1 /*
2  * Copyright (c) 2012
3  *      MIPS Technologies, Inc., California.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
14  *    contributors may be used to endorse or promote products derived from
15  *    this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Authors:  Darko Laus      (darko@mips.com)
30  *           Djordje Pesut   (djordje@mips.com)
31  *           Mirjana Vulin   (mvulin@mips.com)
32  *
33  * This file is part of FFmpeg.
34  *
35  * FFmpeg is free software; you can redistribute it and/or
36  * modify it under the terms of the GNU Lesser General Public
37  * License as published by the Free Software Foundation; either
38  * version 2.1 of the License, or (at your option) any later version.
39  *
40  * FFmpeg is distributed in the hope that it will be useful,
41  * but WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * Lesser General Public License for more details.
44  *
45  * You should have received a copy of the GNU Lesser General Public
46  * License along with FFmpeg; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
48  */
49 
50 /**
51  * @file
52  * Reference: libavcodec/aacdec.c
53  */
54 
55 #include "libavcodec/aac.h"
56 #include "aacdec_mips.h"
57 #include "libavcodec/aactab.h"
58 #include "libavcodec/sinewin.h"
59 #include "libavutil/mips/asmdefs.h"
60 
61 #if HAVE_INLINE_ASM
62 #if HAVE_MIPSFPU
float_copy(float * dst,const float * src,int count)63 static av_always_inline void float_copy(float *dst, const float *src, int count)
64 {
65     // Copy 'count' floats from src to dst
66     const float *loop_end = src + count;
67     int temp[8];
68 
69     // count must be a multiple of 8
70     av_assert2(count % 8 == 0);
71 
72     // loop unrolled 8 times
73     __asm__ volatile (
74         ".set push                               \n\t"
75         ".set noreorder                          \n\t"
76     "1:                                          \n\t"
77         "lw      %[temp0],    0(%[src])          \n\t"
78         "lw      %[temp1],    4(%[src])          \n\t"
79         "lw      %[temp2],    8(%[src])          \n\t"
80         "lw      %[temp3],    12(%[src])         \n\t"
81         "lw      %[temp4],    16(%[src])         \n\t"
82         "lw      %[temp5],    20(%[src])         \n\t"
83         "lw      %[temp6],    24(%[src])         \n\t"
84         "lw      %[temp7],    28(%[src])         \n\t"
85         PTR_ADDIU "%[src],    %[src],      32    \n\t"
86         "sw      %[temp0],    0(%[dst])          \n\t"
87         "sw      %[temp1],    4(%[dst])          \n\t"
88         "sw      %[temp2],    8(%[dst])          \n\t"
89         "sw      %[temp3],    12(%[dst])         \n\t"
90         "sw      %[temp4],    16(%[dst])         \n\t"
91         "sw      %[temp5],    20(%[dst])         \n\t"
92         "sw      %[temp6],    24(%[dst])         \n\t"
93         "sw      %[temp7],    28(%[dst])         \n\t"
94         "bne     %[src],      %[loop_end], 1b    \n\t"
95         PTR_ADDIU "%[dst],    %[dst],      32    \n\t"
96         ".set pop                                \n\t"
97 
98         : [temp0]"=&r"(temp[0]), [temp1]"=&r"(temp[1]),
99           [temp2]"=&r"(temp[2]), [temp3]"=&r"(temp[3]),
100           [temp4]"=&r"(temp[4]), [temp5]"=&r"(temp[5]),
101           [temp6]"=&r"(temp[6]), [temp7]"=&r"(temp[7]),
102           [src]"+r"(src), [dst]"+r"(dst)
103         : [loop_end]"r"(loop_end)
104         : "memory"
105     );
106 }
107 
lcg_random(unsigned previous_val)108 static av_always_inline int lcg_random(unsigned previous_val)
109 {
110     union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
111     return v.s;
112 }
113 
imdct_and_windowing_mips(AACContext * ac,SingleChannelElement * sce)114 static void imdct_and_windowing_mips(AACContext *ac, SingleChannelElement *sce)
115 {
116     IndividualChannelStream *ics = &sce->ics;
117     float *in    = sce->coeffs;
118     float *out   = sce->ret;
119     float *saved = sce->saved;
120     const float *swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
121     const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
122     const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
123     float *buf  = ac->buf_mdct;
124     int i;
125 
126     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
127         for (i = 0; i < 1024; i += 128)
128             ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
129     } else
130         ac->mdct.imdct_half(&ac->mdct, buf, in);
131 
132     /* window overlapping
133      * NOTE: To simplify the overlapping code, all 'meaningless' short to long
134      * and long to short transitions are considered to be short to short
135      * transitions. This leaves just two cases (long to long and short to short)
136      * with a little special sauce for EIGHT_SHORT_SEQUENCE.
137      */
138     if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
139             (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
140         ac->fdsp->vector_fmul_window(    out,               saved,            buf,         lwindow_prev, 512);
141     } else {
142         float_copy(out, saved, 448);
143 
144         if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
145             {
146                 float wi;
147                 float wj;
148                 int i;
149                 float temp0, temp1, temp2, temp3;
150                 float *dst0 = out + 448 + 0*128;
151                 float *dst1 = dst0 + 64 + 63;
152                 float *dst2 = saved + 63;
153                 float *win0 = (float*)swindow;
154                 float *win1 = win0 + 64 + 63;
155                 float *win0_prev = (float*)swindow_prev;
156                 float *win1_prev = win0_prev + 64 + 63;
157                 float *src0_prev = saved + 448;
158                 float *src1_prev = buf + 0*128 + 63;
159                 float *src0 = buf + 0*128 + 64;
160                 float *src1 = buf + 1*128 + 63;
161 
162                 for(i = 0; i < 64; i++)
163                 {
164                     temp0 = src0_prev[0];
165                     temp1 = src1_prev[0];
166                     wi = *win0_prev;
167                     wj = *win1_prev;
168                     temp2 = src0[0];
169                     temp3 = src1[0];
170                     dst0[0] = temp0 * wj - temp1 * wi;
171                     dst1[0] = temp0 * wi + temp1 * wj;
172 
173                     wi = *win0;
174                     wj = *win1;
175 
176                     temp0 = src0[128];
177                     temp1 = src1[128];
178                     dst0[128] = temp2 * wj - temp3 * wi;
179                     dst1[128] = temp2 * wi + temp3 * wj;
180 
181                     temp2 = src0[256];
182                     temp3 = src1[256];
183                     dst0[256] = temp0 * wj - temp1 * wi;
184                     dst1[256] = temp0 * wi + temp1 * wj;
185                     dst0[384] = temp2 * wj - temp3 * wi;
186                     dst1[384] = temp2 * wi + temp3 * wj;
187 
188                     temp0 = src0[384];
189                     temp1 = src1[384];
190                     dst0[512] = temp0 * wj - temp1 * wi;
191                     dst2[0] = temp0 * wi + temp1 * wj;
192 
193                     src0++;
194                     src1--;
195                     src0_prev++;
196                     src1_prev--;
197                     win0++;
198                     win1--;
199                     win0_prev++;
200                     win1_prev--;
201                     dst0++;
202                     dst1--;
203                     dst2--;
204                 }
205             }
206         } else {
207             ac->fdsp->vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, 64);
208             float_copy(out + 576, buf + 64, 448);
209         }
210     }
211 
212     // buffer update
213     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
214         ac->fdsp->vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 64);
215         ac->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
216         ac->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
217         float_copy(saved + 448, buf + 7*128 + 64, 64);
218     } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
219         float_copy(saved, buf + 512, 448);
220         float_copy(saved + 448, buf + 7*128 + 64, 64);
221     } else { // LONG_STOP or ONLY_LONG
222         float_copy(saved, buf + 512, 512);
223     }
224 }
225 
apply_ltp_mips(AACContext * ac,SingleChannelElement * sce)226 static void apply_ltp_mips(AACContext *ac, SingleChannelElement *sce)
227 {
228     const LongTermPrediction *ltp = &sce->ics.ltp;
229     const uint16_t *offsets = sce->ics.swb_offset;
230     int i, sfb;
231     int j, k;
232 
233     if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
234         float *predTime = sce->ret;
235         float *predFreq = ac->buf_mdct;
236         float *p_predTime;
237         int16_t num_samples = 2048;
238 
239         if (ltp->lag < 1024)
240             num_samples = ltp->lag + 1024;
241         j = (2048 - num_samples) >> 2;
242         k = (2048 - num_samples) & 3;
243         p_predTime = &predTime[num_samples];
244 
245         for (i = 0; i < num_samples; i++)
246             predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
247         for (i = 0; i < j; i++) {
248 
249             /* loop unrolled 4 times */
250             __asm__ volatile (
251                 "sw      $0,              0(%[p_predTime])        \n\t"
252                 "sw      $0,              4(%[p_predTime])        \n\t"
253                 "sw      $0,              8(%[p_predTime])        \n\t"
254                 "sw      $0,              12(%[p_predTime])       \n\t"
255                 PTR_ADDIU "%[p_predTime], %[p_predTime],     16   \n\t"
256 
257                 : [p_predTime]"+r"(p_predTime)
258                 :
259                 : "memory"
260             );
261         }
262         for (i = 0; i < k; i++) {
263 
264             __asm__ volatile (
265                 "sw      $0,              0(%[p_predTime])        \n\t"
266                 PTR_ADDIU "%[p_predTime], %[p_predTime],     4    \n\t"
267 
268                 : [p_predTime]"+r"(p_predTime)
269                 :
270                 : "memory"
271             );
272         }
273 
274         ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
275 
276         if (sce->tns.present)
277             ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0);
278 
279         for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
280             if (ltp->used[sfb])
281                 for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
282                     sce->coeffs[i] += predFreq[i];
283     }
284 }
285 
fmul_and_reverse(float * dst,const float * src0,const float * src1,int count)286 static av_always_inline void fmul_and_reverse(float *dst, const float *src0, const float *src1, int count)
287 {
288     /* Multiply 'count' floats in src0 by src1 and store the results in dst in reverse */
289     /* This should be equivalent to a normal fmul, followed by reversing dst */
290 
291     // count must be a multiple of 4
292     av_assert2(count % 4 == 0);
293 
294     // move src0 and src1 to the last element of their arrays
295     src0 += count - 1;
296     src1 += count - 1;
297 
298     for (; count > 0; count -= 4){
299         float temp[12];
300 
301         /* loop unrolled 4 times */
302         __asm__ volatile (
303             "lwc1    %[temp0],    0(%[ptr2])                \n\t"
304             "lwc1    %[temp1],    -4(%[ptr2])               \n\t"
305             "lwc1    %[temp2],    -8(%[ptr2])               \n\t"
306             "lwc1    %[temp3],    -12(%[ptr2])              \n\t"
307             "lwc1    %[temp4],    0(%[ptr3])                \n\t"
308             "lwc1    %[temp5],    -4(%[ptr3])               \n\t"
309             "lwc1    %[temp6],    -8(%[ptr3])               \n\t"
310             "lwc1    %[temp7],    -12(%[ptr3])              \n\t"
311             "mul.s   %[temp8],    %[temp0],     %[temp4]    \n\t"
312             "mul.s   %[temp9],    %[temp1],     %[temp5]    \n\t"
313             "mul.s   %[temp10],   %[temp2],     %[temp6]    \n\t"
314             "mul.s   %[temp11],   %[temp3],     %[temp7]    \n\t"
315             "swc1    %[temp8],    0(%[ptr1])                \n\t"
316             "swc1    %[temp9],    4(%[ptr1])                \n\t"
317             "swc1    %[temp10],   8(%[ptr1])                \n\t"
318             "swc1    %[temp11],   12(%[ptr1])               \n\t"
319             PTR_ADDIU "%[ptr1],   %[ptr1],      16          \n\t"
320             PTR_ADDIU "%[ptr2],   %[ptr2],      -16         \n\t"
321             PTR_ADDIU "%[ptr3],   %[ptr3],      -16         \n\t"
322 
323             : [temp0]"=&f"(temp[0]), [temp1]"=&f"(temp[1]),
324               [temp2]"=&f"(temp[2]), [temp3]"=&f"(temp[3]),
325               [temp4]"=&f"(temp[4]), [temp5]"=&f"(temp[5]),
326               [temp6]"=&f"(temp[6]), [temp7]"=&f"(temp[7]),
327               [temp8]"=&f"(temp[8]), [temp9]"=&f"(temp[9]),
328               [temp10]"=&f"(temp[10]), [temp11]"=&f"(temp[11]),
329               [ptr1]"+r"(dst), [ptr2]"+r"(src0), [ptr3]"+r"(src1)
330             :
331             : "memory"
332         );
333     }
334 }
335 
update_ltp_mips(AACContext * ac,SingleChannelElement * sce)336 static void update_ltp_mips(AACContext *ac, SingleChannelElement *sce)
337 {
338     IndividualChannelStream *ics = &sce->ics;
339     float *saved     = sce->saved;
340     float *saved_ltp = sce->coeffs;
341     const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
342     const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
343     uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
344 
345     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
346         float *p_saved_ltp = saved_ltp + 576;
347         float *loop_end1 = p_saved_ltp + 448;
348 
349         float_copy(saved_ltp, saved, 512);
350 
351         /* loop unrolled 8 times */
352         __asm__ volatile (
353         "1:                                                   \n\t"
354             "sw     $0,              0(%[p_saved_ltp])        \n\t"
355             "sw     $0,              4(%[p_saved_ltp])        \n\t"
356             "sw     $0,              8(%[p_saved_ltp])        \n\t"
357             "sw     $0,              12(%[p_saved_ltp])       \n\t"
358             "sw     $0,              16(%[p_saved_ltp])       \n\t"
359             "sw     $0,              20(%[p_saved_ltp])       \n\t"
360             "sw     $0,              24(%[p_saved_ltp])       \n\t"
361             "sw     $0,              28(%[p_saved_ltp])       \n\t"
362             PTR_ADDIU "%[p_saved_ltp],%[p_saved_ltp],    32   \n\t"
363             "bne    %[p_saved_ltp],  %[loop_end1],       1b   \n\t"
364 
365             : [p_saved_ltp]"+r"(p_saved_ltp)
366             : [loop_end1]"r"(loop_end1)
367             : "memory"
368         );
369 
370         ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960,     &swindow[64],      64);
371         fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 960, swindow, 64);
372     } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
373         float *buff0 = saved;
374         float *buff1 = saved_ltp;
375         float *loop_end = saved + 448;
376 
377         /* loop unrolled 8 times */
378         __asm__ volatile (
379             ".set push                                  \n\t"
380             ".set noreorder                             \n\t"
381         "1:                                             \n\t"
382             "lw      %[temp0],    0(%[src])             \n\t"
383             "lw      %[temp1],    4(%[src])             \n\t"
384             "lw      %[temp2],    8(%[src])             \n\t"
385             "lw      %[temp3],    12(%[src])            \n\t"
386             "lw      %[temp4],    16(%[src])            \n\t"
387             "lw      %[temp5],    20(%[src])            \n\t"
388             "lw      %[temp6],    24(%[src])            \n\t"
389             "lw      %[temp7],    28(%[src])            \n\t"
390             PTR_ADDIU "%[src],    %[src],         32    \n\t"
391             "sw      %[temp0],    0(%[dst])             \n\t"
392             "sw      %[temp1],    4(%[dst])             \n\t"
393             "sw      %[temp2],    8(%[dst])             \n\t"
394             "sw      %[temp3],    12(%[dst])            \n\t"
395             "sw      %[temp4],    16(%[dst])            \n\t"
396             "sw      %[temp5],    20(%[dst])            \n\t"
397             "sw      %[temp6],    24(%[dst])            \n\t"
398             "sw      %[temp7],    28(%[dst])            \n\t"
399             "sw      $0,          2304(%[dst])          \n\t"
400             "sw      $0,          2308(%[dst])          \n\t"
401             "sw      $0,          2312(%[dst])          \n\t"
402             "sw      $0,          2316(%[dst])          \n\t"
403             "sw      $0,          2320(%[dst])          \n\t"
404             "sw      $0,          2324(%[dst])          \n\t"
405             "sw      $0,          2328(%[dst])          \n\t"
406             "sw      $0,          2332(%[dst])          \n\t"
407             "bne     %[src],      %[loop_end],    1b    \n\t"
408             PTR_ADDIU "%[dst],    %[dst],         32    \n\t"
409             ".set pop                                   \n\t"
410 
411             : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1),
412               [temp2]"=&r"(temp2), [temp3]"=&r"(temp3),
413               [temp4]"=&r"(temp4), [temp5]"=&r"(temp5),
414               [temp6]"=&r"(temp6), [temp7]"=&r"(temp7),
415               [src]"+r"(buff0), [dst]"+r"(buff1)
416             : [loop_end]"r"(loop_end)
417             : "memory"
418         );
419         ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960,     &swindow[64],      64);
420         fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 960, swindow, 64);
421     } else { // LONG_STOP or ONLY_LONG
422         ac->fdsp->vector_fmul_reverse(saved_ltp,       ac->buf_mdct + 512,     &lwindow[512],     512);
423         fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 512, lwindow, 512);
424     }
425 
426     float_copy(sce->ltp_state, sce->ltp_state + 1024, 1024);
427     float_copy(sce->ltp_state + 1024, sce->ret, 1024);
428     float_copy(sce->ltp_state + 2048, saved_ltp, 1024);
429 }
430 #endif /* HAVE_MIPSFPU */
431 #endif /* HAVE_INLINE_ASM */
432 
ff_aacdec_init_mips(AACContext * c)433 void ff_aacdec_init_mips(AACContext *c)
434 {
435 #if HAVE_INLINE_ASM
436 #if HAVE_MIPSFPU
437     c->imdct_and_windowing         = imdct_and_windowing_mips;
438     c->apply_ltp                   = apply_ltp_mips;
439     c->update_ltp                  = update_ltp_mips;
440 #endif /* HAVE_MIPSFPU */
441 #endif /* HAVE_INLINE_ASM */
442 }
443