/* DEBUG */
81 
82 #ifdef	ZNODE_STATS
83 #define	ZNODE_STAT_ADD(stat)			((stat)++)
84 #else
85 #define	ZNODE_STAT_ADD(stat)			/* nothing */
86 #endif	/* ZNODE_STATS */
87 
88 #define	POINTER_IS_VALID(p)	(!((uintptr_t)(p) & 0x3))
89 #define	POINTER_INVALIDATE(pp)	(*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
90 
91 /*
92  * Functions needed for userland (ie: libzpool) are not put under
93  * #ifdef_KERNEL; the rest of the functions have dependencies
94  * (such as VFS logic) that will not compile easily in userland.
95  */
96 #ifdef _KERNEL
97 /*
98  * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
99  * be freed before it can be safely accessed.
100  */
101 krwlock_t zfsvfs_lock;
102 
103 static kmem_cache_t *znode_cache = NULL;
104 
105 /*ARGSUSED*/
106 static void
znode_evict_error(dmu_buf_t * dbuf,void * user_ptr)107 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
108 {
109 	/*
110 	 * We should never drop all dbuf refs without first clearing
111 	 * the eviction callback.
112 	 */
113 	panic("evicting znode %p\n", user_ptr);
114 }
115 
116 /*ARGSUSED*/
117 static int
zfs_znode_cache_constructor(void * buf,void * arg,int kmflags)118 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
119 {
120 	znode_t *zp = arg;
121 
122 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
123 
124 	zp->z_vnode = NULL;
125 
126 	list_link_init(&zp->z_link_node);
127 
128 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
129 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
130 	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
131 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
132 
133 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
134 	avl_create(&zp->z_range_avl, zfs_range_compare,
135 	    sizeof (rl_t), offsetof(rl_t, r_node));
136 
137 	zp->z_dbuf = NULL;
138 	zp->z_dirlocks = NULL;
139 	zp->z_acl_cached = NULL;
140 	return (0);
141 }
142 
143 /*ARGSUSED*/
144 static void
zfs_znode_cache_destructor(void * buf,void * arg)145 zfs_znode_cache_destructor(void *buf, void *arg)
146 {
147 	znode_t *zp = arg;
148 
149 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
150 	ASSERT(ZTOV(zp) == NULL);
151 
152 	ASSERT(!list_link_active(&zp->z_link_node));
153 	mutex_destroy(&zp->z_lock);
154 	rw_destroy(&zp->z_parent_lock);
155 	rw_destroy(&zp->z_name_lock);
156 	mutex_destroy(&zp->z_acl_lock);
157 	avl_destroy(&zp->z_range_avl);
158 	mutex_destroy(&zp->z_range_lock);
159 
160 	ASSERT(zp->z_dbuf == NULL);
161 	ASSERT(zp->z_dirlocks == NULL);
162 	ASSERT(zp->z_acl_cached == NULL);
163 }
164 
165 #ifdef	ZNODE_STATS
166 static struct {
167 	uint64_t zms_zfsvfs_invalid;
168 	uint64_t zms_zfsvfs_recheck1;
169 	uint64_t zms_zfsvfs_unmounted;
170 	uint64_t zms_zfsvfs_recheck2;
171 	uint64_t zms_obj_held;
172 	uint64_t zms_vnode_locked;
173 	uint64_t zms_not_only_dnlc;
174 } znode_move_stats;
175 #endif	/* ZNODE_STATS */
176 
177 static void
zfs_znode_move_impl(znode_t * ozp,znode_t * nzp)178 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
179 {
180 	vnode_t *vp;
181 
182 	/* Copy fields. */
183 	nzp->z_zfsvfs = ozp->z_zfsvfs;
184 
185 	/* Swap vnodes. */
186 	vp = nzp->z_vnode;
187 	nzp->z_vnode = ozp->z_vnode;
188 	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
189 	ZTOV(ozp)->v_data = ozp;
190 	ZTOV(nzp)->v_data = nzp;
191 
192 	nzp->z_id = ozp->z_id;
193 	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
194 	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
195 	nzp->z_unlinked = ozp->z_unlinked;
196 	nzp->z_atime_dirty = ozp->z_atime_dirty;
197 	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
198 	nzp->z_blksz = ozp->z_blksz;
199 	nzp->z_seq = ozp->z_seq;
200 	nzp->z_mapcnt = ozp->z_mapcnt;
201 	nzp->z_last_itx = ozp->z_last_itx;
202 	nzp->z_gen = ozp->z_gen;
203 	nzp->z_sync_cnt = ozp->z_sync_cnt;
204 	nzp->z_phys = ozp->z_phys;
205 	nzp->z_dbuf = ozp->z_dbuf;
206 
207 	/*
208 	 * Since this is just an idle znode and kmem is already dealing with
209 	 * memory pressure, release any cached ACL.
210 	 */
211 	if (ozp->z_acl_cached) {
212 		zfs_acl_free(ozp->z_acl_cached);
213 		ozp->z_acl_cached = NULL;
214 	}
215 
216 	/* Update back pointers. */
217 	(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
218 	    znode_evict_error);
219 
220 	/*
221 	 * Invalidate the original znode by clearing fields that provide a
222 	 * pointer back to the znode. Set the low bit of the vfs pointer to
223 	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
224 	 * subsequent callback.
225 	 */
226 	ozp->z_dbuf = NULL;
227 	POINTER_INVALIDATE(&ozp->z_zfsvfs);
228 }
229 
230 #ifndef __NetBSD__
231 /*ARGSUSED*/
232 static kmem_cbrc_t
zfs_znode_move(void * buf,void * newbuf,size_t size,void * arg)233 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
234 {
235 	znode_t *ozp = buf, *nzp = newbuf;
236 	zfsvfs_t *zfsvfs;
237 	vnode_t *vp;
238 
239 	/*
240 	 * The znode is on the file system's list of known znodes if the vfs
241 	 * pointer is valid. We set the low bit of the vfs pointer when freeing
242 	 * the znode to invalidate it, and the memory patterns written by kmem
243 	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
244 	 * created znode sets the vfs pointer last of all to indicate that the
245 	 * znode is known and in a valid state to be moved by this function.
246 	 */
247 	zfsvfs = ozp->z_zfsvfs;
248 	if (!POINTER_IS_VALID(zfsvfs)) {
249 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
250 		return (KMEM_CBRC_DONT_KNOW);
251 	}
252 
253 	/*
254 	 * Close a small window in which it's possible that the filesystem could
255 	 * be unmounted and freed, and zfsvfs, though valid in the previous
256 	 * statement, could point to unrelated memory by the time we try to
257 	 * prevent the filesystem from being unmounted.
258 	 */
259 	rw_enter(&zfsvfs_lock, RW_WRITER);
260 	if (zfsvfs != ozp->z_zfsvfs) {
261 		rw_exit(&zfsvfs_lock);
262 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
263 		return (KMEM_CBRC_DONT_KNOW);
264 	}
265 
266 	/*
267 	 * If the znode is still valid, then so is the file system. We know that
268 	 * no valid file system can be freed while we hold zfsvfs_lock, so we
269 	 * can safely ensure that the filesystem is not and will not be
270 	 * unmounted. The next statement is equivalent to ZFS_ENTER().
271 	 */
272 	rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
273 	if (zfsvfs->z_unmounted) {
274 		ZFS_EXIT(zfsvfs);
275 		rw_exit(&zfsvfs_lock);
276 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
277 		return (KMEM_CBRC_DONT_KNOW);
278 	}
279 	rw_exit(&zfsvfs_lock);
280 
281 	mutex_enter(&zfsvfs->z_znodes_lock);
282 	/*
283 	 * Recheck the vfs pointer in case the znode was removed just before
284 	 * acquiring the lock.
285 	 */
286 	if (zfsvfs != ozp->z_zfsvfs) {
287 		mutex_exit(&zfsvfs->z_znodes_lock);
288 		ZFS_EXIT(zfsvfs);
289 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
290 		return (KMEM_CBRC_DONT_KNOW);
291 	}
292 
293 	/*
294 	 * At this point we know that as long as we hold z_znodes_lock, the
295 	 * znode cannot be freed and fields within the znode can be safely
296 	 * accessed. Now, prevent a race with zfs_zget().
297 	 */
298 	if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
299 		mutex_exit(&zfsvfs->z_znodes_lock);
300 		ZFS_EXIT(zfsvfs);
301 		ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
302 		return (KMEM_CBRC_LATER);
303 	}
304 
305 	vp = ZTOV(ozp);
306 	if (mutex_tryenter(&vp->v_lock) == 0) {
307 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
308 		mutex_exit(&zfsvfs->z_znodes_lock);
309 		ZFS_EXIT(zfsvfs);
310 		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
311 		return (KMEM_CBRC_LATER);
312 	}
313 
314 	/* Only move znodes that are referenced _only_ by the DNLC. */
315 	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
316 		mutex_exit(&vp->v_lock);
317 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
318 		mutex_exit(&zfsvfs->z_znodes_lock);
319 		ZFS_EXIT(zfsvfs);
320 		ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
321 		return (KMEM_CBRC_LATER);
322 	}
323 
324 	/*
325 	 * The znode is known and in a valid state to move. We're holding the
326 	 * locks needed to execute the critical section.
327 	 */
328 	zfs_znode_move_impl(ozp, nzp);
329 	mutex_exit(&vp->v_lock);
330 	ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
331 
332 	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
333 	mutex_exit(&zfsvfs->z_znodes_lock);
334 	ZFS_EXIT(zfsvfs);
335 
336 	return (KMEM_CBRC_YES);
337 }
338 #endif	/* !__NetBSD__ */
339 
340 void
zfs_znode_init(void)341 zfs_znode_init(void)
342 {
343 	/*
344 	 * Initialize zcache
345 	 */
346 	rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
347 	ASSERT(znode_cache == NULL);
348 	znode_cache = kmem_cache_create("zfs_znode_cache",
349 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
350 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
351 }
352 
353 void
zfs_znode_fini(void)354 zfs_znode_fini(void)
355 {
356 
357 	/*
358 	 * Cleanup zcache
359 	 */
360 	if (znode_cache)
361 		kmem_cache_destroy(znode_cache);
362 	znode_cache = NULL;
363 	rw_destroy(&zfsvfs_lock);
364 }
365 
366 #ifndef __NetBSD__
367 struct vnodeops *zfs_dvnodeops;
368 struct vnodeops *zfs_fvnodeops;
369 struct vnodeops *zfs_symvnodeops;
370 struct vnodeops *zfs_xdvnodeops;
371 struct vnodeops *zfs_evnodeops;
372 struct vnodeops *zfs_sharevnodeops;
373 #endif
374 
375 void
zfs_remove_op_tables()376 zfs_remove_op_tables()
377 {
378 #ifndef __NetBSD__
379 	/*
380 	 * Remove vfs ops
381 	 */
382 	ASSERT(zfsfstype);
383 	(void) vfs_freevfsops_by_type(zfsfstype);
384 	zfsfstype = 0;
385 
386 	/*
387 	 * Remove vnode ops
388 	 */
389 	if (zfs_dvnodeops)
390 		vn_freevnodeops(zfs_dvnodeops);
391 	if (zfs_fvnodeops)
392 		vn_freevnodeops(zfs_fvnodeops);
393 	if (zfs_symvnodeops)
394 		vn_freevnodeops(zfs_symvnodeops);
395 	if (zfs_xdvnodeops)
396 		vn_freevnodeops(zfs_xdvnodeops);
397 	if (zfs_evnodeops)
398 		vn_freevnodeops(zfs_evnodeops);
399 	if (zfs_sharevnodeops)
400 		vn_freevnodeops(zfs_sharevnodeops);
401 
402 	zfs_dvnodeops = NULL;
403 	zfs_fvnodeops = NULL;
404 	zfs_symvnodeops = NULL;
405 	zfs_xdvnodeops = NULL;
406 	zfs_evnodeops = NULL;
407 	zfs_sharevnodeops = NULL;
408 #endif
409 }
410 
411 #ifndef __NetBSD__
412 extern const fs_operation_def_t zfs_dvnodeops_template[];
413 extern const fs_operation_def_t zfs_fvnodeops_template[];
414 extern const fs_operation_def_t zfs_xdvnodeops_template[];
415 extern const fs_operation_def_t zfs_symvnodeops_template[];
416 extern const fs_operation_def_t zfs_evnodeops_template[];
417 extern const fs_operation_def_t zfs_sharevnodeops_template[];
418 #endif
419 
420 int
zfs_create_op_tables()421 zfs_create_op_tables()
422 {
423 #ifndef __NetBSD__
424 	int error;
425 
426 	/*
427 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
428 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
429 	 * In this case we just return as the ops vectors are already set up.
430 	 */
431 	if (zfs_dvnodeops)
432 		return (0);
433 
434 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
435 	    &zfs_dvnodeops);
436 	if (error)
437 		return (error);
438 
439 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
440 	    &zfs_fvnodeops);
441 	if (error)
442 		return (error);
443 
444 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
445 	    &zfs_symvnodeops);
446 	if (error)
447 		return (error);
448 
449 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
450 	    &zfs_xdvnodeops);
451 	if (error)
452 		return (error);
453 
454 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
455 	    &zfs_evnodeops);
456 	if (error)
457 		return (error);
458 
459 	error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
460 	    &zfs_sharevnodeops);
461 
462 	return (error);
463 #endif
464 	return 0;
465 }
466 
467 int
zfs_create_share_dir(zfsvfs_t * zfsvfs,dmu_tx_t * tx)468 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
469 {
470 	zfs_acl_ids_t acl_ids;
471 	vattr_t vattr;
472 	znode_t *sharezp;
473 	znode_t *zp;
474 	int error;
475 
476 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
477 	vattr.va_type = VDIR;
478 	vattr.va_mode = S_IFDIR|0555;
479 	vattr.va_uid = crgetuid(kcred);
480 	vattr.va_gid = crgetgid(kcred);
481 
482 	sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
483 	sharezp->z_unlinked = 0;
484 	sharezp->z_atime_dirty = 0;
485 	sharezp->z_zfsvfs = zfsvfs;
486 
487 	VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
488 	    kcred, NULL, &acl_ids));
489 	zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE,
490 	    &zp, 0, &acl_ids);
491 	ASSERT3P(zp, ==, sharezp);
492 #ifndef __NetBSD__
493 	ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
494 #endif
495 	POINTER_INVALIDATE(&sharezp->z_zfsvfs);
496 	error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
497 	    ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
498 	zfsvfs->z_shares_dir = sharezp->z_id;
499 
500 	zfs_acl_ids_free(&acl_ids);
501 	dmu_buf_rele(sharezp->z_dbuf, NULL);
502 	sharezp->z_dbuf = NULL;
503 	kmem_cache_free(znode_cache, sharezp);
504 
505 	return (error);
506 }
507 
508 /*
509  * define a couple of values we need available
510  * for both 64 and 32 bit environments.
511  */
512 #ifndef NBITSMINOR64
513 #define	NBITSMINOR64	32
514 #endif
515 #ifndef MAXMAJ64
516 #define	MAXMAJ64	0xffffffffUL
517 #endif
518 #ifndef	MAXMIN64
519 #define	MAXMIN64	0xffffffffUL
520 #endif
521 
522 /*
523  * Create special expldev for ZFS private use.
524  * Can't use standard expldev since it doesn't do
525  * what we want.  The standard expldev() takes a
526  * dev32_t in LP64 and expands it to a long dev_t.
527  * We need an interface that takes a dev32_t in ILP32
528  * and expands it to a long dev_t.
529  */
530 static uint64_t
zfs_expldev(dev_t dev)531 zfs_expldev(dev_t dev)
532 {
533 	return ((uint64_t)major(dev) << NBITSMINOR64) |
534 	    (minor_t)minor(dev);
535 }
536 
537 /*
538  * Special cmpldev for ZFS private use.
539  * Can't use standard cmpldev since it takes
540  * a long dev_t and compresses it to dev32_t in
541  * LP64.  We need to do a compaction of a long dev_t
542  * to a dev32_t in ILP32.
543  */
544 dev_t
zfs_cmpldev(uint64_t dev)545 zfs_cmpldev(uint64_t dev)
546 {
547 	minor_t minor = (minor_t)dev & MAXMIN64;
548 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
549 
550 	return makedev(minor, major);
551 }
552 
553 static void
zfs_znode_dmu_init(zfsvfs_t * zfsvfs,znode_t * zp,dmu_buf_t * db)554 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
555 {
556 	znode_t		*nzp;
557 
558 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
559 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
560 
561 	mutex_enter(&zp->z_lock);
562 
563 	ASSERT(zp->z_dbuf == NULL);
564 	ASSERT(zp->z_acl_cached == NULL);
565 	zp->z_dbuf = db;
566 	nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
567 
568 	/*
569 	 * there should be no
570 	 * concurrent zgets on this object.
571 	 */
572 	if (nzp != NULL)
573 		panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
574 
575 	/*
576 	 * Slap on VROOT if we are the root znode
577 	 */
578 	if (zp->z_id == zfsvfs->z_root)
579 		ZTOV(zp)->v_flag |= VROOT;
580 
581 	mutex_exit(&zp->z_lock);
582 	vn_exists(ZTOV(zp));
583 }
584 
585 void
zfs_znode_dmu_fini(znode_t * zp)586 zfs_znode_dmu_fini(znode_t *zp)
587 {
588 	dmu_buf_t *db = zp->z_dbuf;
589 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
590 	    zp->z_unlinked ||
591 	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
592 	ASSERT(zp->z_dbuf != NULL);
593 	zp->z_dbuf = NULL;
594 	VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
595 	dmu_buf_rele(db, NULL);
596 }
597 
598 /*
599  * Create a new DMU object to hold a zfs znode.
600  *
601  *	IN:	dzp	- parent directory for new znode
602  *		vap	- file attributes for new znode
603  *		tx	- dmu transaction id for zap operations
604  *		cr	- credentials of caller
605  *		flag	- flags:
606  *			  IS_ROOT_NODE	- new object will be root
607  *			  IS_XATTR	- new object is an attribute
608  *		bonuslen - length of bonus buffer
609  *		setaclp  - File/Dir initial ACL
610  *		fuidp	 - Tracks fuid allocation.
611  *
612  *	OUT:	zpp	- allocated znode
613  *
614  */
615 void
zfs_mknode(znode_t * dzp,vattr_t * vap,dmu_tx_t * tx,cred_t * cr,uint_t flag,znode_t ** zpp,int bonuslen,zfs_acl_ids_t * acl_ids)616 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
617     uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids)
618 {
619 	dmu_buf_t	*db;
620 	znode_phys_t	*pzp;
621 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
622 	timestruc_t	now;
623 	uint64_t	gen, obj;
624 	int		err;
625 
626 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
627 
628 	if (zfsvfs->z_replay) {
629 		obj = vap->va_nodeid;
630 		now = vap->va_ctime;		/* see zfs_replay_create() */
631 		gen = vap->va_nblocks;		/* ditto */
632 	} else {
633 		obj = 0;
634 		gethrestime(&now);
635 		gen = dmu_tx_get_txg(tx);
636 	}
637 
638 	/*
639 	 * Create a new DMU object.
640 	 */
641 	/*
642 	 * There's currently no mechanism for pre-reading the blocks that will
643 	 * be to needed allocate a new object, so we accept the small chance
644 	 * that there will be an i/o error and we will fail one of the
645 	 * assertions below.
646 	 */
647 	if (vap->va_type == VDIR) {
648 		if (zfsvfs->z_replay) {
649 			err = zap_create_claim_norm(zfsvfs->z_os, obj,
650 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
651 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
652 			ASSERT3U(err, ==, 0);
653 		} else {
654 			obj = zap_create_norm(zfsvfs->z_os,
655 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
656 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
657 		}
658 	} else {
659 		if (zfsvfs->z_replay) {
660 			err = dmu_object_claim(zfsvfs->z_os, obj,
661 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
662 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
663 			ASSERT3U(err, ==, 0);
664 		} else {
665 			obj = dmu_object_alloc(zfsvfs->z_os,
666 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
667 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
668 		}
669 	}
670 
671 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
672 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
673 	dmu_buf_will_dirty(db, tx);
674 
675 	/*
676 	 * Initialize the znode physical data to zero.
677 	 */
678 	ASSERT(db->db_size >= sizeof (znode_phys_t));
679 	bzero(db->db_data, db->db_size);
680 	pzp = db->db_data;
681 
682 	/*
683 	 * If this is the root, fix up the half-initialized parent pointer
684 	 * to reference the just-allocated physical data area.
685 	 */
686 	if (flag & IS_ROOT_NODE) {
687 		dzp->z_dbuf = db;
688 		dzp->z_phys = pzp;
689 		dzp->z_id = obj;
690 	}
691 
692 	/*
693 	 * If parent is an xattr, so am I.
694 	 */
695 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
696 		flag |= IS_XATTR;
697 
698 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
699 		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
700 	}
701 
702 	if (zfsvfs->z_use_fuids)
703 		pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
704 
705 	if (vap->va_type == VDIR) {
706 		pzp->zp_size = 2;		/* contents ("." and "..") */
707 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
708 	}
709 
710 	pzp->zp_parent = dzp->z_id;
711 	if (flag & IS_XATTR)
712 		pzp->zp_flags |= ZFS_XATTR;
713 
714 	pzp->zp_gen = gen;
715 
716 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
717 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
718 
719 	if (vap->va_mask & AT_ATIME) {
720 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
721 	} else {
722 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
723 	}
724 
725 	if (vap->va_mask & AT_MTIME) {
726 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
727 	} else {
728 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
729 	}
730 	pzp->zp_uid = acl_ids->z_fuid;
731 	pzp->zp_gid = acl_ids->z_fgid;
732 	pzp->zp_mode = acl_ids->z_mode;
733 	if (!(flag & IS_ROOT_NODE)) {
734 		struct vnode *vp;
735 
736 		err = vcache_get(zfsvfs->z_vfs, &obj, sizeof(obj), &vp);
737 		ASSERT3U(err, ==, 0);
738 		*zpp = VTOZ(vp);
739 		dmu_buf_rele(db, NULL);
740 	} else {
741 		/*
742 		 * If we are creating the root node, the "parent" we
743 		 * passed in is the znode for the root.
744 		 */
745 		*zpp = dzp;
746 	}
747 	VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
748 	if (vap->va_mask & AT_XVATTR)
749 		zfs_xvattr_set(*zpp, (xvattr_t *)vap);
750 
751 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
752 }
753 
754 void
zfs_xvattr_set(znode_t * zp,xvattr_t * xvap)755 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
756 {
757 	xoptattr_t *xoap;
758 
759 	xoap = xva_getxoptattr(xvap);
760 	ASSERT(xoap);
761 
762 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
763 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
764 		XVA_SET_RTN(xvap, XAT_CREATETIME);
765 	}
766 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
767 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
768 		XVA_SET_RTN(xvap, XAT_READONLY);
769 	}
770 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
771 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
772 		XVA_SET_RTN(xvap, XAT_HIDDEN);
773 	}
774 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
775 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
776 		XVA_SET_RTN(xvap, XAT_SYSTEM);
777 	}
778 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
779 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
780 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
781 	}
782 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
783 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
784 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
785 	}
786 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
787 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
788 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
789 	}
790 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
791 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
792 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
793 	}
794 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
795 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
796 		XVA_SET_RTN(xvap, XAT_NODUMP);
797 	}
798 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
799 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
800 		XVA_SET_RTN(xvap, XAT_OPAQUE);
801 	}
802 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
803 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
804 		    xoap->xoa_av_quarantined);
805 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
806 	}
807 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
808 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
809 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
810 	}
811 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
812 		(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
813 		    sizeof (xoap->xoa_av_scanstamp));
814 		zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
815 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
816 	}
817 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
818 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse);
819 		XVA_SET_RTN(xvap, XAT_REPARSE);
820 	}
821 }
822 
823 int
zfs_loadvnode(struct mount * mp,struct vnode * vp,const void * key,size_t key_len,const void ** new_key)824 zfs_loadvnode(struct mount *mp, struct vnode *vp,
825     const void *key, size_t key_len, const void **new_key)
826 {
827 	uint64_t obj_num;
828 	zfsvfs_t *zfsvfs;
829 	dmu_object_info_t doi;
830 	dmu_buf_t *db;
831 	znode_t *zp;
832 	int err;
833 
834 	KASSERT(key_len == sizeof(obj_num));
835 	memcpy(&obj_num, key, key_len);
836 
837 	zfsvfs = mp->mnt_data;
838 
839 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
840 	if (err) {
841 		return err;
842 	}
843 
844 	dmu_object_info_from_db(db, &doi);
845 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
846 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
847 		dmu_buf_rele(db, NULL);
848 		return EINVAL;
849 	}
850 
851 	KASSERT(dmu_buf_get_user(db) == NULL);
852 
853 	/*
854 	 * There is a small window where zfs_vget() could
855 	 * find this object while a file create is still in
856 	 * progress.  Since a gen number can never be zero
857 	 * we will check that to determine if its an allocated
858 	 * file.
859 	 */
860 
861 	if (((znode_phys_t *)db->db_data)->zp_gen == 0) {
862 		dmu_buf_rele(db, NULL);
863 		return ENOENT;
864 	}
865 
866 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
867 
868 	ASSERT(zp->z_dirlocks == NULL);
869 	ASSERT(zp->z_dbuf == NULL);
870 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
871 
872 	/*
873 	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
874 	 * the zfs_znode_move() callback.
875 	 */
876 	zp->z_phys = NULL;
877 	zp->z_unlinked = 0;
878 	zp->z_atime_dirty = 0;
879 	zp->z_mapcnt = 0;
880 	zp->z_last_itx = 0;
881 	zp->z_id = db->db_object;
882 	zp->z_blksz = doi.doi_data_block_size;
883 	zp->z_seq = 0x7A4653;
884 	zp->z_sync_cnt = 0;
885 	zp->z_vnode = vp;
886 
887 	zfs_znode_dmu_init(zfsvfs, zp, db);
888 
889 	zp->z_gen = zp->z_phys->zp_gen;
890 
891 	vp->v_op = zfs_vnodeop_p;
892 	vp->v_tag = VT_ZFS;
893 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
894 	vp->v_data = zp;
895 	genfs_node_init(vp, &zfs_genfsops);
896 	switch (vp->v_type) {
897 	case VDIR:
898 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
899 		break;
900 	case VBLK:
901 	case VCHR:
902 	/* XXX NetBSD	vp->v_op = zfs_specop_p; */
903 		spec_node_init(vp, zfs_cmpldev(zp->z_phys->zp_rdev));
904 		break;
905 	case VFIFO:
906 		/* XXX NetBSD vp->v_op = zfs_fifoop_p; */
907 		break;
908 	}
909 
910 	dprintf("zfs_loadvnode znode %p -- vnode %p\n", zp, vp);
911 	dprintf("zfs_loadvnode z_id %ld\n", zp->z_id);
912 
913 	uvm_vnp_setsize(vp, zp->z_phys->zp_size);
914 
915 	mutex_enter(&zfsvfs->z_znodes_lock);
916 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
917 	membar_producer();
918 	/*
919 	 * Everything else must be valid before assigning z_zfsvfs makes the
920 	 * znode eligible for zfs_znode_move().
921 	 */
922 	zp->z_zfsvfs = zfsvfs;
923 	mutex_exit(&zfsvfs->z_znodes_lock);
924 
925 	VFS_HOLD(zfsvfs->z_vfs);
926 
927 	*new_key = &zp->z_id;
928 
929 	return 0;
930 }
931 
932 int
zfs_zget(zfsvfs_t * zfsvfs,uint64_t obj_num,znode_t ** zpp)933 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
934 {
935 	struct vnode *vp;
936 	int error;
937 
938 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
939 
940 	error = vcache_get(zfsvfs->z_vfs, &obj_num, sizeof(obj_num), &vp);
941 	if (error == 0 && VTOZ(vp)->z_unlinked) {
942 		vrele(vp);
943 		error = ENOENT;
944 	}
945 	if (error)
946 		*zpp = NULL;
947 	else
948 		*zpp = VTOZ(vp);
949 
950 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
951 
952 	return error;
953 }
954 
955 int
zfs_rezget(znode_t * zp)956 zfs_rezget(znode_t *zp)
957 {
958 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
959 	dmu_object_info_t doi;
960 	dmu_buf_t *db;
961 	uint64_t obj_num = zp->z_id;
962 	int err;
963 
964 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
965 
966 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
967 	if (err) {
968 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
969 		return (err);
970 	}
971 
972 	dmu_object_info_from_db(db, &doi);
973 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
974 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
975 		dmu_buf_rele(db, NULL);
976 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
977 		return (EINVAL);
978 	}
979 
980 	if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
981 		dmu_buf_rele(db, NULL);
982 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
983 		return (EIO);
984 	}
985 
986 	mutex_enter(&zp->z_acl_lock);
987 	if (zp->z_acl_cached) {
988 		zfs_acl_free(zp->z_acl_cached);
989 		zp->z_acl_cached = NULL;
990 	}
991 	mutex_exit(&zp->z_acl_lock);
992 
993 	zfs_znode_dmu_init(zfsvfs, zp, db);
994 	zp->z_unlinked = (zp->z_phys->zp_links == 0);
995 	zp->z_blksz = doi.doi_data_block_size;
996 
997 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
998 
999 	return (0);
1000 }
1001 
1002 void
zfs_znode_delete(znode_t * zp,dmu_tx_t * tx)1003 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1004 {
1005 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1006 	objset_t *os = zfsvfs->z_os;
1007 	uint64_t obj = zp->z_id;
1008 	uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1009 
1010 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1011 	if (acl_obj)
1012 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1013 	VERIFY(0 == dmu_object_free(os, obj, tx));
1014 	zfs_znode_dmu_fini(zp);
1015 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1016 	zfs_znode_free(zp);
1017 }
1018 
1019 void
zfs_zinactive(znode_t * zp)1020 zfs_zinactive(znode_t *zp)
1021 {
1022 	vnode_t	*vp = ZTOV(zp);
1023 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1024 	uint64_t z_id = zp->z_id;
1025 
1026 	ASSERT(zp->z_dbuf && zp->z_phys);
1027 
1028 	/*
1029 	 * Don't allow a zfs_zget() while were trying to release this znode
1030 	 */
1031 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1032 
1033 	mutex_enter(&zp->z_lock);
1034 	/*
1035 	 * If this was the last reference to a file with no links,
1036 	 * remove the file from the file system.
1037 	 */
1038 	if (zp->z_unlinked) {
1039 		mutex_exit(&zp->z_lock);
1040 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1041 		zfs_rmnode(zp);
1042 		return;
1043 	}
1044 
1045 	mutex_exit(&zp->z_lock);
1046 	zfs_znode_dmu_fini(zp);
1047 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1048 	zfs_znode_free(zp);
1049 }
1050 
1051 void
zfs_znode_free(znode_t * zp)1052 zfs_znode_free(znode_t *zp)
1053 {
1054 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1055 	struct vnode *vp;
1056 
1057 	mutex_enter(&zp->z_lock);
1058 	vp = ZTOV(zp);
1059 	if (vp != NULL) {
1060 		vcache_remove(vp->v_mount, &zp->z_id, sizeof(zp->z_id));
1061 		genfs_node_destroy(vp);
1062 		/*
1063 		 * To interlock with zfs_sync().
1064 		 */
1065         	mutex_enter(vp->v_interlock);
1066 		vp->v_data = NULL;
1067 		mutex_exit(vp->v_interlock);
1068 	}
1069 	mutex_exit(&zp->z_lock);
1070 
1071 	dprintf("destroying znode %p\n", zp);
1072 	//cpu_Debugger();
1073 	mutex_enter(&zfsvfs->z_znodes_lock);
1074 	POINTER_INVALIDATE(&zp->z_zfsvfs);
1075 	list_remove(&zfsvfs->z_all_znodes, zp);
1076 	mutex_exit(&zfsvfs->z_znodes_lock);
1077 
1078 	if (zp->z_acl_cached) {
1079 		zfs_acl_free(zp->z_acl_cached);
1080 		zp->z_acl_cached = NULL;
1081 	}
1082 
1083 	kmem_cache_free(znode_cache, zp);
1084 
1085 	VFS_RELE(zfsvfs->z_vfs);
1086 }
1087 
1088 void
zfs_time_stamper_locked(znode_t * zp,uint_t flag,dmu_tx_t * tx)1089 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1090 {
1091 	timestruc_t	now;
1092 
1093 	ASSERT(MUTEX_HELD(&zp->z_lock));
1094 
1095 	gethrestime(&now);
1096 
1097 	if (tx) {
1098 		dmu_buf_will_dirty(zp->z_dbuf, tx);
1099 		zp->z_atime_dirty = 0;
1100 		zp->z_seq++;
1101 	} else {
1102 		zp->z_atime_dirty = 1;
1103 	}
1104 
1105 	if (flag & AT_ATIME)
1106 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1107 
1108 	if (flag & AT_MTIME) {
1109 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1110 		if (zp->z_zfsvfs->z_use_fuids)
1111 			zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1112 	}
1113 
1114 	if (flag & AT_CTIME) {
1115 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1116 		if (zp->z_zfsvfs->z_use_fuids)
1117 			zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1118 	}
1119 }
1120 
1121 /*
1122  * Update the requested znode timestamps with the current time.
1123  * If we are in a transaction, then go ahead and mark the znode
1124  * dirty in the transaction so the timestamps will go to disk.
1125  * Otherwise, we will get pushed next time the znode is updated
1126  * in a transaction, or when this znode eventually goes inactive.
1127  *
1128  * Why is this OK?
1129  *  1 - Only the ACCESS time is ever updated outside of a transaction.
1130  *  2 - Multiple consecutive updates will be collapsed into a single
1131  *	znode update by the transaction grouping semantics of the DMU.
1132  */
1133 void
zfs_time_stamper(znode_t * zp,uint_t flag,dmu_tx_t * tx)1134 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1135 {
1136 	mutex_enter(&zp->z_lock);
1137 	zfs_time_stamper_locked(zp, flag, tx);
1138 	mutex_exit(&zp->z_lock);
1139 }
1140 
1141 /*
1142  * Grow the block size for a file.
1143  *
1144  *	IN:	zp	- znode of file to free data in.
1145  *		size	- requested block size
1146  *		tx	- open transaction.
1147  *
1148  * NOTE: this function assumes that the znode is write locked.
1149  */
1150 void
zfs_grow_blocksize(znode_t * zp,uint64_t size,dmu_tx_t * tx)1151 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1152 {
1153 	int		error;
1154 	u_longlong_t	dummy;
1155 
1156 	if (size <= zp->z_blksz)
1157 		return;
1158 	/*
1159 	 * If the file size is already greater than the current blocksize,
1160 	 * we will not grow.  If there is more than one block in a file,
1161 	 * the blocksize cannot change.
1162 	 */
1163 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1164 		return;
1165 
1166 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1167 	    size, 0, tx);
1168 	if (error == ENOTSUP)
1169 		return;
1170 	ASSERT3U(error, ==, 0);
1171 
1172 	/* What blocksize did we actually get? */
1173 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1174 }
1175 
1176 /*
1177  * Increase the file length
1178  *
1179  *	IN:	zp	- znode of file to free data in.
1180  *		end	- new end-of-file
1181  *
1182  * 	RETURN:	0 if success
1183  *		error code if failure
1184  */
1185 static int
zfs_extend(znode_t * zp,uint64_t end)1186 zfs_extend(znode_t *zp, uint64_t end)
1187 {
1188 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1189 	dmu_tx_t *tx;
1190 	rl_t *rl;
1191 	uint64_t newblksz;
1192 	int error;
1193 
1194 	/*
1195 	 * We will change zp_size, lock the whole file.
1196 	 */
1197 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1198 
1199 	/*
1200 	 * Nothing to do if file already at desired length.
1201 	 */
1202 	if (end <= zp->z_phys->zp_size) {
1203 		zfs_range_unlock(rl);
1204 		return (0);
1205 	}
1206 top:
1207 	tx = dmu_tx_create(zfsvfs->z_os);
1208 	dmu_tx_hold_bonus(tx, zp->z_id);
1209 	if (end > zp->z_blksz &&
1210 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1211 		/*
1212 		 * We are growing the file past the current block size.
1213 		 */
1214 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1215 			ASSERT(!ISP2(zp->z_blksz));
1216 			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1217 		} else {
1218 			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1219 		}
1220 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1221 	} else {
1222 		newblksz = 0;
1223 	}
1224 
1225 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1226 	if (error) {
1227 		if (error == ERESTART) {
1228 			dmu_tx_wait(tx);
1229 			dmu_tx_abort(tx);
1230 			goto top;
1231 		}
1232 		dmu_tx_abort(tx);
1233 		zfs_range_unlock(rl);
1234 		return (error);
1235 	}
1236 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1237 
1238 	if (newblksz)
1239 		zfs_grow_blocksize(zp, newblksz, tx);
1240 
1241 	zp->z_phys->zp_size = end;
1242 
1243 	zfs_range_unlock(rl);
1244 
1245 	dmu_tx_commit(tx);
1246 
1247 	uvm_vnp_setsize(ZTOV(zp), end);
1248 
1249 	return (0);
1250 }
1251 
1252 /*
1253  * Free space in a file.
1254  *
1255  *	IN:	zp	- znode of file to free data in.
1256  *		off	- start of section to free.
1257  *		len	- length of section to free.
1258  *
1259  * 	RETURN:	0 if success
1260  *		error code if failure
1261  */
1262 static int
zfs_free_range(znode_t * zp,uint64_t off,uint64_t len)1263 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1264 {
1265 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1266 	rl_t *rl;
1267 	int error;
1268 
1269 	/*
1270 	 * Lock the range being freed.
1271 	 */
1272 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1273 
1274 	/*
1275 	 * Nothing to do if file already at desired length.
1276 	 */
1277 	if (off >= zp->z_phys->zp_size) {
1278 		zfs_range_unlock(rl);
1279 		return (0);
1280 	}
1281 
1282 	if (off + len > zp->z_phys->zp_size)
1283 		len = zp->z_phys->zp_size - off;
1284 
1285 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1286 
1287 	if (error == 0) {
1288 		/*
1289 		 * In NetBSD we cannot free block in the middle of a file,
1290 		 * but only at the end of a file.
1291 		 */
1292 		uvm_vnp_setsize(ZTOV(zp), off);
1293 	}
1294 
1295 	zfs_range_unlock(rl);
1296 
1297 	return (error);
1298 }
1299 
1300 /*
1301  * Truncate a file
1302  *
1303  *	IN:	zp	- znode of file to free data in.
1304  *		end	- new end-of-file.
1305  *
1306  * 	RETURN:	0 if success
1307  *		error code if failure
1308  */
1309 static int
zfs_trunc(znode_t * zp,uint64_t end)1310 zfs_trunc(znode_t *zp, uint64_t end)
1311 {
1312 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1313 	vnode_t *vp = ZTOV(zp);
1314 	dmu_tx_t *tx;
1315 	rl_t *rl;
1316 	int error;
1317 
1318 	/*
1319 	 * We will change zp_size, lock the whole file.
1320 	 */
1321 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1322 
1323 	/*
1324 	 * Nothing to do if file already at desired length.
1325 	 */
1326 	if (end >= zp->z_phys->zp_size) {
1327 		zfs_range_unlock(rl);
1328 		return (0);
1329 	}
1330 
1331 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1332 	if (error) {
1333 		zfs_range_unlock(rl);
1334 		return (error);
1335 	}
1336 top:
1337 	tx = dmu_tx_create(zfsvfs->z_os);
1338 	dmu_tx_hold_bonus(tx, zp->z_id);
1339 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1340 	if (error) {
1341 		if (error == ERESTART) {
1342 			dmu_tx_wait(tx);
1343 			dmu_tx_abort(tx);
1344 			goto top;
1345 		}
1346 		dmu_tx_abort(tx);
1347 		zfs_range_unlock(rl);
1348 		return (error);
1349 	}
1350 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1351 
1352 	zp->z_phys->zp_size = end;
1353 
1354 	dmu_tx_commit(tx);
1355 
1356 	zfs_range_unlock(rl);
1357 
1358 	/*
1359 	 * Clear any mapped pages in the truncated region.  This has to
1360 	 * happen outside of the transaction to avoid the possibility of
1361 	 * a deadlock with someone trying to push a page that we are
1362 	 * about to invalidate.
1363 	 */
1364 
1365 	uvm_vnp_setsize(vp, end);
1366 
1367 	return (0);
1368 }
1369 
1370 /*
1371  * Free space in a file
1372  *
1373  *	IN:	zp	- znode of file to free data in.
1374  *		off	- start of range
1375  *		len	- end of range (0 => EOF)
1376  *		flag	- current file open mode flags.
1377  *		log	- TRUE if this action should be logged
1378  *
1379  * 	RETURN:	0 if success
1380  *		error code if failure
1381  */
1382 int
zfs_freesp(znode_t * zp,uint64_t off,uint64_t len,int flag,boolean_t log)1383 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1384 {
1385 	vnode_t *vp = ZTOV(zp);
1386 	dmu_tx_t *tx;
1387 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1388 	zilog_t *zilog = zfsvfs->z_log;
1389 	int error;
1390 
1391 	if (off > zp->z_phys->zp_size) {
1392 		error =  zfs_extend(zp, off+len);
1393 		if (error == 0 && log)
1394 			goto log;
1395 		else
1396 			return (error);
1397 	}
1398 
1399 	if (len == 0) {
1400 		error = zfs_trunc(zp, off);
1401 	} else {
1402 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1403 		    off + len > zp->z_phys->zp_size)
1404 			error = zfs_extend(zp, off+len);
1405 	}
1406 	if (error || !log)
1407 		return (error);
1408 log:
1409 	tx = dmu_tx_create(zfsvfs->z_os);
1410 	dmu_tx_hold_bonus(tx, zp->z_id);
1411 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1412 	if (error) {
1413 		if (error == ERESTART) {
1414 			dmu_tx_wait(tx);
1415 			dmu_tx_abort(tx);
1416 			goto log;
1417 		}
1418 		dmu_tx_abort(tx);
1419 		return (error);
1420 	}
1421 
1422 	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1423 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1424 
1425 	dmu_tx_commit(tx);
1426 	return (0);
1427 }
1428 
1429 void
zfs_create_fs(objset_t * os,cred_t * cr,nvlist_t * zplprops,dmu_tx_t * tx)1430 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1431 {
1432 	zfsvfs_t	zfsvfs;
1433 	uint64_t	moid, obj, version;
1434 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1435 	uint64_t	norm = 0;
1436 	nvpair_t	*elem;
1437 	int		error;
1438 	int		i;
1439 	znode_t		*rootzp = NULL;
1440 	vattr_t		vattr;
1441 	znode_t		*zp;
1442 	zfs_acl_ids_t	acl_ids;
1443 
1444 	/*
1445 	 * First attempt to create master node.
1446 	 */
1447 	/*
1448 	 * In an empty objset, there are no blocks to read and thus
1449 	 * there can be no i/o errors (which we assert below).
1450 	 */
1451 	moid = MASTER_NODE_OBJ;
1452 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1453 	    DMU_OT_NONE, 0, tx);
1454 	ASSERT(error == 0);
1455 
1456 	/*
1457 	 * Set starting attributes.
1458 	 */
1459 	if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE)
1460 		version = ZPL_VERSION;
1461 	else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
1462 		version = ZPL_VERSION_USERSPACE - 1;
1463 	else
1464 		version = ZPL_VERSION_FUID - 1;
1465 	elem = NULL;
1466 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1467 		/* For the moment we expect all zpl props to be uint64_ts */
1468 		uint64_t val;
1469 		char *name;
1470 
1471 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1472 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1473 		name = nvpair_name(elem);
1474 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1475 			if (val < version)
1476 				version = val;
1477 		} else {
1478 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1479 		}
1480 		ASSERT(error == 0);
1481 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1482 			norm = val;
1483 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1484 			sense = val;
1485 	}
1486 	ASSERT(version != 0);
1487 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1488 
1489 	/*
1490 	 * Create a delete queue.
1491 	 */
1492 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1493 
1494 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1495 	ASSERT(error == 0);
1496 
1497 	/*
1498 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1499 	 * to allow zfs_mknode to work.
1500 	 */
1501 	vattr_null(&vattr);
1502 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1503 	vattr.va_type = VDIR;
1504 	vattr.va_mode = S_IFDIR|0755;
1505 	vattr.va_uid = crgetuid(cr);
1506 	vattr.va_gid = crgetgid(cr);
1507 
1508 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1509 	rootzp->z_unlinked = 0;
1510 	rootzp->z_atime_dirty = 0;
1511 
1512 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1513 
1514 	zfsvfs.z_os = os;
1515 	zfsvfs.z_parent = &zfsvfs;
1516 	zfsvfs.z_version = version;
1517 	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1518 	zfsvfs.z_norm = norm;
1519 	/*
1520 	 * Fold case on file systems that are always or sometimes case
1521 	 * insensitive.
1522 	 */
1523 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1524 		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1525 
1526 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1527 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1528 	    offsetof(znode_t, z_link_node));
1529 
1530 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1531 		mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1532 
1533 	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1534 	rootzp->z_zfsvfs = &zfsvfs;
1535 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1536 	    cr, NULL, &acl_ids));
1537 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids);
1538 	ASSERT3P(zp, ==, rootzp);
1539 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1540 	ASSERT(error == 0);
1541 	zfs_acl_ids_free(&acl_ids);
1542 	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1543 
1544 	dmu_buf_rele(rootzp->z_dbuf, NULL);
1545 	rootzp->z_dbuf = NULL;
1546 	kmem_cache_free(znode_cache, rootzp);
1547 
1548 	/*
1549 	 * Create shares directory
1550 	 */
1551 
1552 	error = zfs_create_share_dir(&zfsvfs, tx);
1553 
1554 	ASSERT(error == 0);
1555 
1556 	mutex_destroy(&zfsvfs.z_znodes_lock);
1557 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1558 		mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1559 }
1560 
1561 #endif /* _KERNEL */
1562 /*
1563  * Given an object number, return its parent object number and whether
1564  * or not the object is an extended attribute directory.
1565  */
1566 static int
zfs_obj_to_pobj(objset_t * osp,uint64_t obj,uint64_t * pobjp,int * is_xattrdir)1567 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1568 {
1569 	dmu_buf_t *db;
1570 	dmu_object_info_t doi;
1571 	znode_phys_t *zp;
1572 	int error;
1573 
1574 	if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1575 		return (error);
1576 
1577 	dmu_object_info_from_db(db, &doi);
1578 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1579 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1580 		dmu_buf_rele(db, FTAG);
1581 		return (EINVAL);
1582 	}
1583 
1584 	zp = db->db_data;
1585 	*pobjp = zp->zp_parent;
1586 	*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1587 	    S_ISDIR(zp->zp_mode);
1588 	dmu_buf_rele(db, FTAG);
1589 
1590 	return (0);
1591 }
1592 
1593 int
zfs_obj_to_path(objset_t * osp,uint64_t obj,char * buf,int len)1594 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1595 {
1596 	char *path = buf + len - 1;
1597 	int error;
1598 
1599 	*path = '\0';
1600 
1601 	for (;;) {
1602 		uint64_t pobj;
1603 		char component[MAXNAMELEN + 2];
1604 		size_t complen;
1605 		int is_xattrdir;
1606 
1607 		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1608 		    &is_xattrdir)) != 0)
1609 			break;
1610 
1611 		if (pobj == obj) {
1612 			if (path[0] != '/')
1613 				*--path = '/';
1614 			break;
1615 		}
1616 
1617 		component[0] = '/';
1618 		if (is_xattrdir) {
1619 			(void) snprintf(component + 1, sizeof(component) - 1,
1620 			    "<xattrdir>");
1621 		} else {
1622 			error = zap_value_search(osp, pobj, obj,
1623 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
1624 			if (error != 0)
1625 				break;
1626 		}
1627 
1628 		complen = strlen(component);
1629 		path -= complen;
1630 		ASSERT(path >= buf);
1631 		bcopy(component, path, complen);
1632 		obj = pobj;
1633 	}
1634 
1635 	if (error == 0)
1636 		(void) memmove(buf, path, buf + len - path);
1637 	return (error);
1638 }
1639