1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 #include "i915_gem_object.h"
9 #include "i915_scatterlist.h"
10 #include "i915_gem_lmem.h"
11 #include "i915_gem_mman.h"
12 
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages,unsigned int sg_page_sizes)13 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
14 				 struct sg_table *pages,
15 				 unsigned int sg_page_sizes)
16 {
17 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
18 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
19 	bool shrinkable;
20 	int i;
21 
22 	assert_object_held_shared(obj);
23 
24 	if (i915_gem_object_is_volatile(obj))
25 		obj->mm.madv = I915_MADV_DONTNEED;
26 
27 	/* Make the pages coherent with the GPU (flushing any swapin). */
28 	if (obj->cache_dirty) {
29 		obj->write_domain = 0;
30 		if (i915_gem_object_has_struct_page(obj))
31 			drm_clflush_sg(pages);
32 		obj->cache_dirty = false;
33 	}
34 
35 	obj->mm.get_page.sg_pos = pages->sgl;
36 	obj->mm.get_page.sg_idx = 0;
37 	obj->mm.get_dma_page.sg_pos = pages->sgl;
38 	obj->mm.get_dma_page.sg_idx = 0;
39 
40 	obj->mm.pages = pages;
41 
42 	GEM_BUG_ON(!sg_page_sizes);
43 	obj->mm.page_sizes.phys = sg_page_sizes;
44 
45 	/*
46 	 * Calculate the supported page-sizes which fit into the given
47 	 * sg_page_sizes. This will give us the page-sizes which we may be able
48 	 * to use opportunistically when later inserting into the GTT. For
49 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
50 	 * 64K or 4K pages, although in practice this will depend on a number of
51 	 * other factors.
52 	 */
53 	obj->mm.page_sizes.sg = 0;
54 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
55 		if (obj->mm.page_sizes.phys & ~0u << i)
56 			obj->mm.page_sizes.sg |= BIT(i);
57 	}
58 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
59 
60 	shrinkable = i915_gem_object_is_shrinkable(obj);
61 
62 	if (i915_gem_object_is_tiled(obj) &&
63 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
64 		GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
65 		i915_gem_object_set_tiling_quirk(obj);
66 		shrinkable = false;
67 	}
68 
69 	if (shrinkable) {
70 		struct list_head *list;
71 		unsigned long flags;
72 
73 		assert_object_held(obj);
74 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
75 
76 		i915->mm.shrink_count++;
77 		i915->mm.shrink_memory += obj->base.size;
78 
79 		if (obj->mm.madv != I915_MADV_WILLNEED)
80 			list = &i915->mm.purge_list;
81 		else
82 			list = &i915->mm.shrink_list;
83 		list_add_tail(&obj->mm.link, list);
84 
85 		atomic_set(&obj->mm.shrink_pin, 0);
86 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
87 	}
88 }
89 
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)90 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
91 {
92 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
93 	int err;
94 
95 	assert_object_held_shared(obj);
96 
97 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
98 		drm_dbg(&i915->drm,
99 			"Attempting to obtain a purgeable object\n");
100 		return -EFAULT;
101 	}
102 
103 	err = obj->ops->get_pages(obj);
104 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
105 
106 	return err;
107 }
108 
109 /* Ensure that the associated pages are gathered from the backing storage
110  * and pinned into our object. i915_gem_object_pin_pages() may be called
111  * multiple times before they are released by a single call to
112  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
113  * either as a result of memory pressure (reaping pages under the shrinker)
114  * or as the object is itself released.
115  */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)116 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
117 {
118 	int err;
119 
120 	assert_object_held(obj);
121 
122 	assert_object_held_shared(obj);
123 
124 	if (unlikely(!i915_gem_object_has_pages(obj))) {
125 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
126 
127 		err = ____i915_gem_object_get_pages(obj);
128 		if (err)
129 			return err;
130 
131 		smp_mb__before_atomic();
132 	}
133 	atomic_inc(&obj->mm.pages_pin_count);
134 
135 	return 0;
136 }
137 
i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object * obj)138 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
139 {
140 	struct i915_gem_ww_ctx ww;
141 	int err;
142 
143 	i915_gem_ww_ctx_init(&ww, true);
144 retry:
145 	err = i915_gem_object_lock(obj, &ww);
146 	if (!err)
147 		err = i915_gem_object_pin_pages(obj);
148 
149 	if (err == -EDEADLK) {
150 		err = i915_gem_ww_ctx_backoff(&ww);
151 		if (!err)
152 			goto retry;
153 	}
154 	i915_gem_ww_ctx_fini(&ww);
155 	return err;
156 }
157 
158 /* Immediately discard the backing storage */
i915_gem_object_truncate(struct drm_i915_gem_object * obj)159 void i915_gem_object_truncate(struct drm_i915_gem_object *obj)
160 {
161 	drm_gem_free_mmap_offset(&obj->base);
162 	if (obj->ops->truncate)
163 		obj->ops->truncate(obj);
164 }
165 
166 /* Try to discard unwanted pages */
i915_gem_object_writeback(struct drm_i915_gem_object * obj)167 void i915_gem_object_writeback(struct drm_i915_gem_object *obj)
168 {
169 	assert_object_held_shared(obj);
170 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
171 
172 	if (obj->ops->writeback)
173 		obj->ops->writeback(obj);
174 }
175 
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)176 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
177 {
178 	struct radix_tree_iter iter;
179 	void __rcu **slot;
180 
181 	rcu_read_lock();
182 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
183 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
184 	radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
185 		radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
186 	rcu_read_unlock();
187 }
188 
unmap_object(struct drm_i915_gem_object * obj,void * ptr)189 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
190 {
191 	if (is_vmalloc_addr(ptr))
192 		vunmap(ptr);
193 }
194 
195 struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)196 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
197 {
198 	struct sg_table *pages;
199 
200 	assert_object_held_shared(obj);
201 
202 	pages = fetch_and_zero(&obj->mm.pages);
203 	if (IS_ERR_OR_NULL(pages))
204 		return pages;
205 
206 	if (i915_gem_object_is_volatile(obj))
207 		obj->mm.madv = I915_MADV_WILLNEED;
208 
209 	i915_gem_object_make_unshrinkable(obj);
210 
211 	if (obj->mm.mapping) {
212 		unmap_object(obj, page_mask_bits(obj->mm.mapping));
213 		obj->mm.mapping = NULL;
214 	}
215 
216 	__i915_gem_object_reset_page_iter(obj);
217 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
218 
219 	return pages;
220 }
221 
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj)222 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
223 {
224 	struct sg_table *pages;
225 
226 	if (i915_gem_object_has_pinned_pages(obj))
227 		return -EBUSY;
228 
229 	/* May be called by shrinker from within get_pages() (on another bo) */
230 	assert_object_held_shared(obj);
231 
232 	i915_gem_object_release_mmap_offset(obj);
233 
234 	/*
235 	 * ->put_pages might need to allocate memory for the bit17 swizzle
236 	 * array, hence protect them from being reaped by removing them from gtt
237 	 * lists early.
238 	 */
239 	pages = __i915_gem_object_unset_pages(obj);
240 
241 	/*
242 	 * XXX Temporary hijinx to avoid updating all backends to handle
243 	 * NULL pages. In the future, when we have more asynchronous
244 	 * get_pages backends we should be better able to handle the
245 	 * cancellation of the async task in a more uniform manner.
246 	 */
247 	if (!IS_ERR_OR_NULL(pages))
248 		obj->ops->put_pages(obj, pages);
249 
250 	return 0;
251 }
252 
253 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map_page(struct drm_i915_gem_object * obj,enum i915_map_type type)254 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
255 				      enum i915_map_type type)
256 {
257 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
258 	struct page *stack[32], **pages = stack, *page;
259 	struct sgt_iter iter;
260 	pgprot_t pgprot;
261 	void *vaddr;
262 
263 	switch (type) {
264 	default:
265 		MISSING_CASE(type);
266 		fallthrough;	/* to use PAGE_KERNEL anyway */
267 	case I915_MAP_WB:
268 		/*
269 		 * On 32b, highmem using a finite set of indirect PTE (i.e.
270 		 * vmap) to provide virtual mappings of the high pages.
271 		 * As these are finite, map_new_virtual() must wait for some
272 		 * other kmap() to finish when it runs out. If we map a large
273 		 * number of objects, there is no method for it to tell us
274 		 * to release the mappings, and we deadlock.
275 		 *
276 		 * However, if we make an explicit vmap of the page, that
277 		 * uses a larger vmalloc arena, and also has the ability
278 		 * to tell us to release unwanted mappings. Most importantly,
279 		 * it will fail and propagate an error instead of waiting
280 		 * forever.
281 		 *
282 		 * So if the page is beyond the 32b boundary, make an explicit
283 		 * vmap.
284 		 */
285 		if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
286 			return page_address(sg_page(obj->mm.pages->sgl));
287 		pgprot = PAGE_KERNEL;
288 		break;
289 	case I915_MAP_WC:
290 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
291 		break;
292 	}
293 
294 	if (n_pages > ARRAY_SIZE(stack)) {
295 		/* Too big for stack -- allocate temporary array instead */
296 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
297 		if (!pages)
298 			return ERR_PTR(-ENOMEM);
299 	}
300 
301 	i = 0;
302 	for_each_sgt_page(page, iter, obj->mm.pages)
303 		pages[i++] = page;
304 	vaddr = vmap(pages, n_pages, 0, pgprot);
305 	if (pages != stack)
306 		kvfree(pages);
307 
308 	return vaddr ?: ERR_PTR(-ENOMEM);
309 }
310 
i915_gem_object_map_pfn(struct drm_i915_gem_object * obj,enum i915_map_type type)311 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
312 				     enum i915_map_type type)
313 {
314 	resource_size_t iomap = obj->mm.region->iomap.base -
315 		obj->mm.region->region.start;
316 	unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
317 	unsigned long stack[32], *pfns = stack, i;
318 	struct sgt_iter iter;
319 	dma_addr_t addr;
320 	void *vaddr;
321 
322 	if (type != I915_MAP_WC)
323 		return ERR_PTR(-ENODEV);
324 
325 	if (n_pfn > ARRAY_SIZE(stack)) {
326 		/* Too big for stack -- allocate temporary array instead */
327 		pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
328 		if (!pfns)
329 			return ERR_PTR(-ENOMEM);
330 	}
331 
332 	i = 0;
333 	for_each_sgt_daddr(addr, iter, obj->mm.pages)
334 		pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
335 	vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
336 	if (pfns != stack)
337 		kvfree(pfns);
338 
339 	return vaddr ?: ERR_PTR(-ENOMEM);
340 }
341 
342 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)343 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
344 			      enum i915_map_type type)
345 {
346 	enum i915_map_type has_type;
347 	bool pinned;
348 	void *ptr;
349 	int err;
350 
351 	if (!i915_gem_object_has_struct_page(obj) &&
352 	    !i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_IOMEM))
353 		return ERR_PTR(-ENXIO);
354 
355 	assert_object_held(obj);
356 
357 	pinned = !(type & I915_MAP_OVERRIDE);
358 	type &= ~I915_MAP_OVERRIDE;
359 
360 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
361 		if (unlikely(!i915_gem_object_has_pages(obj))) {
362 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
363 
364 			err = ____i915_gem_object_get_pages(obj);
365 			if (err)
366 				return ERR_PTR(err);
367 
368 			smp_mb__before_atomic();
369 		}
370 		atomic_inc(&obj->mm.pages_pin_count);
371 		pinned = false;
372 	}
373 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
374 
375 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
376 	if (ptr && has_type != type) {
377 		if (pinned) {
378 			ptr = ERR_PTR(-EBUSY);
379 			goto err_unpin;
380 		}
381 
382 		unmap_object(obj, ptr);
383 
384 		ptr = obj->mm.mapping = NULL;
385 	}
386 
387 	if (!ptr) {
388 		if (GEM_WARN_ON(type == I915_MAP_WC &&
389 				!static_cpu_has(X86_FEATURE_PAT)))
390 			ptr = ERR_PTR(-ENODEV);
391 		else if (i915_gem_object_has_struct_page(obj))
392 			ptr = i915_gem_object_map_page(obj, type);
393 		else
394 			ptr = i915_gem_object_map_pfn(obj, type);
395 		if (IS_ERR(ptr))
396 			goto err_unpin;
397 
398 		obj->mm.mapping = page_pack_bits(ptr, type);
399 	}
400 
401 	return ptr;
402 
403 err_unpin:
404 	atomic_dec(&obj->mm.pages_pin_count);
405 	return ptr;
406 }
407 
i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object * obj,enum i915_map_type type)408 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
409 				       enum i915_map_type type)
410 {
411 	void *ret;
412 
413 	i915_gem_object_lock(obj, NULL);
414 	ret = i915_gem_object_pin_map(obj, type);
415 	i915_gem_object_unlock(obj);
416 
417 	return ret;
418 }
419 
__i915_gem_object_flush_map(struct drm_i915_gem_object * obj,unsigned long offset,unsigned long size)420 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
421 				 unsigned long offset,
422 				 unsigned long size)
423 {
424 	enum i915_map_type has_type;
425 	void *ptr;
426 
427 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
428 	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
429 				     offset, size, obj->base.size));
430 
431 	wmb(); /* let all previous writes be visible to coherent partners */
432 	obj->mm.dirty = true;
433 
434 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
435 		return;
436 
437 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
438 	if (has_type == I915_MAP_WC)
439 		return;
440 
441 	drm_clflush_virt_range(ptr + offset, size);
442 	if (size == obj->base.size) {
443 		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
444 		obj->cache_dirty = false;
445 	}
446 }
447 
__i915_gem_object_release_map(struct drm_i915_gem_object * obj)448 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
449 {
450 	GEM_BUG_ON(!obj->mm.mapping);
451 
452 	/*
453 	 * We allow removing the mapping from underneath pinned pages!
454 	 *
455 	 * Furthermore, since this is an unsafe operation reserved only
456 	 * for construction time manipulation, we ignore locking prudence.
457 	 */
458 	unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
459 
460 	i915_gem_object_unpin_map(obj);
461 }
462 
463 struct scatterlist *
__i915_gem_object_get_sg(struct drm_i915_gem_object * obj,struct i915_gem_object_page_iter * iter,unsigned int n,unsigned int * offset,bool allow_alloc)464 __i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
465 			 struct i915_gem_object_page_iter *iter,
466 			 unsigned int n,
467 			 unsigned int *offset,
468 			 bool allow_alloc)
469 {
470 	const bool dma = iter == &obj->mm.get_dma_page;
471 	struct scatterlist *sg;
472 	unsigned int idx, count;
473 
474 	might_sleep();
475 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
476 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
477 
478 	/* As we iterate forward through the sg, we record each entry in a
479 	 * radixtree for quick repeated (backwards) lookups. If we have seen
480 	 * this index previously, we will have an entry for it.
481 	 *
482 	 * Initial lookup is O(N), but this is amortized to O(1) for
483 	 * sequential page access (where each new request is consecutive
484 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
485 	 * i.e. O(1) with a large constant!
486 	 */
487 	if (n < READ_ONCE(iter->sg_idx))
488 		goto lookup;
489 
490 	if (!allow_alloc)
491 		goto manual_lookup;
492 
493 	mutex_lock(&iter->lock);
494 
495 	/* We prefer to reuse the last sg so that repeated lookup of this
496 	 * (or the subsequent) sg are fast - comparing against the last
497 	 * sg is faster than going through the radixtree.
498 	 */
499 
500 	sg = iter->sg_pos;
501 	idx = iter->sg_idx;
502 	count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
503 
504 	while (idx + count <= n) {
505 		void *entry;
506 		unsigned long i;
507 		int ret;
508 
509 		/* If we cannot allocate and insert this entry, or the
510 		 * individual pages from this range, cancel updating the
511 		 * sg_idx so that on this lookup we are forced to linearly
512 		 * scan onwards, but on future lookups we will try the
513 		 * insertion again (in which case we need to be careful of
514 		 * the error return reporting that we have already inserted
515 		 * this index).
516 		 */
517 		ret = radix_tree_insert(&iter->radix, idx, sg);
518 		if (ret && ret != -EEXIST)
519 			goto scan;
520 
521 		entry = xa_mk_value(idx);
522 		for (i = 1; i < count; i++) {
523 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
524 			if (ret && ret != -EEXIST)
525 				goto scan;
526 		}
527 
528 		idx += count;
529 		sg = ____sg_next(sg);
530 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
531 	}
532 
533 scan:
534 	iter->sg_pos = sg;
535 	iter->sg_idx = idx;
536 
537 	mutex_unlock(&iter->lock);
538 
539 	if (unlikely(n < idx)) /* insertion completed by another thread */
540 		goto lookup;
541 
542 	goto manual_walk;
543 
544 manual_lookup:
545 	idx = 0;
546 	sg = obj->mm.pages->sgl;
547 	count = __sg_page_count(sg);
548 
549 manual_walk:
550 	/*
551 	 * In case we failed to insert the entry into the radixtree, we need
552 	 * to look beyond the current sg.
553 	 */
554 	while (idx + count <= n) {
555 		idx += count;
556 		sg = ____sg_next(sg);
557 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
558 	}
559 
560 	*offset = n - idx;
561 	return sg;
562 
563 lookup:
564 	rcu_read_lock();
565 
566 	sg = radix_tree_lookup(&iter->radix, n);
567 	GEM_BUG_ON(!sg);
568 
569 	/* If this index is in the middle of multi-page sg entry,
570 	 * the radix tree will contain a value entry that points
571 	 * to the start of that range. We will return the pointer to
572 	 * the base page and the offset of this page within the
573 	 * sg entry's range.
574 	 */
575 	*offset = 0;
576 	if (unlikely(xa_is_value(sg))) {
577 		unsigned long base = xa_to_value(sg);
578 
579 		sg = radix_tree_lookup(&iter->radix, base);
580 		GEM_BUG_ON(!sg);
581 
582 		*offset = n - base;
583 	}
584 
585 	rcu_read_unlock();
586 
587 	return sg;
588 }
589 
590 struct page *
i915_gem_object_get_page(struct drm_i915_gem_object * obj,unsigned int n)591 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
592 {
593 	struct scatterlist *sg;
594 	unsigned int offset;
595 
596 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
597 
598 	sg = i915_gem_object_get_sg(obj, n, &offset, true);
599 	return nth_page(sg_page(sg), offset);
600 }
601 
602 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
603 struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,unsigned int n)604 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
605 			       unsigned int n)
606 {
607 	struct page *page;
608 
609 	page = i915_gem_object_get_page(obj, n);
610 	if (!obj->mm.dirty)
611 		set_page_dirty(page);
612 
613 	return page;
614 }
615 
616 dma_addr_t
i915_gem_object_get_dma_address_len(struct drm_i915_gem_object * obj,unsigned long n,unsigned int * len)617 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
618 				    unsigned long n,
619 				    unsigned int *len)
620 {
621 	struct scatterlist *sg;
622 	unsigned int offset;
623 
624 	sg = i915_gem_object_get_sg_dma(obj, n, &offset, true);
625 
626 	if (len)
627 		*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
628 
629 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
630 }
631 
632 dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,unsigned long n)633 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
634 				unsigned long n)
635 {
636 	return i915_gem_object_get_dma_address_len(obj, n, NULL);
637 }
638