1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/if_vlan.h>
20 #include "liquidio_common.h"
21 #include "octeon_droq.h"
22 #include "octeon_iq.h"
23 #include "response_manager.h"
24 #include "octeon_device.h"
25 #include "octeon_nic.h"
26 #include "octeon_main.h"
27 #include "octeon_network.h"
28 
29 /* OOM task polling interval */
30 #define LIO_OOM_POLL_INTERVAL_MS 250
31 
32 #define OCTNIC_MAX_SG  MAX_SKB_FRAGS
33 
34 /**
35  * lio_delete_glists - Delete gather lists
36  * @lio: per-network private data
37  */
lio_delete_glists(struct lio * lio)38 void lio_delete_glists(struct lio *lio)
39 {
40 	struct octnic_gather *g;
41 	int i;
42 
43 	kfree(lio->glist_lock);
44 	lio->glist_lock = NULL;
45 
46 	if (!lio->glist)
47 		return;
48 
49 	for (i = 0; i < lio->oct_dev->num_iqs; i++) {
50 		do {
51 			g = (struct octnic_gather *)
52 			    lio_list_delete_head(&lio->glist[i]);
53 			kfree(g);
54 		} while (g);
55 
56 		if (lio->glists_virt_base && lio->glists_virt_base[i] &&
57 		    lio->glists_dma_base && lio->glists_dma_base[i]) {
58 			lio_dma_free(lio->oct_dev,
59 				     lio->glist_entry_size * lio->tx_qsize,
60 				     lio->glists_virt_base[i],
61 				     lio->glists_dma_base[i]);
62 		}
63 	}
64 
65 	kfree(lio->glists_virt_base);
66 	lio->glists_virt_base = NULL;
67 
68 	kfree(lio->glists_dma_base);
69 	lio->glists_dma_base = NULL;
70 
71 	kfree(lio->glist);
72 	lio->glist = NULL;
73 }
74 
75 /**
76  * lio_setup_glists - Setup gather lists
77  * @oct: octeon_device
78  * @lio: per-network private data
79  * @num_iqs: count of iqs to allocate
80  */
lio_setup_glists(struct octeon_device * oct,struct lio * lio,int num_iqs)81 int lio_setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
82 {
83 	struct octnic_gather *g;
84 	int i, j;
85 
86 	lio->glist_lock =
87 	    kcalloc(num_iqs, sizeof(*lio->glist_lock), GFP_KERNEL);
88 	if (!lio->glist_lock)
89 		return -ENOMEM;
90 
91 	lio->glist =
92 	    kcalloc(num_iqs, sizeof(*lio->glist), GFP_KERNEL);
93 	if (!lio->glist) {
94 		kfree(lio->glist_lock);
95 		lio->glist_lock = NULL;
96 		return -ENOMEM;
97 	}
98 
99 	lio->glist_entry_size =
100 		ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
101 
102 	/* allocate memory to store virtual and dma base address of
103 	 * per glist consistent memory
104 	 */
105 	lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base),
106 					GFP_KERNEL);
107 	lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base),
108 				       GFP_KERNEL);
109 
110 	if (!lio->glists_virt_base || !lio->glists_dma_base) {
111 		lio_delete_glists(lio);
112 		return -ENOMEM;
113 	}
114 
115 	for (i = 0; i < num_iqs; i++) {
116 		int numa_node = dev_to_node(&oct->pci_dev->dev);
117 
118 		spin_lock_init(&lio->glist_lock[i]);
119 
120 		INIT_LIST_HEAD(&lio->glist[i]);
121 
122 		lio->glists_virt_base[i] =
123 			lio_dma_alloc(oct,
124 				      lio->glist_entry_size * lio->tx_qsize,
125 				      &lio->glists_dma_base[i]);
126 
127 		if (!lio->glists_virt_base[i]) {
128 			lio_delete_glists(lio);
129 			return -ENOMEM;
130 		}
131 
132 		for (j = 0; j < lio->tx_qsize; j++) {
133 			g = kzalloc_node(sizeof(*g), GFP_KERNEL,
134 					 numa_node);
135 			if (!g)
136 				g = kzalloc(sizeof(*g), GFP_KERNEL);
137 			if (!g)
138 				break;
139 
140 			g->sg = lio->glists_virt_base[i] +
141 				(j * lio->glist_entry_size);
142 
143 			g->sg_dma_ptr = lio->glists_dma_base[i] +
144 					(j * lio->glist_entry_size);
145 
146 			list_add_tail(&g->list, &lio->glist[i]);
147 		}
148 
149 		if (j != lio->tx_qsize) {
150 			lio_delete_glists(lio);
151 			return -ENOMEM;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
liquidio_set_feature(struct net_device * netdev,int cmd,u16 param1)158 int liquidio_set_feature(struct net_device *netdev, int cmd, u16 param1)
159 {
160 	struct lio *lio = GET_LIO(netdev);
161 	struct octeon_device *oct = lio->oct_dev;
162 	struct octnic_ctrl_pkt nctrl;
163 	int ret = 0;
164 
165 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
166 
167 	nctrl.ncmd.u64 = 0;
168 	nctrl.ncmd.s.cmd = cmd;
169 	nctrl.ncmd.s.param1 = param1;
170 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
171 	nctrl.netpndev = (u64)netdev;
172 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
173 
174 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
175 	if (ret) {
176 		dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
177 			ret);
178 		if (ret > 0)
179 			ret = -EIO;
180 	}
181 	return ret;
182 }
183 
octeon_report_tx_completion_to_bql(void * txq,unsigned int pkts_compl,unsigned int bytes_compl)184 void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
185 					unsigned int bytes_compl)
186 {
187 	struct netdev_queue *netdev_queue = txq;
188 
189 	netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
190 }
191 
octeon_update_tx_completion_counters(void * buf,int reqtype,unsigned int * pkts_compl,unsigned int * bytes_compl)192 void octeon_update_tx_completion_counters(void *buf, int reqtype,
193 					  unsigned int *pkts_compl,
194 					  unsigned int *bytes_compl)
195 {
196 	struct octnet_buf_free_info *finfo;
197 	struct sk_buff *skb = NULL;
198 	struct octeon_soft_command *sc;
199 
200 	switch (reqtype) {
201 	case REQTYPE_NORESP_NET:
202 	case REQTYPE_NORESP_NET_SG:
203 		finfo = buf;
204 		skb = finfo->skb;
205 		break;
206 
207 	case REQTYPE_RESP_NET_SG:
208 	case REQTYPE_RESP_NET:
209 		sc = buf;
210 		skb = sc->callback_arg;
211 		break;
212 
213 	default:
214 		return;
215 	}
216 
217 	(*pkts_compl)++;
218 	*bytes_compl += skb->len;
219 }
220 
octeon_report_sent_bytes_to_bql(void * buf,int reqtype)221 int octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
222 {
223 	struct octnet_buf_free_info *finfo;
224 	struct sk_buff *skb;
225 	struct octeon_soft_command *sc;
226 	struct netdev_queue *txq;
227 
228 	switch (reqtype) {
229 	case REQTYPE_NORESP_NET:
230 	case REQTYPE_NORESP_NET_SG:
231 		finfo = buf;
232 		skb = finfo->skb;
233 		break;
234 
235 	case REQTYPE_RESP_NET_SG:
236 	case REQTYPE_RESP_NET:
237 		sc = buf;
238 		skb = sc->callback_arg;
239 		break;
240 
241 	default:
242 		return 0;
243 	}
244 
245 	txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
246 	netdev_tx_sent_queue(txq, skb->len);
247 
248 	return netif_xmit_stopped(txq);
249 }
250 
liquidio_link_ctrl_cmd_completion(void * nctrl_ptr)251 void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
252 {
253 	struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
254 	struct net_device *netdev = (struct net_device *)nctrl->netpndev;
255 	struct lio *lio = GET_LIO(netdev);
256 	struct octeon_device *oct = lio->oct_dev;
257 	u8 *mac;
258 
259 	if (nctrl->sc_status)
260 		return;
261 
262 	switch (nctrl->ncmd.s.cmd) {
263 	case OCTNET_CMD_CHANGE_DEVFLAGS:
264 	case OCTNET_CMD_SET_MULTI_LIST:
265 	case OCTNET_CMD_SET_UC_LIST:
266 		break;
267 
268 	case OCTNET_CMD_CHANGE_MACADDR:
269 		mac = ((u8 *)&nctrl->udd[0]) + 2;
270 		if (nctrl->ncmd.s.param1) {
271 			/* vfidx is 0 based, but vf_num (param1) is 1 based */
272 			int vfidx = nctrl->ncmd.s.param1 - 1;
273 			bool mac_is_admin_assigned = nctrl->ncmd.s.param2;
274 
275 			if (mac_is_admin_assigned)
276 				netif_info(lio, probe, lio->netdev,
277 					   "MAC Address %pM is configured for VF %d\n",
278 					   mac, vfidx);
279 		} else {
280 			netif_info(lio, probe, lio->netdev,
281 				   " MACAddr changed to %pM\n",
282 				   mac);
283 		}
284 		break;
285 
286 	case OCTNET_CMD_GPIO_ACCESS:
287 		netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
288 
289 		break;
290 
291 	case OCTNET_CMD_ID_ACTIVE:
292 		netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
293 
294 		break;
295 
296 	case OCTNET_CMD_LRO_ENABLE:
297 		dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
298 		break;
299 
300 	case OCTNET_CMD_LRO_DISABLE:
301 		dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
302 			 netdev->name);
303 		break;
304 
305 	case OCTNET_CMD_VERBOSE_ENABLE:
306 		dev_info(&oct->pci_dev->dev, "%s Firmware debug enabled\n",
307 			 netdev->name);
308 		break;
309 
310 	case OCTNET_CMD_VERBOSE_DISABLE:
311 		dev_info(&oct->pci_dev->dev, "%s Firmware debug disabled\n",
312 			 netdev->name);
313 		break;
314 
315 	case OCTNET_CMD_VLAN_FILTER_CTL:
316 		if (nctrl->ncmd.s.param1)
317 			dev_info(&oct->pci_dev->dev,
318 				 "%s VLAN filter enabled\n", netdev->name);
319 		else
320 			dev_info(&oct->pci_dev->dev,
321 				 "%s VLAN filter disabled\n", netdev->name);
322 		break;
323 
324 	case OCTNET_CMD_ADD_VLAN_FILTER:
325 		dev_info(&oct->pci_dev->dev, "%s VLAN filter %d added\n",
326 			 netdev->name, nctrl->ncmd.s.param1);
327 		break;
328 
329 	case OCTNET_CMD_DEL_VLAN_FILTER:
330 		dev_info(&oct->pci_dev->dev, "%s VLAN filter %d removed\n",
331 			 netdev->name, nctrl->ncmd.s.param1);
332 		break;
333 
334 	case OCTNET_CMD_SET_SETTINGS:
335 		dev_info(&oct->pci_dev->dev, "%s settings changed\n",
336 			 netdev->name);
337 
338 		break;
339 
340 	/* Case to handle "OCTNET_CMD_TNL_RX_CSUM_CTL"
341 	 * Command passed by NIC driver
342 	 */
343 	case OCTNET_CMD_TNL_RX_CSUM_CTL:
344 		if (nctrl->ncmd.s.param1 == OCTNET_CMD_RXCSUM_ENABLE) {
345 			netif_info(lio, probe, lio->netdev,
346 				   "RX Checksum Offload Enabled\n");
347 		} else if (nctrl->ncmd.s.param1 ==
348 			   OCTNET_CMD_RXCSUM_DISABLE) {
349 			netif_info(lio, probe, lio->netdev,
350 				   "RX Checksum Offload Disabled\n");
351 		}
352 		break;
353 
354 		/* Case to handle "OCTNET_CMD_TNL_TX_CSUM_CTL"
355 		 * Command passed by NIC driver
356 		 */
357 	case OCTNET_CMD_TNL_TX_CSUM_CTL:
358 		if (nctrl->ncmd.s.param1 == OCTNET_CMD_TXCSUM_ENABLE) {
359 			netif_info(lio, probe, lio->netdev,
360 				   "TX Checksum Offload Enabled\n");
361 		} else if (nctrl->ncmd.s.param1 ==
362 			   OCTNET_CMD_TXCSUM_DISABLE) {
363 			netif_info(lio, probe, lio->netdev,
364 				   "TX Checksum Offload Disabled\n");
365 		}
366 		break;
367 
368 		/* Case to handle "OCTNET_CMD_VXLAN_PORT_CONFIG"
369 		 * Command passed by NIC driver
370 		 */
371 	case OCTNET_CMD_VXLAN_PORT_CONFIG:
372 		if (nctrl->ncmd.s.more == OCTNET_CMD_VXLAN_PORT_ADD) {
373 			netif_info(lio, probe, lio->netdev,
374 				   "VxLAN Destination UDP PORT:%d ADDED\n",
375 				   nctrl->ncmd.s.param1);
376 		} else if (nctrl->ncmd.s.more ==
377 			   OCTNET_CMD_VXLAN_PORT_DEL) {
378 			netif_info(lio, probe, lio->netdev,
379 				   "VxLAN Destination UDP PORT:%d DELETED\n",
380 				   nctrl->ncmd.s.param1);
381 		}
382 		break;
383 
384 	case OCTNET_CMD_SET_FLOW_CTL:
385 		netif_info(lio, probe, lio->netdev, "Set RX/TX flow control parameters\n");
386 		break;
387 
388 	case OCTNET_CMD_QUEUE_COUNT_CTL:
389 		netif_info(lio, probe, lio->netdev, "Queue count updated to %d\n",
390 			   nctrl->ncmd.s.param1);
391 		break;
392 
393 	default:
394 		dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
395 			nctrl->ncmd.s.cmd);
396 	}
397 }
398 
octeon_pf_changed_vf_macaddr(struct octeon_device * oct,u8 * mac)399 void octeon_pf_changed_vf_macaddr(struct octeon_device *oct, u8 *mac)
400 {
401 	bool macaddr_changed = false;
402 	struct net_device *netdev;
403 	struct lio *lio;
404 
405 	rtnl_lock();
406 
407 	netdev = oct->props[0].netdev;
408 	lio = GET_LIO(netdev);
409 
410 	lio->linfo.macaddr_is_admin_asgnd = true;
411 
412 	if (!ether_addr_equal(netdev->dev_addr, mac)) {
413 		macaddr_changed = true;
414 		ether_addr_copy(netdev->dev_addr, mac);
415 		ether_addr_copy(((u8 *)&lio->linfo.hw_addr) + 2, mac);
416 		call_netdevice_notifiers(NETDEV_CHANGEADDR, netdev);
417 	}
418 
419 	rtnl_unlock();
420 
421 	if (macaddr_changed)
422 		dev_info(&oct->pci_dev->dev,
423 			 "PF changed VF's MAC address to %pM\n", mac);
424 
425 	/* no need to notify the firmware of the macaddr change because
426 	 * the PF did that already
427 	 */
428 }
429 
octeon_schedule_rxq_oom_work(struct octeon_device * oct,struct octeon_droq * droq)430 void octeon_schedule_rxq_oom_work(struct octeon_device *oct,
431 				  struct octeon_droq *droq)
432 {
433 	struct net_device *netdev = oct->props[0].netdev;
434 	struct lio *lio = GET_LIO(netdev);
435 	struct cavium_wq *wq = &lio->rxq_status_wq[droq->q_no];
436 
437 	queue_delayed_work(wq->wq, &wq->wk.work,
438 			   msecs_to_jiffies(LIO_OOM_POLL_INTERVAL_MS));
439 }
440 
octnet_poll_check_rxq_oom_status(struct work_struct * work)441 static void octnet_poll_check_rxq_oom_status(struct work_struct *work)
442 {
443 	struct cavium_wk *wk = (struct cavium_wk *)work;
444 	struct lio *lio = (struct lio *)wk->ctxptr;
445 	struct octeon_device *oct = lio->oct_dev;
446 	int q_no = wk->ctxul;
447 	struct octeon_droq *droq = oct->droq[q_no];
448 
449 	if (!ifstate_check(lio, LIO_IFSTATE_RUNNING) || !droq)
450 		return;
451 
452 	if (octeon_retry_droq_refill(droq))
453 		octeon_schedule_rxq_oom_work(oct, droq);
454 }
455 
setup_rx_oom_poll_fn(struct net_device * netdev)456 int setup_rx_oom_poll_fn(struct net_device *netdev)
457 {
458 	struct lio *lio = GET_LIO(netdev);
459 	struct octeon_device *oct = lio->oct_dev;
460 	struct cavium_wq *wq;
461 	int q, q_no;
462 
463 	for (q = 0; q < oct->num_oqs; q++) {
464 		q_no = lio->linfo.rxpciq[q].s.q_no;
465 		wq = &lio->rxq_status_wq[q_no];
466 		wq->wq = alloc_workqueue("rxq-oom-status",
467 					 WQ_MEM_RECLAIM, 0);
468 		if (!wq->wq) {
469 			dev_err(&oct->pci_dev->dev, "unable to create cavium rxq oom status wq\n");
470 			return -ENOMEM;
471 		}
472 
473 		INIT_DELAYED_WORK(&wq->wk.work,
474 				  octnet_poll_check_rxq_oom_status);
475 		wq->wk.ctxptr = lio;
476 		wq->wk.ctxul = q_no;
477 	}
478 
479 	return 0;
480 }
481 
cleanup_rx_oom_poll_fn(struct net_device * netdev)482 void cleanup_rx_oom_poll_fn(struct net_device *netdev)
483 {
484 	struct lio *lio = GET_LIO(netdev);
485 	struct octeon_device *oct = lio->oct_dev;
486 	struct cavium_wq *wq;
487 	int q_no;
488 
489 	for (q_no = 0; q_no < oct->num_oqs; q_no++) {
490 		wq = &lio->rxq_status_wq[q_no];
491 		if (wq->wq) {
492 			cancel_delayed_work_sync(&wq->wk.work);
493 			flush_workqueue(wq->wq);
494 			destroy_workqueue(wq->wq);
495 			wq->wq = NULL;
496 		}
497 	}
498 }
499 
500 /* Runs in interrupt context. */
lio_update_txq_status(struct octeon_device * oct,int iq_num)501 static void lio_update_txq_status(struct octeon_device *oct, int iq_num)
502 {
503 	struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
504 	struct net_device *netdev;
505 	struct lio *lio;
506 
507 	netdev = oct->props[iq->ifidx].netdev;
508 
509 	/* This is needed because the first IQ does not have
510 	 * a netdev associated with it.
511 	 */
512 	if (!netdev)
513 		return;
514 
515 	lio = GET_LIO(netdev);
516 	if (__netif_subqueue_stopped(netdev, iq->q_index) &&
517 	    lio->linfo.link.s.link_up &&
518 	    (!octnet_iq_is_full(oct, iq_num))) {
519 		netif_wake_subqueue(netdev, iq->q_index);
520 		INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
521 					  tx_restart, 1);
522 	}
523 }
524 
525 /**
526  * octeon_setup_droq - Setup output queue
527  * @oct: octeon device
528  * @q_no: which queue
529  * @num_descs: how many descriptors
530  * @desc_size: size of each descriptor
531  * @app_ctx: application context
532  */
octeon_setup_droq(struct octeon_device * oct,int q_no,int num_descs,int desc_size,void * app_ctx)533 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
534 			     int desc_size, void *app_ctx)
535 {
536 	int ret_val;
537 
538 	dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
539 	/* droq creation and local register settings. */
540 	ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
541 	if (ret_val < 0)
542 		return ret_val;
543 
544 	if (ret_val == 1) {
545 		dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
546 		return 0;
547 	}
548 
549 	/* Enable the droq queues */
550 	octeon_set_droq_pkt_op(oct, q_no, 1);
551 
552 	/* Send Credit for Octeon Output queues. Credits are always
553 	 * sent after the output queue is enabled.
554 	 */
555 	writel(oct->droq[q_no]->max_count, oct->droq[q_no]->pkts_credit_reg);
556 
557 	return ret_val;
558 }
559 
560 /**
561  * liquidio_push_packet - Routine to push packets arriving on Octeon interface upto network layer.
562  * @octeon_id:octeon device id.
563  * @skbuff:   skbuff struct to be passed to network layer.
564  * @len:      size of total data received.
565  * @rh:       Control header associated with the packet
566  * @param:    additional control data with the packet
567  * @arg:      farg registered in droq_ops
568  */
569 static void
liquidio_push_packet(u32 __maybe_unused octeon_id,void * skbuff,u32 len,union octeon_rh * rh,void * param,void * arg)570 liquidio_push_packet(u32 __maybe_unused octeon_id,
571 		     void *skbuff,
572 		     u32 len,
573 		     union octeon_rh *rh,
574 		     void *param,
575 		     void *arg)
576 {
577 	struct net_device *netdev = (struct net_device *)arg;
578 	struct octeon_droq *droq =
579 	    container_of(param, struct octeon_droq, napi);
580 	struct sk_buff *skb = (struct sk_buff *)skbuff;
581 	struct skb_shared_hwtstamps *shhwtstamps;
582 	struct napi_struct *napi = param;
583 	u16 vtag = 0;
584 	u32 r_dh_off;
585 	u64 ns;
586 
587 	if (netdev) {
588 		struct lio *lio = GET_LIO(netdev);
589 		struct octeon_device *oct = lio->oct_dev;
590 
591 		/* Do not proceed if the interface is not in RUNNING state. */
592 		if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
593 			recv_buffer_free(skb);
594 			droq->stats.rx_dropped++;
595 			return;
596 		}
597 
598 		skb->dev = netdev;
599 
600 		skb_record_rx_queue(skb, droq->q_no);
601 		if (likely(len > MIN_SKB_SIZE)) {
602 			struct octeon_skb_page_info *pg_info;
603 			unsigned char *va;
604 
605 			pg_info = ((struct octeon_skb_page_info *)(skb->cb));
606 			if (pg_info->page) {
607 				/* For Paged allocation use the frags */
608 				va = page_address(pg_info->page) +
609 					pg_info->page_offset;
610 				memcpy(skb->data, va, MIN_SKB_SIZE);
611 				skb_put(skb, MIN_SKB_SIZE);
612 				skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
613 						pg_info->page,
614 						pg_info->page_offset +
615 						MIN_SKB_SIZE,
616 						len - MIN_SKB_SIZE,
617 						LIO_RXBUFFER_SZ);
618 			}
619 		} else {
620 			struct octeon_skb_page_info *pg_info =
621 				((struct octeon_skb_page_info *)(skb->cb));
622 			skb_copy_to_linear_data(skb, page_address(pg_info->page)
623 						+ pg_info->page_offset, len);
624 			skb_put(skb, len);
625 			put_page(pg_info->page);
626 		}
627 
628 		r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT;
629 
630 		if (oct->ptp_enable) {
631 			if (rh->r_dh.has_hwtstamp) {
632 				/* timestamp is included from the hardware at
633 				 * the beginning of the packet.
634 				 */
635 				if (ifstate_check
636 					(lio,
637 					 LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
638 					/* Nanoseconds are in the first 64-bits
639 					 * of the packet.
640 					 */
641 					memcpy(&ns, (skb->data + r_dh_off),
642 					       sizeof(ns));
643 					r_dh_off -= BYTES_PER_DHLEN_UNIT;
644 					shhwtstamps = skb_hwtstamps(skb);
645 					shhwtstamps->hwtstamp =
646 						ns_to_ktime(ns +
647 							    lio->ptp_adjust);
648 				}
649 			}
650 		}
651 
652 		if (rh->r_dh.has_hash) {
653 			__be32 *hash_be = (__be32 *)(skb->data + r_dh_off);
654 			u32 hash = be32_to_cpu(*hash_be);
655 
656 			skb_set_hash(skb, hash, PKT_HASH_TYPE_L4);
657 			r_dh_off -= BYTES_PER_DHLEN_UNIT;
658 		}
659 
660 		skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT);
661 		skb->protocol = eth_type_trans(skb, skb->dev);
662 
663 		if ((netdev->features & NETIF_F_RXCSUM) &&
664 		    (((rh->r_dh.encap_on) &&
665 		      (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
666 		     (!(rh->r_dh.encap_on) &&
667 		      ((rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED) ==
668 			CNNIC_CSUM_VERIFIED))))
669 			/* checksum has already been verified */
670 			skb->ip_summed = CHECKSUM_UNNECESSARY;
671 		else
672 			skb->ip_summed = CHECKSUM_NONE;
673 
674 		/* Setting Encapsulation field on basis of status received
675 		 * from the firmware
676 		 */
677 		if (rh->r_dh.encap_on) {
678 			skb->encapsulation = 1;
679 			skb->csum_level = 1;
680 			droq->stats.rx_vxlan++;
681 		}
682 
683 		/* inbound VLAN tag */
684 		if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
685 		    rh->r_dh.vlan) {
686 			u16 priority = rh->r_dh.priority;
687 			u16 vid = rh->r_dh.vlan;
688 
689 			vtag = (priority << VLAN_PRIO_SHIFT) | vid;
690 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
691 		}
692 
693 		napi_gro_receive(napi, skb);
694 
695 		droq->stats.rx_bytes_received += len -
696 			rh->r_dh.len * BYTES_PER_DHLEN_UNIT;
697 		droq->stats.rx_pkts_received++;
698 	} else {
699 		recv_buffer_free(skb);
700 	}
701 }
702 
703 /**
704  * napi_schedule_wrapper - wrapper for calling napi_schedule
705  * @param: parameters to pass to napi_schedule
706  *
707  * Used when scheduling on different CPUs
708  */
napi_schedule_wrapper(void * param)709 static void napi_schedule_wrapper(void *param)
710 {
711 	struct napi_struct *napi = param;
712 
713 	napi_schedule(napi);
714 }
715 
716 /**
717  * liquidio_napi_drv_callback - callback when receive interrupt occurs and we are in NAPI mode
718  * @arg: pointer to octeon output queue
719  */
liquidio_napi_drv_callback(void * arg)720 static void liquidio_napi_drv_callback(void *arg)
721 {
722 	struct octeon_device *oct;
723 	struct octeon_droq *droq = arg;
724 	int this_cpu = smp_processor_id();
725 
726 	oct = droq->oct_dev;
727 
728 	if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct) ||
729 	    droq->cpu_id == this_cpu) {
730 		napi_schedule_irqoff(&droq->napi);
731 	} else {
732 		INIT_CSD(&droq->csd, napi_schedule_wrapper, &droq->napi);
733 		smp_call_function_single_async(droq->cpu_id, &droq->csd);
734 	}
735 }
736 
737 /**
738  * liquidio_napi_poll - Entry point for NAPI polling
739  * @napi: NAPI structure
740  * @budget: maximum number of items to process
741  */
liquidio_napi_poll(struct napi_struct * napi,int budget)742 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
743 {
744 	struct octeon_instr_queue *iq;
745 	struct octeon_device *oct;
746 	struct octeon_droq *droq;
747 	int tx_done = 0, iq_no;
748 	int work_done;
749 
750 	droq = container_of(napi, struct octeon_droq, napi);
751 	oct = droq->oct_dev;
752 	iq_no = droq->q_no;
753 
754 	/* Handle Droq descriptors */
755 	work_done = octeon_droq_process_poll_pkts(oct, droq, budget);
756 
757 	/* Flush the instruction queue */
758 	iq = oct->instr_queue[iq_no];
759 	if (iq) {
760 		/* TODO: move this check to inside octeon_flush_iq,
761 		 * once check_db_timeout is removed
762 		 */
763 		if (atomic_read(&iq->instr_pending))
764 			/* Process iq buffers with in the budget limits */
765 			tx_done = octeon_flush_iq(oct, iq, budget);
766 		else
767 			tx_done = 1;
768 		/* Update iq read-index rather than waiting for next interrupt.
769 		 * Return back if tx_done is false.
770 		 */
771 		/* sub-queue status update */
772 		lio_update_txq_status(oct, iq_no);
773 	} else {
774 		dev_err(&oct->pci_dev->dev, "%s:  iq (%d) num invalid\n",
775 			__func__, iq_no);
776 	}
777 
778 #define MAX_REG_CNT  2000000U
779 	/* force enable interrupt if reg cnts are high to avoid wraparound */
780 	if ((work_done < budget && tx_done) ||
781 	    (iq && iq->pkt_in_done >= MAX_REG_CNT) ||
782 	    (droq->pkt_count >= MAX_REG_CNT)) {
783 		napi_complete_done(napi, work_done);
784 
785 		octeon_enable_irq(droq->oct_dev, droq->q_no);
786 		return 0;
787 	}
788 
789 	return (!tx_done) ? (budget) : (work_done);
790 }
791 
792 /**
793  * liquidio_setup_io_queues - Setup input and output queues
794  * @octeon_dev: octeon device
795  * @ifidx: Interface index
796  * @num_iqs: input io queue count
797  * @num_oqs: output io queue count
798  *
799  * Note: Queues are with respect to the octeon device. Thus
800  * an input queue is for egress packets, and output queues
801  * are for ingress packets.
802  */
liquidio_setup_io_queues(struct octeon_device * octeon_dev,int ifidx,u32 num_iqs,u32 num_oqs)803 int liquidio_setup_io_queues(struct octeon_device *octeon_dev, int ifidx,
804 			     u32 num_iqs, u32 num_oqs)
805 {
806 	struct octeon_droq_ops droq_ops;
807 	struct net_device *netdev;
808 	struct octeon_droq *droq;
809 	struct napi_struct *napi;
810 	int cpu_id_modulus;
811 	int num_tx_descs;
812 	struct lio *lio;
813 	int retval = 0;
814 	int q, q_no;
815 	int cpu_id;
816 
817 	netdev = octeon_dev->props[ifidx].netdev;
818 
819 	lio = GET_LIO(netdev);
820 
821 	memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
822 
823 	droq_ops.fptr = liquidio_push_packet;
824 	droq_ops.farg = netdev;
825 
826 	droq_ops.poll_mode = 1;
827 	droq_ops.napi_fn = liquidio_napi_drv_callback;
828 	cpu_id = 0;
829 	cpu_id_modulus = num_present_cpus();
830 
831 	/* set up DROQs. */
832 	for (q = 0; q < num_oqs; q++) {
833 		q_no = lio->linfo.rxpciq[q].s.q_no;
834 		dev_dbg(&octeon_dev->pci_dev->dev,
835 			"%s index:%d linfo.rxpciq.s.q_no:%d\n",
836 			__func__, q, q_no);
837 		retval = octeon_setup_droq(
838 		    octeon_dev, q_no,
839 		    CFG_GET_NUM_RX_DESCS_NIC_IF(octeon_get_conf(octeon_dev),
840 						lio->ifidx),
841 		    CFG_GET_NUM_RX_BUF_SIZE_NIC_IF(octeon_get_conf(octeon_dev),
842 						   lio->ifidx),
843 		    NULL);
844 		if (retval) {
845 			dev_err(&octeon_dev->pci_dev->dev,
846 				"%s : Runtime DROQ(RxQ) creation failed.\n",
847 				__func__);
848 			return 1;
849 		}
850 
851 		droq = octeon_dev->droq[q_no];
852 		napi = &droq->napi;
853 		dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx\n",
854 			(u64)netdev, (u64)octeon_dev);
855 		netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
856 
857 		/* designate a CPU for this droq */
858 		droq->cpu_id = cpu_id;
859 		cpu_id++;
860 		if (cpu_id >= cpu_id_modulus)
861 			cpu_id = 0;
862 
863 		octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
864 	}
865 
866 	if (OCTEON_CN23XX_PF(octeon_dev) || OCTEON_CN23XX_VF(octeon_dev)) {
867 		/* 23XX PF/VF can send/recv control messages (via the first
868 		 * PF/VF-owned droq) from the firmware even if the ethX
869 		 * interface is down, so that's why poll_mode must be off
870 		 * for the first droq.
871 		 */
872 		octeon_dev->droq[0]->ops.poll_mode = 0;
873 	}
874 
875 	/* set up IQs. */
876 	for (q = 0; q < num_iqs; q++) {
877 		num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(
878 		    octeon_get_conf(octeon_dev), lio->ifidx);
879 		retval = octeon_setup_iq(octeon_dev, ifidx, q,
880 					 lio->linfo.txpciq[q], num_tx_descs,
881 					 netdev_get_tx_queue(netdev, q));
882 		if (retval) {
883 			dev_err(&octeon_dev->pci_dev->dev,
884 				" %s : Runtime IQ(TxQ) creation failed.\n",
885 				__func__);
886 			return 1;
887 		}
888 
889 		/* XPS */
890 		if (!OCTEON_CN23XX_VF(octeon_dev) && octeon_dev->msix_on &&
891 		    octeon_dev->ioq_vector) {
892 			struct octeon_ioq_vector    *ioq_vector;
893 
894 			ioq_vector = &octeon_dev->ioq_vector[q];
895 			netif_set_xps_queue(netdev,
896 					    &ioq_vector->affinity_mask,
897 					    ioq_vector->iq_index);
898 		}
899 	}
900 
901 	return 0;
902 }
903 
904 static
liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq * droq,u64 ret)905 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
906 {
907 	struct octeon_device *oct = droq->oct_dev;
908 	struct octeon_device_priv *oct_priv =
909 	    (struct octeon_device_priv *)oct->priv;
910 
911 	if (droq->ops.poll_mode) {
912 		droq->ops.napi_fn(droq);
913 	} else {
914 		if (ret & MSIX_PO_INT) {
915 			if (OCTEON_CN23XX_VF(oct))
916 				dev_err(&oct->pci_dev->dev,
917 					"should not come here should not get rx when poll mode = 0 for vf\n");
918 			tasklet_schedule(&oct_priv->droq_tasklet);
919 			return 1;
920 		}
921 		/* this will be flushed periodically by check iq db */
922 		if (ret & MSIX_PI_INT)
923 			return 0;
924 	}
925 
926 	return 0;
927 }
928 
929 irqreturn_t
liquidio_msix_intr_handler(int __maybe_unused irq,void * dev)930 liquidio_msix_intr_handler(int __maybe_unused irq, void *dev)
931 {
932 	struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
933 	struct octeon_device *oct = ioq_vector->oct_dev;
934 	struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
935 	u64 ret;
936 
937 	ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
938 
939 	if (ret & MSIX_PO_INT || ret & MSIX_PI_INT)
940 		liquidio_schedule_msix_droq_pkt_handler(droq, ret);
941 
942 	return IRQ_HANDLED;
943 }
944 
945 /**
946  * liquidio_schedule_droq_pkt_handlers - Droq packet processor sceduler
947  * @oct: octeon device
948  */
liquidio_schedule_droq_pkt_handlers(struct octeon_device * oct)949 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
950 {
951 	struct octeon_device_priv *oct_priv =
952 		(struct octeon_device_priv *)oct->priv;
953 	struct octeon_droq *droq;
954 	u64 oq_no;
955 
956 	if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
957 		for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
958 		     oq_no++) {
959 			if (!(oct->droq_intr & BIT_ULL(oq_no)))
960 				continue;
961 
962 			droq = oct->droq[oq_no];
963 
964 			if (droq->ops.poll_mode) {
965 				droq->ops.napi_fn(droq);
966 				oct_priv->napi_mask |= BIT_ULL(oq_no);
967 			} else {
968 				tasklet_schedule(&oct_priv->droq_tasklet);
969 			}
970 		}
971 	}
972 }
973 
974 /**
975  * liquidio_legacy_intr_handler - Interrupt handler for octeon
976  * @irq: unused
977  * @dev: octeon device
978  */
979 static
liquidio_legacy_intr_handler(int __maybe_unused irq,void * dev)980 irqreturn_t liquidio_legacy_intr_handler(int __maybe_unused irq, void *dev)
981 {
982 	struct octeon_device *oct = (struct octeon_device *)dev;
983 	irqreturn_t ret;
984 
985 	/* Disable our interrupts for the duration of ISR */
986 	oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
987 
988 	ret = oct->fn_list.process_interrupt_regs(oct);
989 
990 	if (ret == IRQ_HANDLED)
991 		liquidio_schedule_droq_pkt_handlers(oct);
992 
993 	/* Re-enable our interrupts  */
994 	if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
995 		oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
996 
997 	return ret;
998 }
999 
1000 /**
1001  * octeon_setup_interrupt - Setup interrupt for octeon device
1002  * @oct: octeon device
1003  * @num_ioqs: number of queues
1004  *
1005  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
1006  */
octeon_setup_interrupt(struct octeon_device * oct,u32 num_ioqs)1007 int octeon_setup_interrupt(struct octeon_device *oct, u32 num_ioqs)
1008 {
1009 	struct msix_entry *msix_entries;
1010 	char *queue_irq_names = NULL;
1011 	int i, num_interrupts = 0;
1012 	int num_alloc_ioq_vectors;
1013 	char *aux_irq_name = NULL;
1014 	int num_ioq_vectors;
1015 	int irqret, err;
1016 
1017 	if (oct->msix_on) {
1018 		oct->num_msix_irqs = num_ioqs;
1019 		if (OCTEON_CN23XX_PF(oct)) {
1020 			num_interrupts = MAX_IOQ_INTERRUPTS_PER_PF + 1;
1021 
1022 			/* one non ioq interrupt for handling
1023 			 * sli_mac_pf_int_sum
1024 			 */
1025 			oct->num_msix_irqs += 1;
1026 		} else if (OCTEON_CN23XX_VF(oct)) {
1027 			num_interrupts = MAX_IOQ_INTERRUPTS_PER_VF;
1028 		}
1029 
1030 		/* allocate storage for the names assigned to each irq */
1031 		oct->irq_name_storage =
1032 			kcalloc(num_interrupts, INTRNAMSIZ, GFP_KERNEL);
1033 		if (!oct->irq_name_storage) {
1034 			dev_err(&oct->pci_dev->dev, "Irq name storage alloc failed...\n");
1035 			return -ENOMEM;
1036 		}
1037 
1038 		queue_irq_names = oct->irq_name_storage;
1039 
1040 		if (OCTEON_CN23XX_PF(oct))
1041 			aux_irq_name = &queue_irq_names
1042 				[IRQ_NAME_OFF(MAX_IOQ_INTERRUPTS_PER_PF)];
1043 
1044 		oct->msix_entries = kcalloc(oct->num_msix_irqs,
1045 					    sizeof(struct msix_entry),
1046 					    GFP_KERNEL);
1047 		if (!oct->msix_entries) {
1048 			dev_err(&oct->pci_dev->dev, "Memory Alloc failed...\n");
1049 			kfree(oct->irq_name_storage);
1050 			oct->irq_name_storage = NULL;
1051 			return -ENOMEM;
1052 		}
1053 
1054 		msix_entries = (struct msix_entry *)oct->msix_entries;
1055 
1056 		/*Assumption is that pf msix vectors start from pf srn to pf to
1057 		 * trs and not from 0. if not change this code
1058 		 */
1059 		if (OCTEON_CN23XX_PF(oct)) {
1060 			for (i = 0; i < oct->num_msix_irqs - 1; i++)
1061 				msix_entries[i].entry =
1062 					oct->sriov_info.pf_srn + i;
1063 
1064 			msix_entries[oct->num_msix_irqs - 1].entry =
1065 				oct->sriov_info.trs;
1066 		} else if (OCTEON_CN23XX_VF(oct)) {
1067 			for (i = 0; i < oct->num_msix_irqs; i++)
1068 				msix_entries[i].entry = i;
1069 		}
1070 		num_alloc_ioq_vectors = pci_enable_msix_range(
1071 						oct->pci_dev, msix_entries,
1072 						oct->num_msix_irqs,
1073 						oct->num_msix_irqs);
1074 		if (num_alloc_ioq_vectors < 0) {
1075 			dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
1076 			kfree(oct->msix_entries);
1077 			oct->msix_entries = NULL;
1078 			kfree(oct->irq_name_storage);
1079 			oct->irq_name_storage = NULL;
1080 			return num_alloc_ioq_vectors;
1081 		}
1082 
1083 		dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
1084 
1085 		num_ioq_vectors = oct->num_msix_irqs;
1086 		/* For PF, there is one non-ioq interrupt handler */
1087 		if (OCTEON_CN23XX_PF(oct)) {
1088 			num_ioq_vectors -= 1;
1089 
1090 			snprintf(aux_irq_name, INTRNAMSIZ,
1091 				 "LiquidIO%u-pf%u-aux", oct->octeon_id,
1092 				 oct->pf_num);
1093 			irqret = request_irq(
1094 					msix_entries[num_ioq_vectors].vector,
1095 					liquidio_legacy_intr_handler, 0,
1096 					aux_irq_name, oct);
1097 			if (irqret) {
1098 				dev_err(&oct->pci_dev->dev,
1099 					"Request_irq failed for MSIX interrupt Error: %d\n",
1100 					irqret);
1101 				pci_disable_msix(oct->pci_dev);
1102 				kfree(oct->msix_entries);
1103 				kfree(oct->irq_name_storage);
1104 				oct->irq_name_storage = NULL;
1105 				oct->msix_entries = NULL;
1106 				return irqret;
1107 			}
1108 		}
1109 		for (i = 0 ; i < num_ioq_vectors ; i++) {
1110 			if (OCTEON_CN23XX_PF(oct))
1111 				snprintf(&queue_irq_names[IRQ_NAME_OFF(i)],
1112 					 INTRNAMSIZ, "LiquidIO%u-pf%u-rxtx-%u",
1113 					 oct->octeon_id, oct->pf_num, i);
1114 
1115 			if (OCTEON_CN23XX_VF(oct))
1116 				snprintf(&queue_irq_names[IRQ_NAME_OFF(i)],
1117 					 INTRNAMSIZ, "LiquidIO%u-vf%u-rxtx-%u",
1118 					 oct->octeon_id, oct->vf_num, i);
1119 
1120 			irqret = request_irq(msix_entries[i].vector,
1121 					     liquidio_msix_intr_handler, 0,
1122 					     &queue_irq_names[IRQ_NAME_OFF(i)],
1123 					     &oct->ioq_vector[i]);
1124 
1125 			if (irqret) {
1126 				dev_err(&oct->pci_dev->dev,
1127 					"Request_irq failed for MSIX interrupt Error: %d\n",
1128 					irqret);
1129 				/* Freeing the non-ioq irq vector here . */
1130 				free_irq(msix_entries[num_ioq_vectors].vector,
1131 					 oct);
1132 
1133 				while (i) {
1134 					i--;
1135 					/* clearing affinity mask. */
1136 					irq_set_affinity_hint(
1137 						      msix_entries[i].vector,
1138 						      NULL);
1139 					free_irq(msix_entries[i].vector,
1140 						 &oct->ioq_vector[i]);
1141 				}
1142 				pci_disable_msix(oct->pci_dev);
1143 				kfree(oct->msix_entries);
1144 				kfree(oct->irq_name_storage);
1145 				oct->irq_name_storage = NULL;
1146 				oct->msix_entries = NULL;
1147 				return irqret;
1148 			}
1149 			oct->ioq_vector[i].vector = msix_entries[i].vector;
1150 			/* assign the cpu mask for this msix interrupt vector */
1151 			irq_set_affinity_hint(msix_entries[i].vector,
1152 					      &oct->ioq_vector[i].affinity_mask
1153 					      );
1154 		}
1155 		dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n",
1156 			oct->octeon_id);
1157 	} else {
1158 		err = pci_enable_msi(oct->pci_dev);
1159 		if (err)
1160 			dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1161 				 err);
1162 		else
1163 			oct->flags |= LIO_FLAG_MSI_ENABLED;
1164 
1165 		/* allocate storage for the names assigned to the irq */
1166 		oct->irq_name_storage = kzalloc(INTRNAMSIZ, GFP_KERNEL);
1167 		if (!oct->irq_name_storage)
1168 			return -ENOMEM;
1169 
1170 		queue_irq_names = oct->irq_name_storage;
1171 
1172 		if (OCTEON_CN23XX_PF(oct))
1173 			snprintf(&queue_irq_names[IRQ_NAME_OFF(0)], INTRNAMSIZ,
1174 				 "LiquidIO%u-pf%u-rxtx-%u",
1175 				 oct->octeon_id, oct->pf_num, 0);
1176 
1177 		if (OCTEON_CN23XX_VF(oct))
1178 			snprintf(&queue_irq_names[IRQ_NAME_OFF(0)], INTRNAMSIZ,
1179 				 "LiquidIO%u-vf%u-rxtx-%u",
1180 				 oct->octeon_id, oct->vf_num, 0);
1181 
1182 		irqret = request_irq(oct->pci_dev->irq,
1183 				     liquidio_legacy_intr_handler,
1184 				     IRQF_SHARED,
1185 				     &queue_irq_names[IRQ_NAME_OFF(0)], oct);
1186 		if (irqret) {
1187 			if (oct->flags & LIO_FLAG_MSI_ENABLED)
1188 				pci_disable_msi(oct->pci_dev);
1189 			dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1190 				irqret);
1191 			kfree(oct->irq_name_storage);
1192 			oct->irq_name_storage = NULL;
1193 			return irqret;
1194 		}
1195 	}
1196 	return 0;
1197 }
1198 
1199 /**
1200  * liquidio_change_mtu - Net device change_mtu
1201  * @netdev: network device
1202  * @new_mtu: the new max transmit unit size
1203  */
liquidio_change_mtu(struct net_device * netdev,int new_mtu)1204 int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
1205 {
1206 	struct lio *lio = GET_LIO(netdev);
1207 	struct octeon_device *oct = lio->oct_dev;
1208 	struct octeon_soft_command *sc;
1209 	union octnet_cmd *ncmd;
1210 	int ret = 0;
1211 
1212 	sc = (struct octeon_soft_command *)
1213 		octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE, 16, 0);
1214 	if (!sc) {
1215 		netif_info(lio, rx_err, lio->netdev,
1216 			   "Failed to allocate soft command\n");
1217 		return -ENOMEM;
1218 	}
1219 
1220 	ncmd = (union octnet_cmd *)sc->virtdptr;
1221 
1222 	init_completion(&sc->complete);
1223 	sc->sc_status = OCTEON_REQUEST_PENDING;
1224 
1225 	ncmd->u64 = 0;
1226 	ncmd->s.cmd = OCTNET_CMD_CHANGE_MTU;
1227 	ncmd->s.param1 = new_mtu;
1228 
1229 	octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1230 
1231 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1232 
1233 	octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1234 				    OPCODE_NIC_CMD, 0, 0, 0);
1235 
1236 	ret = octeon_send_soft_command(oct, sc);
1237 	if (ret == IQ_SEND_FAILED) {
1238 		netif_info(lio, rx_err, lio->netdev, "Failed to change MTU\n");
1239 		octeon_free_soft_command(oct, sc);
1240 		return -EINVAL;
1241 	}
1242 	/* Sleep on a wait queue till the cond flag indicates that the
1243 	 * response arrived or timed-out.
1244 	 */
1245 	ret = wait_for_sc_completion_timeout(oct, sc, 0);
1246 	if (ret)
1247 		return ret;
1248 
1249 	if (sc->sc_status) {
1250 		WRITE_ONCE(sc->caller_is_done, true);
1251 		return -EINVAL;
1252 	}
1253 
1254 	netdev->mtu = new_mtu;
1255 	lio->mtu = new_mtu;
1256 
1257 	WRITE_ONCE(sc->caller_is_done, true);
1258 	return 0;
1259 }
1260 
lio_wait_for_clean_oq(struct octeon_device * oct)1261 int lio_wait_for_clean_oq(struct octeon_device *oct)
1262 {
1263 	int retry = 100, pending_pkts = 0;
1264 	int idx;
1265 
1266 	do {
1267 		pending_pkts = 0;
1268 
1269 		for (idx = 0; idx < MAX_OCTEON_OUTPUT_QUEUES(oct); idx++) {
1270 			if (!(oct->io_qmask.oq & BIT_ULL(idx)))
1271 				continue;
1272 			pending_pkts +=
1273 				atomic_read(&oct->droq[idx]->pkts_pending);
1274 		}
1275 
1276 		if (pending_pkts > 0)
1277 			schedule_timeout_uninterruptible(1);
1278 
1279 	} while (retry-- && pending_pkts);
1280 
1281 	return pending_pkts;
1282 }
1283 
1284 static void
octnet_nic_stats_callback(struct octeon_device * oct_dev,u32 status,void * ptr)1285 octnet_nic_stats_callback(struct octeon_device *oct_dev,
1286 			  u32 status, void *ptr)
1287 {
1288 	struct octeon_soft_command *sc = (struct octeon_soft_command *)ptr;
1289 	struct oct_nic_stats_resp *resp =
1290 	    (struct oct_nic_stats_resp *)sc->virtrptr;
1291 	struct nic_rx_stats *rsp_rstats = &resp->stats.fromwire;
1292 	struct nic_tx_stats *rsp_tstats = &resp->stats.fromhost;
1293 	struct nic_rx_stats *rstats = &oct_dev->link_stats.fromwire;
1294 	struct nic_tx_stats *tstats = &oct_dev->link_stats.fromhost;
1295 
1296 	if (status != OCTEON_REQUEST_TIMEOUT && !resp->status) {
1297 		octeon_swap_8B_data((u64 *)&resp->stats,
1298 				    (sizeof(struct oct_link_stats)) >> 3);
1299 
1300 		/* RX link-level stats */
1301 		rstats->total_rcvd = rsp_rstats->total_rcvd;
1302 		rstats->bytes_rcvd = rsp_rstats->bytes_rcvd;
1303 		rstats->total_bcst = rsp_rstats->total_bcst;
1304 		rstats->total_mcst = rsp_rstats->total_mcst;
1305 		rstats->runts      = rsp_rstats->runts;
1306 		rstats->ctl_rcvd   = rsp_rstats->ctl_rcvd;
1307 		/* Accounts for over/under-run of buffers */
1308 		rstats->fifo_err  = rsp_rstats->fifo_err;
1309 		rstats->dmac_drop = rsp_rstats->dmac_drop;
1310 		rstats->fcs_err   = rsp_rstats->fcs_err;
1311 		rstats->jabber_err = rsp_rstats->jabber_err;
1312 		rstats->l2_err    = rsp_rstats->l2_err;
1313 		rstats->frame_err = rsp_rstats->frame_err;
1314 		rstats->red_drops = rsp_rstats->red_drops;
1315 
1316 		/* RX firmware stats */
1317 		rstats->fw_total_rcvd = rsp_rstats->fw_total_rcvd;
1318 		rstats->fw_total_fwd = rsp_rstats->fw_total_fwd;
1319 		rstats->fw_total_mcast = rsp_rstats->fw_total_mcast;
1320 		rstats->fw_total_bcast = rsp_rstats->fw_total_bcast;
1321 		rstats->fw_err_pko = rsp_rstats->fw_err_pko;
1322 		rstats->fw_err_link = rsp_rstats->fw_err_link;
1323 		rstats->fw_err_drop = rsp_rstats->fw_err_drop;
1324 		rstats->fw_rx_vxlan = rsp_rstats->fw_rx_vxlan;
1325 		rstats->fw_rx_vxlan_err = rsp_rstats->fw_rx_vxlan_err;
1326 
1327 		/* Number of packets that are LROed      */
1328 		rstats->fw_lro_pkts = rsp_rstats->fw_lro_pkts;
1329 		/* Number of octets that are LROed       */
1330 		rstats->fw_lro_octs = rsp_rstats->fw_lro_octs;
1331 		/* Number of LRO packets formed          */
1332 		rstats->fw_total_lro = rsp_rstats->fw_total_lro;
1333 		/* Number of times lRO of packet aborted */
1334 		rstats->fw_lro_aborts = rsp_rstats->fw_lro_aborts;
1335 		rstats->fw_lro_aborts_port = rsp_rstats->fw_lro_aborts_port;
1336 		rstats->fw_lro_aborts_seq = rsp_rstats->fw_lro_aborts_seq;
1337 		rstats->fw_lro_aborts_tsval = rsp_rstats->fw_lro_aborts_tsval;
1338 		rstats->fw_lro_aborts_timer = rsp_rstats->fw_lro_aborts_timer;
1339 		/* intrmod: packet forward rate */
1340 		rstats->fwd_rate = rsp_rstats->fwd_rate;
1341 
1342 		/* TX link-level stats */
1343 		tstats->total_pkts_sent = rsp_tstats->total_pkts_sent;
1344 		tstats->total_bytes_sent = rsp_tstats->total_bytes_sent;
1345 		tstats->mcast_pkts_sent = rsp_tstats->mcast_pkts_sent;
1346 		tstats->bcast_pkts_sent = rsp_tstats->bcast_pkts_sent;
1347 		tstats->ctl_sent = rsp_tstats->ctl_sent;
1348 		/* Packets sent after one collision*/
1349 		tstats->one_collision_sent = rsp_tstats->one_collision_sent;
1350 		/* Packets sent after multiple collision*/
1351 		tstats->multi_collision_sent = rsp_tstats->multi_collision_sent;
1352 		/* Packets not sent due to max collisions */
1353 		tstats->max_collision_fail = rsp_tstats->max_collision_fail;
1354 		/* Packets not sent due to max deferrals */
1355 		tstats->max_deferral_fail = rsp_tstats->max_deferral_fail;
1356 		/* Accounts for over/under-run of buffers */
1357 		tstats->fifo_err = rsp_tstats->fifo_err;
1358 		tstats->runts = rsp_tstats->runts;
1359 		/* Total number of collisions detected */
1360 		tstats->total_collisions = rsp_tstats->total_collisions;
1361 
1362 		/* firmware stats */
1363 		tstats->fw_total_sent = rsp_tstats->fw_total_sent;
1364 		tstats->fw_total_fwd = rsp_tstats->fw_total_fwd;
1365 		tstats->fw_total_mcast_sent = rsp_tstats->fw_total_mcast_sent;
1366 		tstats->fw_total_bcast_sent = rsp_tstats->fw_total_bcast_sent;
1367 		tstats->fw_err_pko = rsp_tstats->fw_err_pko;
1368 		tstats->fw_err_pki = rsp_tstats->fw_err_pki;
1369 		tstats->fw_err_link = rsp_tstats->fw_err_link;
1370 		tstats->fw_err_drop = rsp_tstats->fw_err_drop;
1371 		tstats->fw_tso = rsp_tstats->fw_tso;
1372 		tstats->fw_tso_fwd = rsp_tstats->fw_tso_fwd;
1373 		tstats->fw_err_tso = rsp_tstats->fw_err_tso;
1374 		tstats->fw_tx_vxlan = rsp_tstats->fw_tx_vxlan;
1375 
1376 		resp->status = 1;
1377 	} else {
1378 		dev_err(&oct_dev->pci_dev->dev, "sc OPCODE_NIC_PORT_STATS command failed\n");
1379 		resp->status = -1;
1380 	}
1381 }
1382 
lio_fetch_vf_stats(struct lio * lio)1383 static int lio_fetch_vf_stats(struct lio *lio)
1384 {
1385 	struct octeon_device *oct_dev = lio->oct_dev;
1386 	struct octeon_soft_command *sc;
1387 	struct oct_nic_vf_stats_resp *resp;
1388 
1389 	int retval;
1390 
1391 	/* Alloc soft command */
1392 	sc = (struct octeon_soft_command *)
1393 		octeon_alloc_soft_command(oct_dev,
1394 					  0,
1395 					  sizeof(struct oct_nic_vf_stats_resp),
1396 					  0);
1397 
1398 	if (!sc) {
1399 		dev_err(&oct_dev->pci_dev->dev, "Soft command allocation failed\n");
1400 		retval = -ENOMEM;
1401 		goto lio_fetch_vf_stats_exit;
1402 	}
1403 
1404 	resp = (struct oct_nic_vf_stats_resp *)sc->virtrptr;
1405 	memset(resp, 0, sizeof(struct oct_nic_vf_stats_resp));
1406 
1407 	init_completion(&sc->complete);
1408 	sc->sc_status = OCTEON_REQUEST_PENDING;
1409 
1410 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1411 
1412 	octeon_prepare_soft_command(oct_dev, sc, OPCODE_NIC,
1413 				    OPCODE_NIC_VF_PORT_STATS, 0, 0, 0);
1414 
1415 	retval = octeon_send_soft_command(oct_dev, sc);
1416 	if (retval == IQ_SEND_FAILED) {
1417 		octeon_free_soft_command(oct_dev, sc);
1418 		goto lio_fetch_vf_stats_exit;
1419 	}
1420 
1421 	retval =
1422 		wait_for_sc_completion_timeout(oct_dev, sc,
1423 					       (2 * LIO_SC_MAX_TMO_MS));
1424 	if (retval)  {
1425 		dev_err(&oct_dev->pci_dev->dev,
1426 			"sc OPCODE_NIC_VF_PORT_STATS command failed\n");
1427 		goto lio_fetch_vf_stats_exit;
1428 	}
1429 
1430 	if (sc->sc_status != OCTEON_REQUEST_TIMEOUT && !resp->status) {
1431 		octeon_swap_8B_data((u64 *)&resp->spoofmac_cnt,
1432 				    (sizeof(u64)) >> 3);
1433 
1434 		if (resp->spoofmac_cnt != 0) {
1435 			dev_warn(&oct_dev->pci_dev->dev,
1436 				 "%llu Spoofed packets detected\n",
1437 				 resp->spoofmac_cnt);
1438 		}
1439 	}
1440 	WRITE_ONCE(sc->caller_is_done, 1);
1441 
1442 lio_fetch_vf_stats_exit:
1443 	return retval;
1444 }
1445 
lio_fetch_stats(struct work_struct * work)1446 void lio_fetch_stats(struct work_struct *work)
1447 {
1448 	struct cavium_wk *wk = (struct cavium_wk *)work;
1449 	struct lio *lio = wk->ctxptr;
1450 	struct octeon_device *oct_dev = lio->oct_dev;
1451 	struct octeon_soft_command *sc;
1452 	struct oct_nic_stats_resp *resp;
1453 	unsigned long time_in_jiffies;
1454 	int retval;
1455 
1456 	if (OCTEON_CN23XX_PF(oct_dev)) {
1457 		/* report spoofchk every 2 seconds */
1458 		if (!(oct_dev->vfstats_poll % LIO_VFSTATS_POLL) &&
1459 		    (oct_dev->fw_info.app_cap_flags & LIQUIDIO_SPOOFCHK_CAP) &&
1460 		    oct_dev->sriov_info.num_vfs_alloced) {
1461 			lio_fetch_vf_stats(lio);
1462 		}
1463 
1464 		oct_dev->vfstats_poll++;
1465 	}
1466 
1467 	/* Alloc soft command */
1468 	sc = (struct octeon_soft_command *)
1469 		octeon_alloc_soft_command(oct_dev,
1470 					  0,
1471 					  sizeof(struct oct_nic_stats_resp),
1472 					  0);
1473 
1474 	if (!sc) {
1475 		dev_err(&oct_dev->pci_dev->dev, "Soft command allocation failed\n");
1476 		goto lio_fetch_stats_exit;
1477 	}
1478 
1479 	resp = (struct oct_nic_stats_resp *)sc->virtrptr;
1480 	memset(resp, 0, sizeof(struct oct_nic_stats_resp));
1481 
1482 	init_completion(&sc->complete);
1483 	sc->sc_status = OCTEON_REQUEST_PENDING;
1484 
1485 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1486 
1487 	octeon_prepare_soft_command(oct_dev, sc, OPCODE_NIC,
1488 				    OPCODE_NIC_PORT_STATS, 0, 0, 0);
1489 
1490 	retval = octeon_send_soft_command(oct_dev, sc);
1491 	if (retval == IQ_SEND_FAILED) {
1492 		octeon_free_soft_command(oct_dev, sc);
1493 		goto lio_fetch_stats_exit;
1494 	}
1495 
1496 	retval = wait_for_sc_completion_timeout(oct_dev, sc,
1497 						(2 * LIO_SC_MAX_TMO_MS));
1498 	if (retval)  {
1499 		dev_err(&oct_dev->pci_dev->dev, "sc OPCODE_NIC_PORT_STATS command failed\n");
1500 		goto lio_fetch_stats_exit;
1501 	}
1502 
1503 	octnet_nic_stats_callback(oct_dev, sc->sc_status, sc);
1504 	WRITE_ONCE(sc->caller_is_done, true);
1505 
1506 lio_fetch_stats_exit:
1507 	time_in_jiffies = msecs_to_jiffies(LIQUIDIO_NDEV_STATS_POLL_TIME_MS);
1508 	if (ifstate_check(lio, LIO_IFSTATE_RUNNING))
1509 		schedule_delayed_work(&lio->stats_wk.work, time_in_jiffies);
1510 
1511 	return;
1512 }
1513 
liquidio_set_speed(struct lio * lio,int speed)1514 int liquidio_set_speed(struct lio *lio, int speed)
1515 {
1516 	struct octeon_device *oct = lio->oct_dev;
1517 	struct oct_nic_seapi_resp *resp;
1518 	struct octeon_soft_command *sc;
1519 	union octnet_cmd *ncmd;
1520 	int retval;
1521 	u32 var;
1522 
1523 	if (oct->speed_setting == speed)
1524 		return 0;
1525 
1526 	if (!OCTEON_CN23XX_PF(oct)) {
1527 		dev_err(&oct->pci_dev->dev, "%s: SET SPEED only for PF\n",
1528 			__func__);
1529 		return -EOPNOTSUPP;
1530 	}
1531 
1532 	sc = octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1533 				       sizeof(struct oct_nic_seapi_resp),
1534 				       0);
1535 	if (!sc)
1536 		return -ENOMEM;
1537 
1538 	ncmd = sc->virtdptr;
1539 	resp = sc->virtrptr;
1540 	memset(resp, 0, sizeof(struct oct_nic_seapi_resp));
1541 
1542 	init_completion(&sc->complete);
1543 	sc->sc_status = OCTEON_REQUEST_PENDING;
1544 
1545 	ncmd->u64 = 0;
1546 	ncmd->s.cmd = SEAPI_CMD_SPEED_SET;
1547 	ncmd->s.param1 = speed;
1548 
1549 	octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1550 
1551 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1552 
1553 	octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1554 				    OPCODE_NIC_UBOOT_CTL, 0, 0, 0);
1555 
1556 	retval = octeon_send_soft_command(oct, sc);
1557 	if (retval == IQ_SEND_FAILED) {
1558 		dev_info(&oct->pci_dev->dev, "Failed to send soft command\n");
1559 		octeon_free_soft_command(oct, sc);
1560 		retval = -EBUSY;
1561 	} else {
1562 		/* Wait for response or timeout */
1563 		retval = wait_for_sc_completion_timeout(oct, sc, 0);
1564 		if (retval)
1565 			return retval;
1566 
1567 		retval = resp->status;
1568 
1569 		if (retval) {
1570 			dev_err(&oct->pci_dev->dev, "%s failed, retval=%d\n",
1571 				__func__, retval);
1572 			WRITE_ONCE(sc->caller_is_done, true);
1573 
1574 			return -EIO;
1575 		}
1576 
1577 		var = be32_to_cpu((__force __be32)resp->speed);
1578 		if (var != speed) {
1579 			dev_err(&oct->pci_dev->dev,
1580 				"%s: setting failed speed= %x, expect %x\n",
1581 				__func__, var, speed);
1582 		}
1583 
1584 		oct->speed_setting = var;
1585 		WRITE_ONCE(sc->caller_is_done, true);
1586 	}
1587 
1588 	return retval;
1589 }
1590 
liquidio_get_speed(struct lio * lio)1591 int liquidio_get_speed(struct lio *lio)
1592 {
1593 	struct octeon_device *oct = lio->oct_dev;
1594 	struct oct_nic_seapi_resp *resp;
1595 	struct octeon_soft_command *sc;
1596 	union octnet_cmd *ncmd;
1597 	int retval;
1598 
1599 	sc = octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1600 				       sizeof(struct oct_nic_seapi_resp),
1601 				       0);
1602 	if (!sc)
1603 		return -ENOMEM;
1604 
1605 	ncmd = sc->virtdptr;
1606 	resp = sc->virtrptr;
1607 	memset(resp, 0, sizeof(struct oct_nic_seapi_resp));
1608 
1609 	init_completion(&sc->complete);
1610 	sc->sc_status = OCTEON_REQUEST_PENDING;
1611 
1612 	ncmd->u64 = 0;
1613 	ncmd->s.cmd = SEAPI_CMD_SPEED_GET;
1614 
1615 	octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1616 
1617 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1618 
1619 	octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1620 				    OPCODE_NIC_UBOOT_CTL, 0, 0, 0);
1621 
1622 	retval = octeon_send_soft_command(oct, sc);
1623 	if (retval == IQ_SEND_FAILED) {
1624 		dev_info(&oct->pci_dev->dev, "Failed to send soft command\n");
1625 		octeon_free_soft_command(oct, sc);
1626 		retval = -EIO;
1627 	} else {
1628 		retval = wait_for_sc_completion_timeout(oct, sc, 0);
1629 		if (retval)
1630 			return retval;
1631 
1632 		retval = resp->status;
1633 		if (retval) {
1634 			dev_err(&oct->pci_dev->dev,
1635 				"%s failed retval=%d\n", __func__, retval);
1636 			retval = -EIO;
1637 		} else {
1638 			u32 var;
1639 
1640 			var = be32_to_cpu((__force __be32)resp->speed);
1641 			oct->speed_setting = var;
1642 			if (var == 0xffff) {
1643 				/* unable to access boot variables
1644 				 * get the default value based on the NIC type
1645 				 */
1646 				if (oct->subsystem_id ==
1647 						OCTEON_CN2350_25GB_SUBSYS_ID ||
1648 				    oct->subsystem_id ==
1649 						OCTEON_CN2360_25GB_SUBSYS_ID) {
1650 					oct->no_speed_setting = 1;
1651 					oct->speed_setting = 25;
1652 				} else {
1653 					oct->speed_setting = 10;
1654 				}
1655 			}
1656 
1657 		}
1658 		WRITE_ONCE(sc->caller_is_done, true);
1659 	}
1660 
1661 	return retval;
1662 }
1663 
liquidio_set_fec(struct lio * lio,int on_off)1664 int liquidio_set_fec(struct lio *lio, int on_off)
1665 {
1666 	struct oct_nic_seapi_resp *resp;
1667 	struct octeon_soft_command *sc;
1668 	struct octeon_device *oct;
1669 	union octnet_cmd *ncmd;
1670 	int retval;
1671 	u32 var;
1672 
1673 	oct = lio->oct_dev;
1674 
1675 	if (oct->props[lio->ifidx].fec == on_off)
1676 		return 0;
1677 
1678 	if (!OCTEON_CN23XX_PF(oct)) {
1679 		dev_err(&oct->pci_dev->dev, "%s: SET FEC only for PF\n",
1680 			__func__);
1681 		return -1;
1682 	}
1683 
1684 	if (oct->speed_boot != 25)  {
1685 		dev_err(&oct->pci_dev->dev,
1686 			"Set FEC only when link speed is 25G during insmod\n");
1687 		return -1;
1688 	}
1689 
1690 	sc = octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1691 				       sizeof(struct oct_nic_seapi_resp), 0);
1692 	if (!sc) {
1693 		dev_err(&oct->pci_dev->dev,
1694 			"Failed to allocate soft command\n");
1695 		return -ENOMEM;
1696 	}
1697 
1698 	ncmd = sc->virtdptr;
1699 	resp = sc->virtrptr;
1700 	memset(resp, 0, sizeof(struct oct_nic_seapi_resp));
1701 
1702 	init_completion(&sc->complete);
1703 	sc->sc_status = OCTEON_REQUEST_PENDING;
1704 
1705 	ncmd->u64 = 0;
1706 	ncmd->s.cmd = SEAPI_CMD_FEC_SET;
1707 	ncmd->s.param1 = on_off;
1708 	/* SEAPI_CMD_FEC_DISABLE(0) or SEAPI_CMD_FEC_RS(1) */
1709 
1710 	octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1711 
1712 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1713 
1714 	octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1715 				    OPCODE_NIC_UBOOT_CTL, 0, 0, 0);
1716 
1717 	retval = octeon_send_soft_command(oct, sc);
1718 	if (retval == IQ_SEND_FAILED) {
1719 		dev_info(&oct->pci_dev->dev, "Failed to send soft command\n");
1720 		octeon_free_soft_command(oct, sc);
1721 		return -EIO;
1722 	}
1723 
1724 	retval = wait_for_sc_completion_timeout(oct, sc, 0);
1725 	if (retval)
1726 		return (-EIO);
1727 
1728 	var = be32_to_cpu(resp->fec_setting);
1729 	resp->fec_setting = var;
1730 	if (var != on_off) {
1731 		dev_err(&oct->pci_dev->dev,
1732 			"Setting failed fec= %x, expect %x\n",
1733 			var, on_off);
1734 		oct->props[lio->ifidx].fec = var;
1735 		if (resp->fec_setting == SEAPI_CMD_FEC_SET_RS)
1736 			oct->props[lio->ifidx].fec = 1;
1737 		else
1738 			oct->props[lio->ifidx].fec = 0;
1739 	}
1740 
1741 	WRITE_ONCE(sc->caller_is_done, true);
1742 
1743 	if (oct->props[lio->ifidx].fec !=
1744 	    oct->props[lio->ifidx].fec_boot) {
1745 		dev_dbg(&oct->pci_dev->dev,
1746 			"Reload driver to change fec to %s\n",
1747 			oct->props[lio->ifidx].fec ? "on" : "off");
1748 	}
1749 
1750 	return retval;
1751 }
1752 
liquidio_get_fec(struct lio * lio)1753 int liquidio_get_fec(struct lio *lio)
1754 {
1755 	struct oct_nic_seapi_resp *resp;
1756 	struct octeon_soft_command *sc;
1757 	struct octeon_device *oct;
1758 	union octnet_cmd *ncmd;
1759 	int retval;
1760 	u32 var;
1761 
1762 	oct = lio->oct_dev;
1763 
1764 	sc = octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1765 				       sizeof(struct oct_nic_seapi_resp), 0);
1766 	if (!sc)
1767 		return -ENOMEM;
1768 
1769 	ncmd = sc->virtdptr;
1770 	resp = sc->virtrptr;
1771 	memset(resp, 0, sizeof(struct oct_nic_seapi_resp));
1772 
1773 	init_completion(&sc->complete);
1774 	sc->sc_status = OCTEON_REQUEST_PENDING;
1775 
1776 	ncmd->u64 = 0;
1777 	ncmd->s.cmd = SEAPI_CMD_FEC_GET;
1778 
1779 	octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1780 
1781 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1782 
1783 	octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1784 				    OPCODE_NIC_UBOOT_CTL, 0, 0, 0);
1785 
1786 	retval = octeon_send_soft_command(oct, sc);
1787 	if (retval == IQ_SEND_FAILED) {
1788 		dev_info(&oct->pci_dev->dev,
1789 			 "%s: Failed to send soft command\n", __func__);
1790 		octeon_free_soft_command(oct, sc);
1791 		return -EIO;
1792 	}
1793 
1794 	retval = wait_for_sc_completion_timeout(oct, sc, 0);
1795 	if (retval)
1796 		return retval;
1797 
1798 	var = be32_to_cpu(resp->fec_setting);
1799 	resp->fec_setting = var;
1800 	if (resp->fec_setting == SEAPI_CMD_FEC_SET_RS)
1801 		oct->props[lio->ifidx].fec = 1;
1802 	else
1803 		oct->props[lio->ifidx].fec = 0;
1804 
1805 	WRITE_ONCE(sc->caller_is_done, true);
1806 
1807 	if (oct->props[lio->ifidx].fec !=
1808 	    oct->props[lio->ifidx].fec_boot) {
1809 		dev_dbg(&oct->pci_dev->dev,
1810 			"Reload driver to change fec to %s\n",
1811 			oct->props[lio->ifidx].fec ? "on" : "off");
1812 	}
1813 
1814 	return retval;
1815 }
1816