1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  *   tests the control law
33  *   eye-in-hand control
34  *   velocity computed in camera frame
35  *
36  * Authors:
37  * Eric Marchand
38  * Fabien Spindler
39  *
40  *****************************************************************************/
41 
42 /*!
43   \example servoViper850Point2DCamVelocity.cpp
44 
45   Example of eye-in-hand control law. We control here a real robot, the
46   ADEPT Viper 850 robot (arm, with 6 degrees of freedom). The velocity is
47   computed in the camera frame. The visual feature is the center of gravity of
48   a point.
49 
50 */
51 
52 #include <visp3/core/vpConfig.h>
53 #include <visp3/core/vpDebug.h> // Debug trace
54 
55 #include <fstream>
56 #include <iostream>
57 #include <sstream>
58 #include <stdio.h>
59 #include <stdlib.h>
60 
61 #if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394))
62 
63 #include <visp3/blob/vpDot2.h>
64 #include <visp3/core/vpDisplay.h>
65 #include <visp3/core/vpException.h>
66 #include <visp3/core/vpHomogeneousMatrix.h>
67 #include <visp3/core/vpImage.h>
68 #include <visp3/core/vpIoTools.h>
69 #include <visp3/core/vpMath.h>
70 #include <visp3/core/vpPoint.h>
71 #include <visp3/gui/vpDisplayGTK.h>
72 #include <visp3/gui/vpDisplayOpenCV.h>
73 #include <visp3/gui/vpDisplayX.h>
74 #include <visp3/io/vpImageIo.h>
75 #include <visp3/robot/vpRobotViper850.h>
76 #include <visp3/sensor/vp1394TwoGrabber.h>
77 #include <visp3/visual_features/vpFeatureBuilder.h>
78 #include <visp3/visual_features/vpFeaturePoint.h>
79 #include <visp3/vs/vpServo.h>
80 #include <visp3/vs/vpServoDisplay.h>
81 
main()82 int main()
83 {
84   // Log file creation in /tmp/$USERNAME/log.dat
85   // This file contains by line:
86   // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
87   // - the 6 mesured joint velocities (m/s, rad/s)
88   // - the 6 mesured joint positions (m, rad)
89   // - the 2 values of s - s*
90   std::string username;
91   // Get the user login name
92   vpIoTools::getUserName(username);
93 
94   // Create a log filename to save velocities...
95   std::string logdirname;
96   logdirname = "/tmp/" + username;
97 
98   // Test if the output path exist. If no try to create it
99   if (vpIoTools::checkDirectory(logdirname) == false) {
100     try {
101       // Create the dirname
102       vpIoTools::makeDirectory(logdirname);
103     } catch (...) {
104       std::cerr << std::endl << "ERROR:" << std::endl;
105       std::cerr << "  Cannot create " << logdirname << std::endl;
106       exit(-1);
107     }
108   }
109   std::string logfilename;
110   logfilename = logdirname + "/log.dat";
111 
112   // Open the log file name
113   std::ofstream flog(logfilename.c_str());
114 
115   try {
116     vpRobotViper850 robot;
117 
118     vpServo task;
119 
120     vpImage<unsigned char> I;
121 
122     bool reset = false;
123     vp1394TwoGrabber g(reset);
124 
125 #if 1
126     g.setVideoMode(vp1394TwoGrabber::vpVIDEO_MODE_640x480_MONO8);
127     g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
128 #else
129     g.setVideoMode(vp1394TwoGrabber::vpVIDEO_MODE_FORMAT7_0);
130     g.setColorCoding(vp1394TwoGrabber::vpCOLOR_CODING_MONO8);
131 #endif
132     g.open(I);
133 
134 #ifdef VISP_HAVE_X11
135     vpDisplayX display(I, (int)(100 + I.getWidth() + 30), 200, "Current image");
136 #elif defined(VISP_HAVE_OPENCV)
137     vpDisplayOpenCV display(I, (int)(100 + I.getWidth() + 30), 200, "Current image");
138 #elif defined(VISP_HAVE_GTK)
139     vpDisplayGTK display(I, (int)(100 + I.getWidth() + 30), 200, "Current image");
140 #endif
141 
142     vpDisplay::display(I);
143     vpDisplay::flush(I);
144 
145     vpDot2 dot;
146     vpImagePoint cog;
147 
148     dot.setGraphics(true);
149 
150     for (int i = 0; i < 10; i++)
151       g.acquire(I);
152 
153     std::cout << "Click on a dot..." << std::endl;
154     dot.initTracking(I);
155 
156     cog = dot.getCog();
157     vpDisplay::displayCross(I, cog, 10, vpColor::blue);
158     vpDisplay::flush(I);
159 
160     vpCameraParameters cam;
161     // Update camera parameters
162     robot.getCameraParameters(cam, I);
163 
164     // sets the current position of the visual feature
165     vpFeaturePoint p;
166     // retrieve x,y and Z of the vpPoint structure
167     vpFeatureBuilder::create(p, cam, dot);
168 
169     // sets the desired position of the visual feature
170     vpFeaturePoint pd;
171     pd.buildFrom(0, 0, 1);
172 
173     // define the task
174     // - we want an eye-in-hand control law
175     // - robot is controlled in the camera frame
176     task.setServo(vpServo::EYEINHAND_CAMERA);
177 
178     // - we want to see a point on a point
179     task.addFeature(p, pd);
180 
181     // - set the constant gain
182     task.setLambda(0.8);
183 
184     // Display task information
185     task.print();
186 
187     // Now the robot will be controlled in velocity
188     robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
189 
190     std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
191     vpColVector v;
192     for (;;) {
193       try {
194         // Acquire a new image from the camera
195         g.acquire(I);
196 
197         // Display this image
198         vpDisplay::display(I);
199 
200         // Achieve the tracking of the dot in the image
201         dot.track(I);
202 
203         // Get the dot cog
204         cog = dot.getCog();
205 
206         // Display a green cross at the center of gravity position in the
207         // image
208         vpDisplay::displayCross(I, cog, 10, vpColor::green);
209 
210         // Update the point feature from the dot location
211         vpFeatureBuilder::create(p, cam, dot);
212 
213         // Compute the visual servoing skew vector
214         v = task.computeControlLaw();
215 
216         // Display the current and desired feature points in the image display
217         vpServoDisplay::display(task, cam, I);
218 
219         // Apply the computed camera velocities to the robot
220         robot.setVelocity(vpRobot::CAMERA_FRAME, v);
221       } catch (...) {
222         std::cout << "Tracking failed... Stop the robot." << std::endl;
223         v = 0;
224         // Stop robot
225         robot.setVelocity(vpRobot::CAMERA_FRAME, v);
226         return 0;
227       }
228 
229       // Save velocities applied to the robot in the log file
230       // v[0], v[1], v[2] correspond to camera translation velocities in m/s
231       // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
232       flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
233 
234       // Get the measured joint velocities of the robot
235       vpColVector qvel;
236       robot.getVelocity(vpRobot::ARTICULAR_FRAME, qvel);
237       // Save measured joint velocities of the robot in the log file:
238       // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
239       //   velocities in m/s
240       // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
241       //   velocities in rad/s
242       flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
243 
244       // Get the measured joint positions of the robot
245       vpColVector q;
246       robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
247       // Save measured joint positions of the robot in the log file
248       // - q[0], q[1], q[2] correspond to measured joint translation
249       //   positions in m
250       // - q[3], q[4], q[5] correspond to measured joint rotation
251       //   positions in rad
252       flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
253 
254       // Save feature error (s-s*) for the feature point. For this feature
255       // point, we have 2 errors (along x and y axis).  This error is
256       // expressed in meters in the camera frame
257       flog << (task.getError()).t() << std::endl; // s-s* for point
258 
259       // Flush the display
260       vpDisplay::flush(I);
261     }
262 
263     flog.close(); // Close the log file
264 
265     // Display task information
266     task.print();
267 
268     return EXIT_SUCCESS;
269   }
270   catch (const vpException &e) {
271     flog.close(); // Close the log file
272     std::cout << "Catch an exception: " << e.getMessage() << std::endl;
273     return EXIT_FAILURE;
274   }
275 }
276 
277 #else
main()278 int main()
279 {
280   std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
281   return EXIT_SUCCESS;
282 }
283 #endif
284