1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4  * Copyright (c) 2009 Jimmy Christensen
5  *
6  * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /**
26  * @file
27  * OpenEXR decoder
28  * @author Jimmy Christensen
29  *
30  * For more information on the OpenEXR format, visit:
31  *  http://openexr.com/
32  */
33 
34 #include <float.h>
35 #include <zlib.h>
36 
37 #include "libavutil/avassert.h"
38 #include "libavutil/common.h"
39 #include "libavutil/imgutils.h"
40 #include "libavutil/intfloat.h"
41 #include "libavutil/avstring.h"
42 #include "libavutil/opt.h"
43 #include "libavutil/color_utils.h"
44 
45 #include "avcodec.h"
46 #include "bytestream.h"
47 
48 #if HAVE_BIGENDIAN
49 #include "bswapdsp.h"
50 #endif
51 
52 #include "exrdsp.h"
53 #include "get_bits.h"
54 #include "internal.h"
55 #include "half2float.h"
56 #include "mathops.h"
57 #include "thread.h"
58 
59 enum ExrCompr {
60     EXR_RAW,
61     EXR_RLE,
62     EXR_ZIP1,
63     EXR_ZIP16,
64     EXR_PIZ,
65     EXR_PXR24,
66     EXR_B44,
67     EXR_B44A,
68     EXR_DWAA,
69     EXR_DWAB,
70     EXR_UNKN,
71 };
72 
73 enum ExrPixelType {
74     EXR_UINT,
75     EXR_HALF,
76     EXR_FLOAT,
77     EXR_UNKNOWN,
78 };
79 
80 enum ExrTileLevelMode {
81     EXR_TILE_LEVEL_ONE,
82     EXR_TILE_LEVEL_MIPMAP,
83     EXR_TILE_LEVEL_RIPMAP,
84     EXR_TILE_LEVEL_UNKNOWN,
85 };
86 
87 enum ExrTileLevelRound {
88     EXR_TILE_ROUND_UP,
89     EXR_TILE_ROUND_DOWN,
90     EXR_TILE_ROUND_UNKNOWN,
91 };
92 
93 typedef struct HuffEntry {
94     uint8_t  len;
95     uint16_t sym;
96     uint32_t code;
97 } HuffEntry;
98 
99 typedef struct EXRChannel {
100     int xsub, ysub;
101     enum ExrPixelType pixel_type;
102 } EXRChannel;
103 
104 typedef struct EXRTileAttribute {
105     int32_t xSize;
106     int32_t ySize;
107     enum ExrTileLevelMode level_mode;
108     enum ExrTileLevelRound level_round;
109 } EXRTileAttribute;
110 
111 typedef struct EXRThreadData {
112     uint8_t *uncompressed_data;
113     int uncompressed_size;
114 
115     uint8_t *tmp;
116     int tmp_size;
117 
118     uint8_t *bitmap;
119     uint16_t *lut;
120 
121     uint8_t *ac_data;
122     unsigned ac_size;
123 
124     uint8_t *dc_data;
125     unsigned dc_size;
126 
127     uint8_t *rle_data;
128     unsigned rle_size;
129 
130     uint8_t *rle_raw_data;
131     unsigned rle_raw_size;
132 
133     float block[3][64];
134 
135     int ysize, xsize;
136 
137     int channel_line_size;
138 
139     int run_sym;
140     HuffEntry *he;
141     uint64_t *freq;
142     VLC vlc;
143 } EXRThreadData;
144 
145 typedef struct EXRContext {
146     AVClass *class;
147     AVFrame *picture;
148     AVCodecContext *avctx;
149     ExrDSPContext dsp;
150 
151 #if HAVE_BIGENDIAN
152     BswapDSPContext bbdsp;
153 #endif
154 
155     enum ExrCompr compression;
156     enum ExrPixelType pixel_type;
157     int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
158     const AVPixFmtDescriptor *desc;
159 
160     int w, h;
161     uint32_t sar;
162     int32_t xmax, xmin;
163     int32_t ymax, ymin;
164     uint32_t xdelta, ydelta;
165 
166     int scan_lines_per_block;
167 
168     EXRTileAttribute tile_attr; /* header data attribute of tile */
169     int is_tile; /* 0 if scanline, 1 if tile */
170     int is_multipart;
171     int current_part;
172 
173     int is_luma;/* 1 if there is an Y plane */
174 
175     GetByteContext gb;
176     const uint8_t *buf;
177     int buf_size;
178 
179     EXRChannel *channels;
180     int nb_channels;
181     int current_channel_offset;
182     uint32_t chunk_count;
183 
184     EXRThreadData *thread_data;
185 
186     const char *layer;
187     int selected_part;
188 
189     enum AVColorTransferCharacteristic apply_trc_type;
190     float gamma;
191     union av_intfloat32 gamma_table[65536];
192 
193     uint32_t mantissatable[2048];
194     uint32_t exponenttable[64];
195     uint16_t offsettable[64];
196 } EXRContext;
197 
zip_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)198 static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
199                           int uncompressed_size, EXRThreadData *td)
200 {
201     unsigned long dest_len = uncompressed_size;
202 
203     if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
204         dest_len != uncompressed_size)
205         return AVERROR_INVALIDDATA;
206 
207     av_assert1(uncompressed_size % 2 == 0);
208 
209     s->dsp.predictor(td->tmp, uncompressed_size);
210     s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
211 
212     return 0;
213 }
214 
rle(uint8_t * dst,const uint8_t * src,int compressed_size,int uncompressed_size)215 static int rle(uint8_t *dst, const uint8_t *src,
216                int compressed_size, int uncompressed_size)
217 {
218     uint8_t *d      = dst;
219     const int8_t *s = src;
220     int ssize       = compressed_size;
221     int dsize       = uncompressed_size;
222     uint8_t *dend   = d + dsize;
223     int count;
224 
225     while (ssize > 0) {
226         count = *s++;
227 
228         if (count < 0) {
229             count = -count;
230 
231             if ((dsize -= count) < 0 ||
232                 (ssize -= count + 1) < 0)
233                 return AVERROR_INVALIDDATA;
234 
235             while (count--)
236                 *d++ = *s++;
237         } else {
238             count++;
239 
240             if ((dsize -= count) < 0 ||
241                 (ssize -= 2) < 0)
242                 return AVERROR_INVALIDDATA;
243 
244             while (count--)
245                 *d++ = *s;
246 
247             s++;
248         }
249     }
250 
251     if (dend != d)
252         return AVERROR_INVALIDDATA;
253 
254     return 0;
255 }
256 
rle_uncompress(EXRContext * ctx,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)257 static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
258                           int uncompressed_size, EXRThreadData *td)
259 {
260     rle(td->tmp, src, compressed_size, uncompressed_size);
261 
262     av_assert1(uncompressed_size % 2 == 0);
263 
264     ctx->dsp.predictor(td->tmp, uncompressed_size);
265     ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
266 
267     return 0;
268 }
269 
270 #define USHORT_RANGE (1 << 16)
271 #define BITMAP_SIZE  (1 << 13)
272 
reverse_lut(const uint8_t * bitmap,uint16_t * lut)273 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
274 {
275     int i, k = 0;
276 
277     for (i = 0; i < USHORT_RANGE; i++)
278         if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
279             lut[k++] = i;
280 
281     i = k - 1;
282 
283     memset(lut + k, 0, (USHORT_RANGE - k) * 2);
284 
285     return i;
286 }
287 
apply_lut(const uint16_t * lut,uint16_t * dst,int dsize)288 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
289 {
290     int i;
291 
292     for (i = 0; i < dsize; ++i)
293         dst[i] = lut[dst[i]];
294 }
295 
296 #define HUF_ENCBITS 16  // literal (value) bit length
297 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1)  // encoding table size
298 
huf_canonical_code_table(uint64_t * freq)299 static void huf_canonical_code_table(uint64_t *freq)
300 {
301     uint64_t c, n[59] = { 0 };
302     int i;
303 
304     for (i = 0; i < HUF_ENCSIZE; i++)
305         n[freq[i]] += 1;
306 
307     c = 0;
308     for (i = 58; i > 0; --i) {
309         uint64_t nc = ((c + n[i]) >> 1);
310         n[i] = c;
311         c    = nc;
312     }
313 
314     for (i = 0; i < HUF_ENCSIZE; ++i) {
315         int l = freq[i];
316 
317         if (l > 0)
318             freq[i] = l | (n[l]++ << 6);
319     }
320 }
321 
322 #define SHORT_ZEROCODE_RUN  59
323 #define LONG_ZEROCODE_RUN   63
324 #define SHORTEST_LONG_RUN   (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
325 #define LONGEST_LONG_RUN    (255 + SHORTEST_LONG_RUN)
326 
huf_unpack_enc_table(GetByteContext * gb,int32_t im,int32_t iM,uint64_t * freq)327 static int huf_unpack_enc_table(GetByteContext *gb,
328                                 int32_t im, int32_t iM, uint64_t *freq)
329 {
330     GetBitContext gbit;
331     int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
332     if (ret < 0)
333         return ret;
334 
335     for (; im <= iM; im++) {
336         uint64_t l = freq[im] = get_bits(&gbit, 6);
337 
338         if (l == LONG_ZEROCODE_RUN) {
339             int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
340 
341             if (im + zerun > iM + 1)
342                 return AVERROR_INVALIDDATA;
343 
344             while (zerun--)
345                 freq[im++] = 0;
346 
347             im--;
348         } else if (l >= SHORT_ZEROCODE_RUN) {
349             int zerun = l - SHORT_ZEROCODE_RUN + 2;
350 
351             if (im + zerun > iM + 1)
352                 return AVERROR_INVALIDDATA;
353 
354             while (zerun--)
355                 freq[im++] = 0;
356 
357             im--;
358         }
359     }
360 
361     bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
362     huf_canonical_code_table(freq);
363 
364     return 0;
365 }
366 
huf_build_dec_table(EXRContext * s,EXRThreadData * td,int im,int iM)367 static int huf_build_dec_table(EXRContext *s,
368                                EXRThreadData *td, int im, int iM)
369 {
370     int j = 0;
371 
372     td->run_sym = -1;
373     for (int i = im; i < iM; i++) {
374         td->he[j].sym = i;
375         td->he[j].len = td->freq[i] & 63;
376         td->he[j].code = td->freq[i] >> 6;
377         if (td->he[j].len > 32) {
378             avpriv_request_sample(s->avctx, "Too big code length");
379             return AVERROR_PATCHWELCOME;
380         }
381         if (td->he[j].len > 0)
382             j++;
383         else
384             td->run_sym = i;
385     }
386 
387     if (im > 0)
388         td->run_sym = 0;
389     else if (iM < 65535)
390         td->run_sym = 65535;
391 
392     if (td->run_sym == -1) {
393         avpriv_request_sample(s->avctx, "No place for run symbol");
394         return AVERROR_PATCHWELCOME;
395     }
396 
397     td->he[j].sym = td->run_sym;
398     td->he[j].len = td->freq[iM] & 63;
399     if (td->he[j].len > 32) {
400         avpriv_request_sample(s->avctx, "Too big code length");
401         return AVERROR_PATCHWELCOME;
402     }
403     td->he[j].code = td->freq[iM] >> 6;
404     j++;
405 
406     ff_free_vlc(&td->vlc);
407     return ff_init_vlc_sparse(&td->vlc, 12, j,
408                               &td->he[0].len, sizeof(td->he[0]), sizeof(td->he[0].len),
409                               &td->he[0].code, sizeof(td->he[0]), sizeof(td->he[0].code),
410                               &td->he[0].sym, sizeof(td->he[0]), sizeof(td->he[0].sym), 0);
411 }
412 
huf_decode(VLC * vlc,GetByteContext * gb,int nbits,int run_sym,int no,uint16_t * out)413 static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym,
414                       int no, uint16_t *out)
415 {
416     GetBitContext gbit;
417     int oe = 0;
418 
419     init_get_bits(&gbit, gb->buffer, nbits);
420     while (get_bits_left(&gbit) > 0 && oe < no) {
421         uint16_t x = get_vlc2(&gbit, vlc->table, 12, 2);
422 
423         if (x == run_sym) {
424             int run = get_bits(&gbit, 8);
425             uint16_t fill;
426 
427             if (oe == 0 || oe + run > no)
428                 return AVERROR_INVALIDDATA;
429 
430             fill = out[oe - 1];
431 
432             while (run-- > 0)
433                 out[oe++] = fill;
434         } else {
435             out[oe++] = x;
436         }
437     }
438 
439     return 0;
440 }
441 
huf_uncompress(EXRContext * s,EXRThreadData * td,GetByteContext * gb,uint16_t * dst,int dst_size)442 static int huf_uncompress(EXRContext *s,
443                           EXRThreadData *td,
444                           GetByteContext *gb,
445                           uint16_t *dst, int dst_size)
446 {
447     int32_t im, iM;
448     uint32_t nBits;
449     int ret;
450 
451     im       = bytestream2_get_le32(gb);
452     iM       = bytestream2_get_le32(gb);
453     bytestream2_skip(gb, 4);
454     nBits = bytestream2_get_le32(gb);
455     if (im < 0 || im >= HUF_ENCSIZE ||
456         iM < 0 || iM >= HUF_ENCSIZE)
457         return AVERROR_INVALIDDATA;
458 
459     bytestream2_skip(gb, 4);
460 
461     if (!td->freq)
462         td->freq = av_malloc_array(HUF_ENCSIZE, sizeof(*td->freq));
463     if (!td->he)
464         td->he = av_calloc(HUF_ENCSIZE, sizeof(*td->he));
465     if (!td->freq || !td->he) {
466         ret = AVERROR(ENOMEM);
467         return ret;
468     }
469 
470     memset(td->freq, 0, sizeof(*td->freq) * HUF_ENCSIZE);
471     if ((ret = huf_unpack_enc_table(gb, im, iM, td->freq)) < 0)
472         return ret;
473 
474     if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
475         ret = AVERROR_INVALIDDATA;
476         return ret;
477     }
478 
479     if ((ret = huf_build_dec_table(s, td, im, iM)) < 0)
480         return ret;
481     return huf_decode(&td->vlc, gb, nBits, td->run_sym, dst_size, dst);
482 }
483 
wdec14(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)484 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
485 {
486     int16_t ls = l;
487     int16_t hs = h;
488     int hi     = hs;
489     int ai     = ls + (hi & 1) + (hi >> 1);
490     int16_t as = ai;
491     int16_t bs = ai - hi;
492 
493     *a = as;
494     *b = bs;
495 }
496 
497 #define NBITS      16
498 #define A_OFFSET  (1 << (NBITS - 1))
499 #define MOD_MASK  ((1 << NBITS) - 1)
500 
wdec16(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)501 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
502 {
503     int m  = l;
504     int d  = h;
505     int bb = (m - (d >> 1)) & MOD_MASK;
506     int aa = (d + bb - A_OFFSET) & MOD_MASK;
507     *b = bb;
508     *a = aa;
509 }
510 
wav_decode(uint16_t * in,int nx,int ox,int ny,int oy,uint16_t mx)511 static void wav_decode(uint16_t *in, int nx, int ox,
512                        int ny, int oy, uint16_t mx)
513 {
514     int w14 = (mx < (1 << 14));
515     int n   = (nx > ny) ? ny : nx;
516     int p   = 1;
517     int p2;
518 
519     while (p <= n)
520         p <<= 1;
521 
522     p >>= 1;
523     p2  = p;
524     p >>= 1;
525 
526     while (p >= 1) {
527         uint16_t *py = in;
528         uint16_t *ey = in + oy * (ny - p2);
529         uint16_t i00, i01, i10, i11;
530         int oy1 = oy * p;
531         int oy2 = oy * p2;
532         int ox1 = ox * p;
533         int ox2 = ox * p2;
534 
535         for (; py <= ey; py += oy2) {
536             uint16_t *px = py;
537             uint16_t *ex = py + ox * (nx - p2);
538 
539             for (; px <= ex; px += ox2) {
540                 uint16_t *p01 = px + ox1;
541                 uint16_t *p10 = px + oy1;
542                 uint16_t *p11 = p10 + ox1;
543 
544                 if (w14) {
545                     wdec14(*px, *p10, &i00, &i10);
546                     wdec14(*p01, *p11, &i01, &i11);
547                     wdec14(i00, i01, px, p01);
548                     wdec14(i10, i11, p10, p11);
549                 } else {
550                     wdec16(*px, *p10, &i00, &i10);
551                     wdec16(*p01, *p11, &i01, &i11);
552                     wdec16(i00, i01, px, p01);
553                     wdec16(i10, i11, p10, p11);
554                 }
555             }
556 
557             if (nx & p) {
558                 uint16_t *p10 = px + oy1;
559 
560                 if (w14)
561                     wdec14(*px, *p10, &i00, p10);
562                 else
563                     wdec16(*px, *p10, &i00, p10);
564 
565                 *px = i00;
566             }
567         }
568 
569         if (ny & p) {
570             uint16_t *px = py;
571             uint16_t *ex = py + ox * (nx - p2);
572 
573             for (; px <= ex; px += ox2) {
574                 uint16_t *p01 = px + ox1;
575 
576                 if (w14)
577                     wdec14(*px, *p01, &i00, p01);
578                 else
579                     wdec16(*px, *p01, &i00, p01);
580 
581                 *px = i00;
582             }
583         }
584 
585         p2  = p;
586         p >>= 1;
587     }
588 }
589 
piz_uncompress(EXRContext * s,const uint8_t * src,int ssize,int dsize,EXRThreadData * td)590 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
591                           int dsize, EXRThreadData *td)
592 {
593     GetByteContext gb;
594     uint16_t maxval, min_non_zero, max_non_zero;
595     uint16_t *ptr;
596     uint16_t *tmp = (uint16_t *)td->tmp;
597     uint16_t *out;
598     uint16_t *in;
599     int ret, i, j;
600     int pixel_half_size;/* 1 for half, 2 for float and uint32 */
601     EXRChannel *channel;
602     int tmp_offset;
603 
604     if (!td->bitmap)
605         td->bitmap = av_malloc(BITMAP_SIZE);
606     if (!td->lut)
607         td->lut = av_malloc(1 << 17);
608     if (!td->bitmap || !td->lut) {
609         av_freep(&td->bitmap);
610         av_freep(&td->lut);
611         return AVERROR(ENOMEM);
612     }
613 
614     bytestream2_init(&gb, src, ssize);
615     min_non_zero = bytestream2_get_le16(&gb);
616     max_non_zero = bytestream2_get_le16(&gb);
617 
618     if (max_non_zero >= BITMAP_SIZE)
619         return AVERROR_INVALIDDATA;
620 
621     memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
622     if (min_non_zero <= max_non_zero)
623         bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
624                                max_non_zero - min_non_zero + 1);
625     memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
626 
627     maxval = reverse_lut(td->bitmap, td->lut);
628 
629     bytestream2_skip(&gb, 4);
630     ret = huf_uncompress(s, td, &gb, tmp, dsize / sizeof(uint16_t));
631     if (ret)
632         return ret;
633 
634     ptr = tmp;
635     for (i = 0; i < s->nb_channels; i++) {
636         channel = &s->channels[i];
637 
638         if (channel->pixel_type == EXR_HALF)
639             pixel_half_size = 1;
640         else
641             pixel_half_size = 2;
642 
643         for (j = 0; j < pixel_half_size; j++)
644             wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
645                        td->xsize * pixel_half_size, maxval);
646         ptr += td->xsize * td->ysize * pixel_half_size;
647     }
648 
649     apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
650 
651     out = (uint16_t *)td->uncompressed_data;
652     for (i = 0; i < td->ysize; i++) {
653         tmp_offset = 0;
654         for (j = 0; j < s->nb_channels; j++) {
655             channel = &s->channels[j];
656             if (channel->pixel_type == EXR_HALF)
657                 pixel_half_size = 1;
658             else
659                 pixel_half_size = 2;
660 
661             in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
662             tmp_offset += pixel_half_size;
663 
664 #if HAVE_BIGENDIAN
665             s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
666 #else
667             memcpy(out, in, td->xsize * 2 * pixel_half_size);
668 #endif
669             out += td->xsize * pixel_half_size;
670         }
671     }
672 
673     return 0;
674 }
675 
pxr24_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)676 static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
677                             int compressed_size, int uncompressed_size,
678                             EXRThreadData *td)
679 {
680     unsigned long dest_len, expected_len = 0;
681     const uint8_t *in = td->tmp;
682     uint8_t *out;
683     int c, i, j;
684 
685     for (i = 0; i < s->nb_channels; i++) {
686         if (s->channels[i].pixel_type == EXR_FLOAT) {
687             expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
688         } else if (s->channels[i].pixel_type == EXR_HALF) {
689             expected_len += (td->xsize * td->ysize * 2);
690         } else {//UINT 32
691             expected_len += (td->xsize * td->ysize * 4);
692         }
693     }
694 
695     dest_len = expected_len;
696 
697     if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
698         return AVERROR_INVALIDDATA;
699     } else if (dest_len != expected_len) {
700         return AVERROR_INVALIDDATA;
701     }
702 
703     out = td->uncompressed_data;
704     for (i = 0; i < td->ysize; i++)
705         for (c = 0; c < s->nb_channels; c++) {
706             EXRChannel *channel = &s->channels[c];
707             const uint8_t *ptr[4];
708             uint32_t pixel = 0;
709 
710             switch (channel->pixel_type) {
711             case EXR_FLOAT:
712                 ptr[0] = in;
713                 ptr[1] = ptr[0] + td->xsize;
714                 ptr[2] = ptr[1] + td->xsize;
715                 in     = ptr[2] + td->xsize;
716 
717                 for (j = 0; j < td->xsize; ++j) {
718                     uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
719                                     (*(ptr[1]++) << 16) |
720                                     (*(ptr[2]++) << 8);
721                     pixel += diff;
722                     bytestream_put_le32(&out, pixel);
723                 }
724                 break;
725             case EXR_HALF:
726                 ptr[0] = in;
727                 ptr[1] = ptr[0] + td->xsize;
728                 in     = ptr[1] + td->xsize;
729                 for (j = 0; j < td->xsize; j++) {
730                     uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
731 
732                     pixel += diff;
733                     bytestream_put_le16(&out, pixel);
734                 }
735                 break;
736             case EXR_UINT:
737                 ptr[0] = in;
738                 ptr[1] = ptr[0] + s->xdelta;
739                 ptr[2] = ptr[1] + s->xdelta;
740                 ptr[3] = ptr[2] + s->xdelta;
741                 in     = ptr[3] + s->xdelta;
742 
743                 for (j = 0; j < s->xdelta; ++j) {
744                     uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
745                     (*(ptr[1]++) << 16) |
746                     (*(ptr[2]++) << 8 ) |
747                     (*(ptr[3]++));
748                     pixel += diff;
749                     bytestream_put_le32(&out, pixel);
750                 }
751                 break;
752             default:
753                 return AVERROR_INVALIDDATA;
754             }
755         }
756 
757     return 0;
758 }
759 
unpack_14(const uint8_t b[14],uint16_t s[16])760 static void unpack_14(const uint8_t b[14], uint16_t s[16])
761 {
762     unsigned short shift = (b[ 2] >> 2) & 15;
763     unsigned short bias = (0x20 << shift);
764     int i;
765 
766     s[ 0] = (b[0] << 8) | b[1];
767 
768     s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
769     s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
770     s[12] = s[ 8] +   ((b[ 4]                       & 0x3f) << shift) - bias;
771 
772     s[ 1] = s[ 0] +   ((b[ 5] >> 2)                         << shift) - bias;
773     s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
774     s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
775     s[13] = s[12] +   ((b[ 7]                       & 0x3f) << shift) - bias;
776 
777     s[ 2] = s[ 1] +   ((b[ 8] >> 2)                         << shift) - bias;
778     s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
779     s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
780     s[14] = s[13] +   ((b[10]                       & 0x3f) << shift) - bias;
781 
782     s[ 3] = s[ 2] +   ((b[11] >> 2)                         << shift) - bias;
783     s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
784     s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
785     s[15] = s[14] +   ((b[13]                       & 0x3f) << shift) - bias;
786 
787     for (i = 0; i < 16; ++i) {
788         if (s[i] & 0x8000)
789             s[i] &= 0x7fff;
790         else
791             s[i] = ~s[i];
792     }
793 }
794 
unpack_3(const uint8_t b[3],uint16_t s[16])795 static void unpack_3(const uint8_t b[3], uint16_t s[16])
796 {
797     int i;
798 
799     s[0] = (b[0] << 8) | b[1];
800 
801     if (s[0] & 0x8000)
802         s[0] &= 0x7fff;
803     else
804         s[0] = ~s[0];
805 
806     for (i = 1; i < 16; i++)
807         s[i] = s[0];
808 }
809 
810 
b44_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)811 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
812                           int uncompressed_size, EXRThreadData *td) {
813     const int8_t *sr = src;
814     int stay_to_uncompress = compressed_size;
815     int nb_b44_block_w, nb_b44_block_h;
816     int index_tl_x, index_tl_y, index_out, index_tmp;
817     uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
818     int c, iY, iX, y, x;
819     int target_channel_offset = 0;
820 
821     /* calc B44 block count */
822     nb_b44_block_w = td->xsize / 4;
823     if ((td->xsize % 4) != 0)
824         nb_b44_block_w++;
825 
826     nb_b44_block_h = td->ysize / 4;
827     if ((td->ysize % 4) != 0)
828         nb_b44_block_h++;
829 
830     for (c = 0; c < s->nb_channels; c++) {
831         if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
832             for (iY = 0; iY < nb_b44_block_h; iY++) {
833                 for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
834                     if (stay_to_uncompress < 3) {
835                         av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
836                         return AVERROR_INVALIDDATA;
837                     }
838 
839                     if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
840                         unpack_3(sr, tmp_buffer);
841                         sr += 3;
842                         stay_to_uncompress -= 3;
843                     }  else {/* B44 Block */
844                         if (stay_to_uncompress < 14) {
845                             av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
846                             return AVERROR_INVALIDDATA;
847                         }
848                         unpack_14(sr, tmp_buffer);
849                         sr += 14;
850                         stay_to_uncompress -= 14;
851                     }
852 
853                     /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
854                     index_tl_x = iX * 4;
855                     index_tl_y = iY * 4;
856 
857                     for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
858                         for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
859                             index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
860                             index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
861                             td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
862                             td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
863                         }
864                     }
865                 }
866             }
867             target_channel_offset += 2;
868         } else {/* Float or UINT 32 channel */
869             if (stay_to_uncompress < td->ysize * td->xsize * 4) {
870                 av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
871                 return AVERROR_INVALIDDATA;
872             }
873 
874             for (y = 0; y < td->ysize; y++) {
875                 index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
876                 memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
877                 sr += td->xsize * 4;
878             }
879             target_channel_offset += 4;
880 
881             stay_to_uncompress -= td->ysize * td->xsize * 4;
882         }
883     }
884 
885     return 0;
886 }
887 
ac_uncompress(EXRContext * s,GetByteContext * gb,float * block)888 static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block)
889 {
890     int ret = 0, n = 1;
891 
892     while (n < 64) {
893         uint16_t val = bytestream2_get_ne16(gb);
894 
895         if (val == 0xff00) {
896             n = 64;
897         } else if ((val >> 8) == 0xff) {
898             n += val & 0xff;
899         } else {
900             ret = n;
901             block[ff_zigzag_direct[n]] = av_int2float(half2float(val,
902                                                       s->mantissatable,
903                                                       s->exponenttable,
904                                                       s->offsettable));
905             n++;
906         }
907     }
908 
909     return ret;
910 }
911 
idct_1d(float * blk,int step)912 static void idct_1d(float *blk, int step)
913 {
914     const float a = .5f * cosf(    M_PI / 4.f);
915     const float b = .5f * cosf(    M_PI / 16.f);
916     const float c = .5f * cosf(    M_PI / 8.f);
917     const float d = .5f * cosf(3.f*M_PI / 16.f);
918     const float e = .5f * cosf(5.f*M_PI / 16.f);
919     const float f = .5f * cosf(3.f*M_PI / 8.f);
920     const float g = .5f * cosf(7.f*M_PI / 16.f);
921 
922     float alpha[4], beta[4], theta[4], gamma[4];
923 
924     alpha[0] = c * blk[2 * step];
925     alpha[1] = f * blk[2 * step];
926     alpha[2] = c * blk[6 * step];
927     alpha[3] = f * blk[6 * step];
928 
929     beta[0] = b * blk[1 * step] + d * blk[3 * step] + e * blk[5 * step] + g * blk[7 * step];
930     beta[1] = d * blk[1 * step] - g * blk[3 * step] - b * blk[5 * step] - e * blk[7 * step];
931     beta[2] = e * blk[1 * step] - b * blk[3 * step] + g * blk[5 * step] + d * blk[7 * step];
932     beta[3] = g * blk[1 * step] - e * blk[3 * step] + d * blk[5 * step] - b * blk[7 * step];
933 
934     theta[0] = a * (blk[0 * step] + blk[4 * step]);
935     theta[3] = a * (blk[0 * step] - blk[4 * step]);
936 
937     theta[1] = alpha[0] + alpha[3];
938     theta[2] = alpha[1] - alpha[2];
939 
940     gamma[0] = theta[0] + theta[1];
941     gamma[1] = theta[3] + theta[2];
942     gamma[2] = theta[3] - theta[2];
943     gamma[3] = theta[0] - theta[1];
944 
945     blk[0 * step] = gamma[0] + beta[0];
946     blk[1 * step] = gamma[1] + beta[1];
947     blk[2 * step] = gamma[2] + beta[2];
948     blk[3 * step] = gamma[3] + beta[3];
949 
950     blk[4 * step] = gamma[3] - beta[3];
951     blk[5 * step] = gamma[2] - beta[2];
952     blk[6 * step] = gamma[1] - beta[1];
953     blk[7 * step] = gamma[0] - beta[0];
954 }
955 
dct_inverse(float * block)956 static void dct_inverse(float *block)
957 {
958     for (int i = 0; i < 8; i++)
959         idct_1d(block + i, 8);
960 
961     for (int i = 0; i < 8; i++) {
962         idct_1d(block, 1);
963         block += 8;
964     }
965 }
966 
convert(float y,float u,float v,float * b,float * g,float * r)967 static void convert(float y, float u, float v,
968                     float *b, float *g, float *r)
969 {
970     *r = y               + 1.5747f * v;
971     *g = y - 0.1873f * u - 0.4682f * v;
972     *b = y + 1.8556f * u;
973 }
974 
to_linear(float x,float scale)975 static float to_linear(float x, float scale)
976 {
977     float ax = fabsf(x);
978 
979     if (ax <= 1.f) {
980         return FFSIGN(x) * powf(ax, 2.2f * scale);
981     } else {
982         const float log_base = expf(2.2f * scale);
983 
984         return FFSIGN(x) * powf(log_base, ax - 1.f);
985     }
986 }
987 
dwa_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)988 static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
989                           int uncompressed_size, EXRThreadData *td)
990 {
991     int64_t version, lo_usize, lo_size;
992     int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
993     int64_t ac_count, dc_count, ac_compression;
994     const int dc_w = td->xsize >> 3;
995     const int dc_h = td->ysize >> 3;
996     GetByteContext gb, agb;
997     int skip, ret;
998 
999     if (compressed_size <= 88)
1000         return AVERROR_INVALIDDATA;
1001 
1002     version = AV_RL64(src + 0);
1003     if (version != 2)
1004         return AVERROR_INVALIDDATA;
1005 
1006     lo_usize = AV_RL64(src + 8);
1007     lo_size = AV_RL64(src + 16);
1008     ac_size = AV_RL64(src + 24);
1009     dc_size = AV_RL64(src + 32);
1010     rle_csize = AV_RL64(src + 40);
1011     rle_usize = AV_RL64(src + 48);
1012     rle_raw_size = AV_RL64(src + 56);
1013     ac_count = AV_RL64(src + 64);
1014     dc_count = AV_RL64(src + 72);
1015     ac_compression = AV_RL64(src + 80);
1016 
1017     if (compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize)
1018         return AVERROR_INVALIDDATA;
1019 
1020     bytestream2_init(&gb, src + 88, compressed_size - 88);
1021     skip = bytestream2_get_le16(&gb);
1022     if (skip < 2)
1023         return AVERROR_INVALIDDATA;
1024 
1025     bytestream2_skip(&gb, skip - 2);
1026 
1027     if (lo_size > 0) {
1028         if (lo_usize > uncompressed_size)
1029             return AVERROR_INVALIDDATA;
1030         bytestream2_skip(&gb, lo_size);
1031     }
1032 
1033     if (ac_size > 0) {
1034         unsigned long dest_len = ac_count * 2LL;
1035         GetByteContext agb = gb;
1036 
1037         if (ac_count > 3LL * td->xsize * s->scan_lines_per_block)
1038             return AVERROR_INVALIDDATA;
1039 
1040         av_fast_padded_malloc(&td->ac_data, &td->ac_size, dest_len);
1041         if (!td->ac_data)
1042             return AVERROR(ENOMEM);
1043 
1044         switch (ac_compression) {
1045         case 0:
1046             ret = huf_uncompress(s, td, &agb, (int16_t *)td->ac_data, ac_count);
1047             if (ret < 0)
1048                 return ret;
1049             break;
1050         case 1:
1051             if (uncompress(td->ac_data, &dest_len, agb.buffer, ac_size) != Z_OK ||
1052                 dest_len != ac_count * 2LL)
1053                 return AVERROR_INVALIDDATA;
1054             break;
1055         default:
1056             return AVERROR_INVALIDDATA;
1057         }
1058 
1059         bytestream2_skip(&gb, ac_size);
1060     }
1061 
1062     if (dc_size > 0) {
1063         unsigned long dest_len = dc_count * 2LL;
1064         GetByteContext agb = gb;
1065 
1066         if (dc_count > (6LL * td->xsize * td->ysize + 63) / 64)
1067             return AVERROR_INVALIDDATA;
1068 
1069         av_fast_padded_malloc(&td->dc_data, &td->dc_size, FFALIGN(dest_len, 64) * 2);
1070         if (!td->dc_data)
1071             return AVERROR(ENOMEM);
1072 
1073         if (uncompress(td->dc_data + FFALIGN(dest_len, 64), &dest_len, agb.buffer, dc_size) != Z_OK ||
1074             (dest_len != dc_count * 2LL))
1075             return AVERROR_INVALIDDATA;
1076 
1077         s->dsp.predictor(td->dc_data + FFALIGN(dest_len, 64), dest_len);
1078         s->dsp.reorder_pixels(td->dc_data, td->dc_data + FFALIGN(dest_len, 64), dest_len);
1079 
1080         bytestream2_skip(&gb, dc_size);
1081     }
1082 
1083     if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1084         unsigned long dest_len = rle_usize;
1085 
1086         av_fast_padded_malloc(&td->rle_data, &td->rle_size, rle_usize);
1087         if (!td->rle_data)
1088             return AVERROR(ENOMEM);
1089 
1090         av_fast_padded_malloc(&td->rle_raw_data, &td->rle_raw_size, rle_raw_size);
1091         if (!td->rle_raw_data)
1092             return AVERROR(ENOMEM);
1093 
1094         if (uncompress(td->rle_data, &dest_len, gb.buffer, rle_csize) != Z_OK ||
1095             (dest_len != rle_usize))
1096             return AVERROR_INVALIDDATA;
1097 
1098         ret = rle(td->rle_raw_data, td->rle_data, rle_usize, rle_raw_size);
1099         if (ret < 0)
1100             return ret;
1101         bytestream2_skip(&gb, rle_csize);
1102     }
1103 
1104     bytestream2_init(&agb, td->ac_data, ac_count * 2);
1105 
1106     for (int y = 0; y < td->ysize; y += 8) {
1107         for (int x = 0; x < td->xsize; x += 8) {
1108             memset(td->block, 0, sizeof(td->block));
1109 
1110             for (int j = 0; j < 3; j++) {
1111                 float *block = td->block[j];
1112                 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1113                 uint16_t *dc = (uint16_t *)td->dc_data;
1114                 union av_intfloat32 dc_val;
1115 
1116                 dc_val.i = half2float(dc[idx], s->mantissatable,
1117                                       s->exponenttable, s->offsettable);
1118 
1119                 block[0] = dc_val.f;
1120                 ac_uncompress(s, &agb, block);
1121                 dct_inverse(block);
1122             }
1123 
1124             {
1125                 const float scale = s->pixel_type == EXR_FLOAT ? 2.f : 1.f;
1126                 const int o = s->nb_channels == 4;
1127                 float *bo = ((float *)td->uncompressed_data) +
1128                     y * td->xsize * s->nb_channels + td->xsize * (o + 0) + x;
1129                 float *go = ((float *)td->uncompressed_data) +
1130                     y * td->xsize * s->nb_channels + td->xsize * (o + 1) + x;
1131                 float *ro = ((float *)td->uncompressed_data) +
1132                     y * td->xsize * s->nb_channels + td->xsize * (o + 2) + x;
1133                 float *yb = td->block[0];
1134                 float *ub = td->block[1];
1135                 float *vb = td->block[2];
1136 
1137                 for (int yy = 0; yy < 8; yy++) {
1138                     for (int xx = 0; xx < 8; xx++) {
1139                         const int idx = xx + yy * 8;
1140 
1141                         convert(yb[idx], ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1142 
1143                         bo[xx] = to_linear(bo[xx], scale);
1144                         go[xx] = to_linear(go[xx], scale);
1145                         ro[xx] = to_linear(ro[xx], scale);
1146                     }
1147 
1148                     bo += td->xsize * s->nb_channels;
1149                     go += td->xsize * s->nb_channels;
1150                     ro += td->xsize * s->nb_channels;
1151                 }
1152             }
1153         }
1154     }
1155 
1156     if (s->nb_channels < 4)
1157         return 0;
1158 
1159     for (int y = 0; y < td->ysize && td->rle_raw_data; y++) {
1160         uint32_t *ao = ((uint32_t *)td->uncompressed_data) + y * td->xsize * s->nb_channels;
1161         uint8_t *ai0 = td->rle_raw_data + y * td->xsize;
1162         uint8_t *ai1 = td->rle_raw_data + y * td->xsize + rle_raw_size / 2;
1163 
1164         for (int x = 0; x < td->xsize; x++) {
1165             uint16_t ha = ai0[x] | (ai1[x] << 8);
1166 
1167             ao[x] = half2float(ha, s->mantissatable, s->exponenttable, s->offsettable);
1168         }
1169     }
1170 
1171     return 0;
1172 }
1173 
decode_block(AVCodecContext * avctx,void * tdata,int jobnr,int threadnr)1174 static int decode_block(AVCodecContext *avctx, void *tdata,
1175                         int jobnr, int threadnr)
1176 {
1177     EXRContext *s = avctx->priv_data;
1178     AVFrame *const p = s->picture;
1179     EXRThreadData *td = &s->thread_data[threadnr];
1180     const uint8_t *channel_buffer[4] = { 0 };
1181     const uint8_t *buf = s->buf;
1182     uint64_t line_offset, uncompressed_size;
1183     uint8_t *ptr;
1184     uint32_t data_size;
1185     int line, col = 0;
1186     uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1187     const uint8_t *src;
1188     int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components;
1189     int bxmin = 0, axmax = 0, window_xoffset = 0;
1190     int window_xmin, window_xmax, window_ymin, window_ymax;
1191     int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1192     int i, x, buf_size = s->buf_size;
1193     int c, rgb_channel_count;
1194     float one_gamma = 1.0f / s->gamma;
1195     avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1196     int ret;
1197 
1198     line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1199 
1200     if (s->is_tile) {
1201         if (buf_size < 20 || line_offset > buf_size - 20)
1202             return AVERROR_INVALIDDATA;
1203 
1204         src  = buf + line_offset + 20;
1205         if (s->is_multipart)
1206             src += 4;
1207 
1208         tile_x = AV_RL32(src - 20);
1209         tile_y = AV_RL32(src - 16);
1210         tile_level_x = AV_RL32(src - 12);
1211         tile_level_y = AV_RL32(src - 8);
1212 
1213         data_size = AV_RL32(src - 4);
1214         if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1215             return AVERROR_INVALIDDATA;
1216 
1217         if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1218             avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1219             return AVERROR_PATCHWELCOME;
1220         }
1221 
1222         if (tile_x && s->tile_attr.xSize + (int64_t)FFMAX(s->xmin, 0) >= INT_MAX / tile_x )
1223             return AVERROR_INVALIDDATA;
1224         if (tile_y && s->tile_attr.ySize + (int64_t)FFMAX(s->ymin, 0) >= INT_MAX / tile_y )
1225             return AVERROR_INVALIDDATA;
1226 
1227         line = s->ymin + s->tile_attr.ySize * tile_y;
1228         col = s->tile_attr.xSize * tile_x;
1229 
1230         if (line < s->ymin || line > s->ymax ||
1231             s->xmin + col  < s->xmin ||  s->xmin + col  > s->xmax)
1232             return AVERROR_INVALIDDATA;
1233 
1234         td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1235         td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1236 
1237         if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX)
1238             return AVERROR_INVALIDDATA;
1239 
1240         td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1241         uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1242     } else {
1243         if (buf_size < 8 || line_offset > buf_size - 8)
1244             return AVERROR_INVALIDDATA;
1245 
1246         src  = buf + line_offset + 8;
1247         if (s->is_multipart)
1248             src += 4;
1249         line = AV_RL32(src - 8);
1250 
1251         if (line < s->ymin || line > s->ymax)
1252             return AVERROR_INVALIDDATA;
1253 
1254         data_size = AV_RL32(src - 4);
1255         if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1256             return AVERROR_INVALIDDATA;
1257 
1258         td->ysize          = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1259         td->xsize          = s->xdelta;
1260 
1261         if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX)
1262             return AVERROR_INVALIDDATA;
1263 
1264         td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1265         uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1266 
1267         if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1268                                            line_offset > buf_size - uncompressed_size)) ||
1269             (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1270                                            line_offset > buf_size - data_size))) {
1271             return AVERROR_INVALIDDATA;
1272         }
1273     }
1274 
1275     window_xmin = FFMIN(avctx->width, FFMAX(0, s->xmin + col));
1276     window_xmax = FFMIN(avctx->width, FFMAX(0, s->xmin + col + td->xsize));
1277     window_ymin = FFMIN(avctx->height, FFMAX(0, line ));
1278     window_ymax = FFMIN(avctx->height, FFMAX(0, line + td->ysize));
1279     xsize = window_xmax - window_xmin;
1280     ysize = window_ymax - window_ymin;
1281 
1282     /* tile or scanline not visible skip decoding */
1283     if (xsize <= 0 || ysize <= 0)
1284         return 0;
1285 
1286     /* is the first tile or is a scanline */
1287     if(col == 0) {
1288         window_xmin = 0;
1289         /* pixels to add at the left of the display window */
1290         window_xoffset = FFMAX(0, s->xmin);
1291         /* bytes to add at the left of the display window */
1292         bxmin = window_xoffset * step;
1293     }
1294 
1295     /* is the last tile or is a scanline */
1296     if(col + td->xsize == s->xdelta) {
1297         window_xmax = avctx->width;
1298          /* bytes to add at the right of the display window */
1299         axmax = FFMAX(0, (avctx->width - (s->xmax + 1))) * step;
1300     }
1301 
1302     if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1303         av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1304         if (!td->tmp)
1305             return AVERROR(ENOMEM);
1306     }
1307 
1308     if (data_size < uncompressed_size) {
1309         av_fast_padded_malloc(&td->uncompressed_data,
1310                               &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1311 
1312         if (!td->uncompressed_data)
1313             return AVERROR(ENOMEM);
1314 
1315         ret = AVERROR_INVALIDDATA;
1316         switch (s->compression) {
1317         case EXR_ZIP1:
1318         case EXR_ZIP16:
1319             ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1320             break;
1321         case EXR_PIZ:
1322             ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1323             break;
1324         case EXR_PXR24:
1325             ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1326             break;
1327         case EXR_RLE:
1328             ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1329             break;
1330         case EXR_B44:
1331         case EXR_B44A:
1332             ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1333             break;
1334         case EXR_DWAA:
1335         case EXR_DWAB:
1336             ret = dwa_uncompress(s, src, data_size, uncompressed_size, td);
1337             break;
1338         }
1339         if (ret < 0) {
1340             av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1341             return ret;
1342         }
1343         src = td->uncompressed_data;
1344     }
1345 
1346     /* offsets to crop data outside display window */
1347     data_xoffset = FFABS(FFMIN(0, s->xmin + col)) * (s->pixel_type == EXR_HALF ? 2 : 4);
1348     data_yoffset = FFABS(FFMIN(0, line));
1349     data_window_offset = (data_yoffset * td->channel_line_size) + data_xoffset;
1350 
1351     if (!s->is_luma) {
1352         channel_buffer[0] = src + (td->xsize * s->channel_offsets[0]) + data_window_offset;
1353         channel_buffer[1] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1354         channel_buffer[2] = src + (td->xsize * s->channel_offsets[2]) + data_window_offset;
1355         rgb_channel_count = 3;
1356     } else { /* put y data in the first channel_buffer */
1357         channel_buffer[0] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1358         rgb_channel_count = 1;
1359     }
1360      if (s->channel_offsets[3] >= 0)
1361         channel_buffer[3] = src + (td->xsize * s->channel_offsets[3]) + data_window_offset;
1362 
1363     if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1364         /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1365         int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1366         if (s->is_luma) {
1367             channel_buffer[1] = channel_buffer[0];
1368             channel_buffer[2] = channel_buffer[0];
1369         }
1370 
1371         for (c = 0; c < channel_count; c++) {
1372             int plane = s->desc->comp[c].plane;
1373             ptr = p->data[plane] + window_ymin * p->linesize[plane] + (window_xmin * 4);
1374 
1375             for (i = 0; i < ysize; i++, ptr += p->linesize[plane]) {
1376                 const uint8_t *src;
1377                 union av_intfloat32 *ptr_x;
1378 
1379                 src = channel_buffer[c];
1380                 ptr_x = (union av_intfloat32 *)ptr;
1381 
1382                 // Zero out the start if xmin is not 0
1383                 memset(ptr_x, 0, bxmin);
1384                 ptr_x += window_xoffset;
1385 
1386                 if (s->pixel_type == EXR_FLOAT ||
1387                     s->compression == EXR_DWAA ||
1388                     s->compression == EXR_DWAB) {
1389                     // 32-bit
1390                     union av_intfloat32 t;
1391                     if (trc_func && c < 3) {
1392                         for (x = 0; x < xsize; x++) {
1393                             t.i = bytestream_get_le32(&src);
1394                             t.f = trc_func(t.f);
1395                             *ptr_x++ = t;
1396                         }
1397                     } else if (one_gamma != 1.f) {
1398                         for (x = 0; x < xsize; x++) {
1399                             t.i = bytestream_get_le32(&src);
1400                             if (t.f > 0.0f && c < 3)  /* avoid negative values */
1401                                 t.f = powf(t.f, one_gamma);
1402                             *ptr_x++ = t;
1403                         }
1404                     } else {
1405                         for (x = 0; x < xsize; x++) {
1406                             t.i = bytestream_get_le32(&src);
1407                             *ptr_x++ = t;
1408                         }
1409                     }
1410                 } else if (s->pixel_type == EXR_HALF) {
1411                     // 16-bit
1412                     if (c < 3 || !trc_func) {
1413                         for (x = 0; x < xsize; x++) {
1414                             *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)];
1415                         }
1416                     } else {
1417                         for (x = 0; x < xsize; x++) {
1418                             ptr_x[0].i = half2float(bytestream_get_le16(&src),
1419                                                     s->mantissatable,
1420                                                     s->exponenttable,
1421                                                     s->offsettable);
1422                             ptr_x++;
1423                         }
1424                     }
1425                 }
1426 
1427                 // Zero out the end if xmax+1 is not w
1428                 memset(ptr_x, 0, axmax);
1429                 channel_buffer[c] += td->channel_line_size;
1430             }
1431         }
1432     } else {
1433 
1434         av_assert1(s->pixel_type == EXR_UINT);
1435         ptr = p->data[0] + window_ymin * p->linesize[0] + (window_xmin * s->desc->nb_components * 2);
1436 
1437         for (i = 0; i < ysize; i++, ptr += p->linesize[0]) {
1438 
1439             const uint8_t * a;
1440             const uint8_t *rgb[3];
1441             uint16_t *ptr_x;
1442 
1443             for (c = 0; c < rgb_channel_count; c++) {
1444                 rgb[c] = channel_buffer[c];
1445             }
1446 
1447             if (channel_buffer[3])
1448                 a = channel_buffer[3];
1449 
1450             ptr_x = (uint16_t *) ptr;
1451 
1452             // Zero out the start if xmin is not 0
1453             memset(ptr_x, 0, bxmin);
1454             ptr_x += window_xoffset * s->desc->nb_components;
1455 
1456             for (x = 0; x < xsize; x++) {
1457                 for (c = 0; c < rgb_channel_count; c++) {
1458                     *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1459                 }
1460 
1461                 if (channel_buffer[3])
1462                     *ptr_x++ = bytestream_get_le32(&a) >> 16;
1463             }
1464 
1465             // Zero out the end if xmax+1 is not w
1466             memset(ptr_x, 0, axmax);
1467 
1468             channel_buffer[0] += td->channel_line_size;
1469             channel_buffer[1] += td->channel_line_size;
1470             channel_buffer[2] += td->channel_line_size;
1471             if (channel_buffer[3])
1472                 channel_buffer[3] += td->channel_line_size;
1473         }
1474     }
1475 
1476     return 0;
1477 }
1478 
skip_header_chunk(EXRContext * s)1479 static void skip_header_chunk(EXRContext *s)
1480 {
1481     GetByteContext *gb = &s->gb;
1482 
1483     while (bytestream2_get_bytes_left(gb) > 0) {
1484         if (!bytestream2_peek_byte(gb))
1485             break;
1486 
1487         // Process unknown variables
1488         for (int i = 0; i < 2; i++) // value_name and value_type
1489             while (bytestream2_get_byte(gb) != 0);
1490 
1491         // Skip variable length
1492         bytestream2_skip(gb, bytestream2_get_le32(gb));
1493     }
1494 }
1495 
1496 /**
1497  * Check if the variable name corresponds to its data type.
1498  *
1499  * @param s              the EXRContext
1500  * @param value_name     name of the variable to check
1501  * @param value_type     type of the variable to check
1502  * @param minimum_length minimum length of the variable data
1503  *
1504  * @return bytes to read containing variable data
1505  *         -1 if variable is not found
1506  *         0 if buffer ended prematurely
1507  */
check_header_variable(EXRContext * s,const char * value_name,const char * value_type,unsigned int minimum_length)1508 static int check_header_variable(EXRContext *s,
1509                                  const char *value_name,
1510                                  const char *value_type,
1511                                  unsigned int minimum_length)
1512 {
1513     GetByteContext *gb = &s->gb;
1514     int var_size = -1;
1515 
1516     if (bytestream2_get_bytes_left(gb) >= minimum_length &&
1517         !strcmp(gb->buffer, value_name)) {
1518         // found value_name, jump to value_type (null terminated strings)
1519         gb->buffer += strlen(value_name) + 1;
1520         if (!strcmp(gb->buffer, value_type)) {
1521             gb->buffer += strlen(value_type) + 1;
1522             var_size = bytestream2_get_le32(gb);
1523             // don't go read past boundaries
1524             if (var_size > bytestream2_get_bytes_left(gb))
1525                 var_size = 0;
1526         } else {
1527             // value_type not found, reset the buffer
1528             gb->buffer -= strlen(value_name) + 1;
1529             av_log(s->avctx, AV_LOG_WARNING,
1530                    "Unknown data type %s for header variable %s.\n",
1531                    value_type, value_name);
1532         }
1533     }
1534 
1535     return var_size;
1536 }
1537 
decode_header(EXRContext * s,AVFrame * frame)1538 static int decode_header(EXRContext *s, AVFrame *frame)
1539 {
1540     AVDictionary *metadata = NULL;
1541     GetByteContext *gb = &s->gb;
1542     int magic_number, version, flags;
1543     int layer_match = 0;
1544     int ret;
1545     int dup_channels = 0;
1546 
1547     s->current_channel_offset = 0;
1548     s->xmin               = ~0;
1549     s->xmax               = ~0;
1550     s->ymin               = ~0;
1551     s->ymax               = ~0;
1552     s->xdelta             = ~0;
1553     s->ydelta             = ~0;
1554     s->channel_offsets[0] = -1;
1555     s->channel_offsets[1] = -1;
1556     s->channel_offsets[2] = -1;
1557     s->channel_offsets[3] = -1;
1558     s->pixel_type         = EXR_UNKNOWN;
1559     s->compression        = EXR_UNKN;
1560     s->nb_channels        = 0;
1561     s->w                  = 0;
1562     s->h                  = 0;
1563     s->tile_attr.xSize    = -1;
1564     s->tile_attr.ySize    = -1;
1565     s->is_tile            = 0;
1566     s->is_multipart       = 0;
1567     s->is_luma            = 0;
1568     s->current_part       = 0;
1569 
1570     if (bytestream2_get_bytes_left(gb) < 10) {
1571         av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1572         return AVERROR_INVALIDDATA;
1573     }
1574 
1575     magic_number = bytestream2_get_le32(gb);
1576     if (magic_number != 20000630) {
1577         /* As per documentation of OpenEXR, it is supposed to be
1578          * int 20000630 little-endian */
1579         av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1580         return AVERROR_INVALIDDATA;
1581     }
1582 
1583     version = bytestream2_get_byte(gb);
1584     if (version != 2) {
1585         avpriv_report_missing_feature(s->avctx, "Version %d", version);
1586         return AVERROR_PATCHWELCOME;
1587     }
1588 
1589     flags = bytestream2_get_le24(gb);
1590 
1591     if (flags & 0x02)
1592         s->is_tile = 1;
1593     if (flags & 0x10)
1594         s->is_multipart = 1;
1595     if (flags & 0x08) {
1596         avpriv_report_missing_feature(s->avctx, "deep data");
1597         return AVERROR_PATCHWELCOME;
1598     }
1599 
1600     // Parse the header
1601     while (bytestream2_get_bytes_left(gb) > 0) {
1602         int var_size;
1603 
1604         while (s->is_multipart && s->current_part < s->selected_part &&
1605                bytestream2_get_bytes_left(gb) > 0) {
1606             if (bytestream2_peek_byte(gb)) {
1607                 skip_header_chunk(s);
1608             } else {
1609                 bytestream2_skip(gb, 1);
1610                 if (!bytestream2_peek_byte(gb))
1611                     break;
1612             }
1613             bytestream2_skip(gb, 1);
1614             s->current_part++;
1615         }
1616 
1617         if (!bytestream2_peek_byte(gb)) {
1618             if (!s->is_multipart)
1619                 break;
1620             bytestream2_skip(gb, 1);
1621             if (s->current_part == s->selected_part) {
1622                 while (bytestream2_get_bytes_left(gb) > 0) {
1623                     if (bytestream2_peek_byte(gb)) {
1624                         skip_header_chunk(s);
1625                     } else {
1626                         bytestream2_skip(gb, 1);
1627                         if (!bytestream2_peek_byte(gb))
1628                             break;
1629                     }
1630                 }
1631             }
1632             if (!bytestream2_peek_byte(gb))
1633                 break;
1634             s->current_part++;
1635         }
1636 
1637         if ((var_size = check_header_variable(s, "channels",
1638                                               "chlist", 38)) >= 0) {
1639             GetByteContext ch_gb;
1640             if (!var_size) {
1641                 ret = AVERROR_INVALIDDATA;
1642                 goto fail;
1643             }
1644 
1645             bytestream2_init(&ch_gb, gb->buffer, var_size);
1646 
1647             while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1648                 EXRChannel *channel;
1649                 enum ExrPixelType current_pixel_type;
1650                 int channel_index = -1;
1651                 int xsub, ysub;
1652 
1653                 if (strcmp(s->layer, "") != 0) {
1654                     if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1655                         layer_match = 1;
1656                         av_log(s->avctx, AV_LOG_INFO,
1657                                "Channel match layer : %s.\n", ch_gb.buffer);
1658                         ch_gb.buffer += strlen(s->layer);
1659                         if (*ch_gb.buffer == '.')
1660                             ch_gb.buffer++;         /* skip dot if not given */
1661                     } else {
1662                         layer_match = 0;
1663                         av_log(s->avctx, AV_LOG_INFO,
1664                                "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1665                     }
1666                 } else {
1667                     layer_match = 1;
1668                 }
1669 
1670                 if (layer_match) { /* only search channel if the layer match is valid */
1671                     if (!av_strcasecmp(ch_gb.buffer, "R") ||
1672                         !av_strcasecmp(ch_gb.buffer, "X") ||
1673                         !av_strcasecmp(ch_gb.buffer, "U")) {
1674                         channel_index = 0;
1675                         s->is_luma = 0;
1676                     } else if (!av_strcasecmp(ch_gb.buffer, "G") ||
1677                                !av_strcasecmp(ch_gb.buffer, "V")) {
1678                         channel_index = 1;
1679                         s->is_luma = 0;
1680                     } else if (!av_strcasecmp(ch_gb.buffer, "Y")) {
1681                         channel_index = 1;
1682                         s->is_luma = 1;
1683                     } else if (!av_strcasecmp(ch_gb.buffer, "B") ||
1684                                !av_strcasecmp(ch_gb.buffer, "Z") ||
1685                                !av_strcasecmp(ch_gb.buffer, "W")) {
1686                         channel_index = 2;
1687                         s->is_luma = 0;
1688                     } else if (!av_strcasecmp(ch_gb.buffer, "A")) {
1689                         channel_index = 3;
1690                     } else {
1691                         av_log(s->avctx, AV_LOG_WARNING,
1692                                "Unsupported channel %.256s.\n", ch_gb.buffer);
1693                     }
1694                 }
1695 
1696                 /* skip until you get a 0 */
1697                 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1698                        bytestream2_get_byte(&ch_gb))
1699                     continue;
1700 
1701                 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1702                     av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1703                     ret = AVERROR_INVALIDDATA;
1704                     goto fail;
1705                 }
1706 
1707                 current_pixel_type = bytestream2_get_le32(&ch_gb);
1708                 if (current_pixel_type >= EXR_UNKNOWN) {
1709                     avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1710                                                   current_pixel_type);
1711                     ret = AVERROR_PATCHWELCOME;
1712                     goto fail;
1713                 }
1714 
1715                 bytestream2_skip(&ch_gb, 4);
1716                 xsub = bytestream2_get_le32(&ch_gb);
1717                 ysub = bytestream2_get_le32(&ch_gb);
1718 
1719                 if (xsub != 1 || ysub != 1) {
1720                     avpriv_report_missing_feature(s->avctx,
1721                                                   "Subsampling %dx%d",
1722                                                   xsub, ysub);
1723                     ret = AVERROR_PATCHWELCOME;
1724                     goto fail;
1725                 }
1726 
1727                 if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1728                     if (s->pixel_type != EXR_UNKNOWN &&
1729                         s->pixel_type != current_pixel_type) {
1730                         av_log(s->avctx, AV_LOG_ERROR,
1731                                "RGB channels not of the same depth.\n");
1732                         ret = AVERROR_INVALIDDATA;
1733                         goto fail;
1734                     }
1735                     s->pixel_type                     = current_pixel_type;
1736                     s->channel_offsets[channel_index] = s->current_channel_offset;
1737                 } else if (channel_index >= 0) {
1738                     av_log(s->avctx, AV_LOG_WARNING,
1739                             "Multiple channels with index %d.\n", channel_index);
1740                     if (++dup_channels > 10) {
1741                         ret = AVERROR_INVALIDDATA;
1742                         goto fail;
1743                     }
1744                 }
1745 
1746                 s->channels = av_realloc(s->channels,
1747                                          ++s->nb_channels * sizeof(EXRChannel));
1748                 if (!s->channels) {
1749                     ret = AVERROR(ENOMEM);
1750                     goto fail;
1751                 }
1752                 channel             = &s->channels[s->nb_channels - 1];
1753                 channel->pixel_type = current_pixel_type;
1754                 channel->xsub       = xsub;
1755                 channel->ysub       = ysub;
1756 
1757                 if (current_pixel_type == EXR_HALF) {
1758                     s->current_channel_offset += 2;
1759                 } else {/* Float or UINT32 */
1760                     s->current_channel_offset += 4;
1761                 }
1762             }
1763 
1764             /* Check if all channels are set with an offset or if the channels
1765              * are causing an overflow  */
1766             if (!s->is_luma) {/* if we expected to have at least 3 channels */
1767                 if (FFMIN3(s->channel_offsets[0],
1768                            s->channel_offsets[1],
1769                            s->channel_offsets[2]) < 0) {
1770                     if (s->channel_offsets[0] < 0)
1771                         av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1772                     if (s->channel_offsets[1] < 0)
1773                         av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1774                     if (s->channel_offsets[2] < 0)
1775                         av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1776                     ret = AVERROR_INVALIDDATA;
1777                     goto fail;
1778                 }
1779             }
1780 
1781             // skip one last byte and update main gb
1782             gb->buffer = ch_gb.buffer + 1;
1783             continue;
1784         } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1785                                                      31)) >= 0) {
1786             int xmin, ymin, xmax, ymax;
1787             if (!var_size) {
1788                 ret = AVERROR_INVALIDDATA;
1789                 goto fail;
1790             }
1791 
1792             xmin   = bytestream2_get_le32(gb);
1793             ymin   = bytestream2_get_le32(gb);
1794             xmax   = bytestream2_get_le32(gb);
1795             ymax   = bytestream2_get_le32(gb);
1796 
1797             if (xmin > xmax || ymin > ymax ||
1798                 (unsigned)xmax - xmin >= INT_MAX ||
1799                 (unsigned)ymax - ymin >= INT_MAX) {
1800                 ret = AVERROR_INVALIDDATA;
1801                 goto fail;
1802             }
1803             s->xmin = xmin;
1804             s->xmax = xmax;
1805             s->ymin = ymin;
1806             s->ymax = ymax;
1807             s->xdelta = (s->xmax - s->xmin) + 1;
1808             s->ydelta = (s->ymax - s->ymin) + 1;
1809 
1810             continue;
1811         } else if ((var_size = check_header_variable(s, "displayWindow",
1812                                                      "box2i", 34)) >= 0) {
1813             int32_t sx, sy, dx, dy;
1814 
1815             if (!var_size) {
1816                 ret = AVERROR_INVALIDDATA;
1817                 goto fail;
1818             }
1819 
1820             sx = bytestream2_get_le32(gb);
1821             sy = bytestream2_get_le32(gb);
1822             dx = bytestream2_get_le32(gb);
1823             dy = bytestream2_get_le32(gb);
1824 
1825             s->w = dx - sx + 1;
1826             s->h = dy - sy + 1;
1827 
1828             continue;
1829         } else if ((var_size = check_header_variable(s, "lineOrder",
1830                                                      "lineOrder", 25)) >= 0) {
1831             int line_order;
1832             if (!var_size) {
1833                 ret = AVERROR_INVALIDDATA;
1834                 goto fail;
1835             }
1836 
1837             line_order = bytestream2_get_byte(gb);
1838             av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1839             if (line_order > 2) {
1840                 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1841                 ret = AVERROR_INVALIDDATA;
1842                 goto fail;
1843             }
1844 
1845             continue;
1846         } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1847                                                      "float", 31)) >= 0) {
1848             if (!var_size) {
1849                 ret = AVERROR_INVALIDDATA;
1850                 goto fail;
1851             }
1852 
1853             s->sar = bytestream2_get_le32(gb);
1854 
1855             continue;
1856         } else if ((var_size = check_header_variable(s, "compression",
1857                                                      "compression", 29)) >= 0) {
1858             if (!var_size) {
1859                 ret = AVERROR_INVALIDDATA;
1860                 goto fail;
1861             }
1862 
1863             if (s->compression == EXR_UNKN)
1864                 s->compression = bytestream2_get_byte(gb);
1865             else {
1866                 bytestream2_skip(gb, 1);
1867                 av_log(s->avctx, AV_LOG_WARNING,
1868                        "Found more than one compression attribute.\n");
1869             }
1870 
1871             continue;
1872         } else if ((var_size = check_header_variable(s, "tiles",
1873                                                      "tiledesc", 22)) >= 0) {
1874             char tileLevel;
1875 
1876             if (!s->is_tile)
1877                 av_log(s->avctx, AV_LOG_WARNING,
1878                        "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1879 
1880             s->tile_attr.xSize = bytestream2_get_le32(gb);
1881             s->tile_attr.ySize = bytestream2_get_le32(gb);
1882 
1883             tileLevel = bytestream2_get_byte(gb);
1884             s->tile_attr.level_mode = tileLevel & 0x0f;
1885             s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1886 
1887             if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN) {
1888                 avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1889                                               s->tile_attr.level_mode);
1890                 ret = AVERROR_PATCHWELCOME;
1891                 goto fail;
1892             }
1893 
1894             if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1895                 avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1896                                               s->tile_attr.level_round);
1897                 ret = AVERROR_PATCHWELCOME;
1898                 goto fail;
1899             }
1900 
1901             continue;
1902         } else if ((var_size = check_header_variable(s, "writer",
1903                                                      "string", 1)) >= 0) {
1904             uint8_t key[256] = { 0 };
1905 
1906             bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1907             av_dict_set(&metadata, "writer", key, 0);
1908 
1909             continue;
1910         } else if ((var_size = check_header_variable(s, "framesPerSecond",
1911                                                      "rational", 33)) >= 0) {
1912             if (!var_size) {
1913                 ret = AVERROR_INVALIDDATA;
1914                 goto fail;
1915             }
1916 
1917             s->avctx->framerate.num = bytestream2_get_le32(gb);
1918             s->avctx->framerate.den = bytestream2_get_le32(gb);
1919 
1920             continue;
1921         } else if ((var_size = check_header_variable(s, "chunkCount",
1922                                                      "int", 23)) >= 0) {
1923 
1924             s->chunk_count = bytestream2_get_le32(gb);
1925 
1926             continue;
1927         } else if ((var_size = check_header_variable(s, "type",
1928                                                      "string", 16)) >= 0) {
1929             uint8_t key[256] = { 0 };
1930 
1931             bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1932             if (strncmp("scanlineimage", key, var_size) &&
1933                 strncmp("tiledimage", key, var_size))
1934                 return AVERROR_PATCHWELCOME;
1935 
1936             continue;
1937         } else if ((var_size = check_header_variable(s, "preview",
1938                                                      "preview", 16)) >= 0) {
1939             uint32_t pw = bytestream2_get_le32(gb);
1940             uint32_t ph = bytestream2_get_le32(gb);
1941             int64_t psize = 4LL * pw * ph;
1942 
1943             if (psize >= bytestream2_get_bytes_left(gb))
1944                 return AVERROR_INVALIDDATA;
1945 
1946             bytestream2_skip(gb, psize);
1947 
1948             continue;
1949         }
1950 
1951         // Check if there are enough bytes for a header
1952         if (bytestream2_get_bytes_left(gb) <= 9) {
1953             av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1954             ret = AVERROR_INVALIDDATA;
1955             goto fail;
1956         }
1957 
1958         // Process unknown variables
1959         {
1960             uint8_t name[256] = { 0 };
1961             uint8_t type[256] = { 0 };
1962             uint8_t value[256] = { 0 };
1963             int i = 0, size;
1964 
1965             while (bytestream2_get_bytes_left(gb) > 0 &&
1966                    bytestream2_peek_byte(gb) && i < 255) {
1967                 name[i++] = bytestream2_get_byte(gb);
1968             }
1969 
1970             bytestream2_skip(gb, 1);
1971             i = 0;
1972             while (bytestream2_get_bytes_left(gb) > 0 &&
1973                    bytestream2_peek_byte(gb) && i < 255) {
1974                 type[i++] = bytestream2_get_byte(gb);
1975             }
1976             bytestream2_skip(gb, 1);
1977             size = bytestream2_get_le32(gb);
1978 
1979             bytestream2_get_buffer(gb, value, FFMIN(sizeof(value) - 1, size));
1980             if (!strcmp(type, "string"))
1981                 av_dict_set(&metadata, name, value, 0);
1982         }
1983     }
1984 
1985     if (s->compression == EXR_UNKN) {
1986         av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1987         ret = AVERROR_INVALIDDATA;
1988         goto fail;
1989     }
1990 
1991     if (s->is_tile) {
1992         if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1993             av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1994             ret = AVERROR_INVALIDDATA;
1995             goto fail;
1996         }
1997     }
1998 
1999     if (bytestream2_get_bytes_left(gb) <= 0) {
2000         av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
2001         ret = AVERROR_INVALIDDATA;
2002         goto fail;
2003     }
2004 
2005     frame->metadata = metadata;
2006 
2007     // aaand we are done
2008     bytestream2_skip(gb, 1);
2009     return 0;
2010 fail:
2011     av_dict_free(&metadata);
2012     return ret;
2013 }
2014 
decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * avpkt)2015 static int decode_frame(AVCodecContext *avctx, void *data,
2016                         int *got_frame, AVPacket *avpkt)
2017 {
2018     EXRContext *s = avctx->priv_data;
2019     GetByteContext *gb = &s->gb;
2020     ThreadFrame frame = { .f = data };
2021     AVFrame *picture = data;
2022     uint8_t *ptr;
2023 
2024     int i, y, ret, ymax;
2025     int planes;
2026     int out_line_size;
2027     int nb_blocks;   /* nb scanline or nb tile */
2028     uint64_t start_offset_table;
2029     uint64_t start_next_scanline;
2030     PutByteContext offset_table_writer;
2031 
2032     bytestream2_init(gb, avpkt->data, avpkt->size);
2033 
2034     if ((ret = decode_header(s, picture)) < 0)
2035         return ret;
2036 
2037     if ((s->compression == EXR_DWAA || s->compression == EXR_DWAB) &&
2038         s->pixel_type == EXR_HALF) {
2039         s->current_channel_offset *= 2;
2040         for (int i = 0; i < 4; i++)
2041             s->channel_offsets[i] *= 2;
2042     }
2043 
2044     switch (s->pixel_type) {
2045     case EXR_FLOAT:
2046     case EXR_HALF:
2047         if (s->channel_offsets[3] >= 0) {
2048             if (!s->is_luma) {
2049                 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2050             } else {
2051                 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
2052                 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2053             }
2054         } else {
2055             if (!s->is_luma) {
2056                 avctx->pix_fmt = AV_PIX_FMT_GBRPF32;
2057             } else {
2058                 avctx->pix_fmt = AV_PIX_FMT_GRAYF32;
2059             }
2060         }
2061         break;
2062     case EXR_UINT:
2063         if (s->channel_offsets[3] >= 0) {
2064             if (!s->is_luma) {
2065                 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
2066             } else {
2067                 avctx->pix_fmt = AV_PIX_FMT_YA16;
2068             }
2069         } else {
2070             if (!s->is_luma) {
2071                 avctx->pix_fmt = AV_PIX_FMT_RGB48;
2072             } else {
2073                 avctx->pix_fmt = AV_PIX_FMT_GRAY16;
2074             }
2075         }
2076         break;
2077     default:
2078         av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
2079         return AVERROR_INVALIDDATA;
2080     }
2081 
2082     if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
2083         avctx->color_trc = s->apply_trc_type;
2084 
2085     switch (s->compression) {
2086     case EXR_RAW:
2087     case EXR_RLE:
2088     case EXR_ZIP1:
2089         s->scan_lines_per_block = 1;
2090         break;
2091     case EXR_PXR24:
2092     case EXR_ZIP16:
2093         s->scan_lines_per_block = 16;
2094         break;
2095     case EXR_PIZ:
2096     case EXR_B44:
2097     case EXR_B44A:
2098     case EXR_DWAA:
2099         s->scan_lines_per_block = 32;
2100         break;
2101     case EXR_DWAB:
2102         s->scan_lines_per_block = 256;
2103         break;
2104     default:
2105         avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
2106         return AVERROR_PATCHWELCOME;
2107     }
2108 
2109     /* Verify the xmin, xmax, ymin and ymax before setting the actual image size.
2110      * It's possible for the data window can larger or outside the display window */
2111     if (s->xmin > s->xmax  || s->ymin > s->ymax ||
2112         s->ydelta == 0xFFFFFFFF || s->xdelta == 0xFFFFFFFF) {
2113         av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
2114         return AVERROR_INVALIDDATA;
2115     }
2116 
2117     if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
2118         return ret;
2119 
2120     ff_set_sar(s->avctx, av_d2q(av_int2float(s->sar), 255));
2121 
2122     s->desc          = av_pix_fmt_desc_get(avctx->pix_fmt);
2123     if (!s->desc)
2124         return AVERROR_INVALIDDATA;
2125 
2126     if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
2127         planes           = s->desc->nb_components;
2128         out_line_size    = avctx->width * 4;
2129     } else {
2130         planes           = 1;
2131         out_line_size    = avctx->width * 2 * s->desc->nb_components;
2132     }
2133 
2134     if (s->is_tile) {
2135         nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
2136         ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
2137     } else { /* scanline */
2138         nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
2139         s->scan_lines_per_block;
2140     }
2141 
2142     if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
2143         return ret;
2144 
2145     if (bytestream2_get_bytes_left(gb)/8 < nb_blocks)
2146         return AVERROR_INVALIDDATA;
2147 
2148     // check offset table and recreate it if need
2149     if (!s->is_tile && bytestream2_peek_le64(gb) == 0) {
2150         av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
2151 
2152         start_offset_table = bytestream2_tell(gb);
2153         start_next_scanline = start_offset_table + nb_blocks * 8;
2154         bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
2155 
2156         for (y = 0; y < nb_blocks; y++) {
2157             /* write offset of prev scanline in offset table */
2158             bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2159 
2160             /* get len of next scanline */
2161             bytestream2_seek(gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
2162             start_next_scanline += (bytestream2_get_le32(gb) + 8);
2163         }
2164         bytestream2_seek(gb, start_offset_table, SEEK_SET);
2165     }
2166 
2167     // save pointer we are going to use in decode_block
2168     s->buf      = avpkt->data;
2169     s->buf_size = avpkt->size;
2170 
2171     // Zero out the start if ymin is not 0
2172     for (i = 0; i < planes; i++) {
2173         ptr = picture->data[i];
2174         for (y = 0; y < FFMIN(s->ymin, s->h); y++) {
2175             memset(ptr, 0, out_line_size);
2176             ptr += picture->linesize[i];
2177         }
2178     }
2179 
2180     s->picture = picture;
2181 
2182     avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
2183 
2184     ymax = FFMAX(0, s->ymax + 1);
2185     // Zero out the end if ymax+1 is not h
2186     if (ymax < avctx->height)
2187         for (i = 0; i < planes; i++) {
2188             ptr = picture->data[i] + (ymax * picture->linesize[i]);
2189             for (y = ymax; y < avctx->height; y++) {
2190                 memset(ptr, 0, out_line_size);
2191                 ptr += picture->linesize[i];
2192             }
2193         }
2194 
2195     picture->pict_type = AV_PICTURE_TYPE_I;
2196     *got_frame = 1;
2197 
2198     return avpkt->size;
2199 }
2200 
decode_init(AVCodecContext * avctx)2201 static av_cold int decode_init(AVCodecContext *avctx)
2202 {
2203     EXRContext *s = avctx->priv_data;
2204     uint32_t i;
2205     union av_intfloat32 t;
2206     float one_gamma = 1.0f / s->gamma;
2207     avpriv_trc_function trc_func = NULL;
2208 
2209     half2float_table(s->mantissatable, s->exponenttable, s->offsettable);
2210 
2211     s->avctx              = avctx;
2212 
2213     ff_exrdsp_init(&s->dsp);
2214 
2215 #if HAVE_BIGENDIAN
2216     ff_bswapdsp_init(&s->bbdsp);
2217 #endif
2218 
2219     trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
2220     if (trc_func) {
2221         for (i = 0; i < 65536; ++i) {
2222             t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2223             t.f = trc_func(t.f);
2224             s->gamma_table[i] = t;
2225         }
2226     } else {
2227         if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
2228             for (i = 0; i < 65536; ++i) {
2229                 s->gamma_table[i].i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2230             }
2231         } else {
2232             for (i = 0; i < 65536; ++i) {
2233                 t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2234                 /* If negative value we reuse half value */
2235                 if (t.f <= 0.0f) {
2236                     s->gamma_table[i] = t;
2237                 } else {
2238                     t.f = powf(t.f, one_gamma);
2239                     s->gamma_table[i] = t;
2240                 }
2241             }
2242         }
2243     }
2244 
2245     // allocate thread data, used for non EXR_RAW compression types
2246     s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
2247     if (!s->thread_data)
2248         return AVERROR_INVALIDDATA;
2249 
2250     return 0;
2251 }
2252 
decode_end(AVCodecContext * avctx)2253 static av_cold int decode_end(AVCodecContext *avctx)
2254 {
2255     EXRContext *s = avctx->priv_data;
2256     int i;
2257     for (i = 0; i < avctx->thread_count; i++) {
2258         EXRThreadData *td = &s->thread_data[i];
2259         av_freep(&td->uncompressed_data);
2260         av_freep(&td->tmp);
2261         av_freep(&td->bitmap);
2262         av_freep(&td->lut);
2263         av_freep(&td->he);
2264         av_freep(&td->freq);
2265         av_freep(&td->ac_data);
2266         av_freep(&td->dc_data);
2267         av_freep(&td->rle_data);
2268         av_freep(&td->rle_raw_data);
2269         ff_free_vlc(&td->vlc);
2270     }
2271 
2272     av_freep(&s->thread_data);
2273     av_freep(&s->channels);
2274 
2275     return 0;
2276 }
2277 
2278 #define OFFSET(x) offsetof(EXRContext, x)
2279 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2280 static const AVOption options[] = {
2281     { "layer", "Set the decoding layer", OFFSET(layer),
2282         AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
2283     { "part",  "Set the decoding part", OFFSET(selected_part),
2284         AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VD },
2285     { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
2286         AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
2287 
2288     // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
2289     { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
2290         AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
2291     { "bt709",        "BT.709",           0,
2292         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 },        INT_MIN, INT_MAX, VD, "apply_trc_type"},
2293     { "gamma",        "gamma",            0,
2294         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
2295     { "gamma22",      "BT.470 M",         0,
2296         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
2297     { "gamma28",      "BT.470 BG",        0,
2298         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
2299     { "smpte170m",    "SMPTE 170 M",      0,
2300         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2301     { "smpte240m",    "SMPTE 240 M",      0,
2302         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2303     { "linear",       "Linear",           0,
2304         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR },       INT_MIN, INT_MAX, VD, "apply_trc_type"},
2305     { "log",          "Log",              0,
2306         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG },          INT_MIN, INT_MAX, VD, "apply_trc_type"},
2307     { "log_sqrt",     "Log square root",  0,
2308         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT },     INT_MIN, INT_MAX, VD, "apply_trc_type"},
2309     { "iec61966_2_4", "IEC 61966-2-4",    0,
2310         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2311     { "bt1361",       "BT.1361",          0,
2312         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG },   INT_MIN, INT_MAX, VD, "apply_trc_type"},
2313     { "iec61966_2_1", "IEC 61966-2-1",    0,
2314         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2315     { "bt2020_10bit", "BT.2020 - 10 bit", 0,
2316         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2317     { "bt2020_12bit", "BT.2020 - 12 bit", 0,
2318         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2319     { "smpte2084",    "SMPTE ST 2084",    0,
2320         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
2321     { "smpte428_1",   "SMPTE ST 428-1",   0,
2322         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2323 
2324     { NULL },
2325 };
2326 
2327 static const AVClass exr_class = {
2328     .class_name = "EXR",
2329     .item_name  = av_default_item_name,
2330     .option     = options,
2331     .version    = LIBAVUTIL_VERSION_INT,
2332 };
2333 
2334 AVCodec ff_exr_decoder = {
2335     .name             = "exr",
2336     .long_name        = NULL_IF_CONFIG_SMALL("OpenEXR image"),
2337     .type             = AVMEDIA_TYPE_VIDEO,
2338     .id               = AV_CODEC_ID_EXR,
2339     .priv_data_size   = sizeof(EXRContext),
2340     .init             = decode_init,
2341     .close            = decode_end,
2342     .decode           = decode_frame,
2343     .capabilities     = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
2344                         AV_CODEC_CAP_SLICE_THREADS,
2345     .priv_class       = &exr_class,
2346 };
2347