1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/etherdevice.h>
12 #include <net/ip.h>
13 #include <net/tso.h>
14 
15 #include "otx2_reg.h"
16 #include "otx2_common.h"
17 #include "otx2_struct.h"
18 #include "otx2_txrx.h"
19 #include "otx2_ptp.h"
20 #include "cn10k.h"
21 
22 #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx)))
23 
otx2_get_next_cqe(struct otx2_cq_queue * cq)24 static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq)
25 {
26 	struct nix_cqe_hdr_s *cqe_hdr;
27 
28 	cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head);
29 	if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID)
30 		return NULL;
31 
32 	cq->cq_head++;
33 	cq->cq_head &= (cq->cqe_cnt - 1);
34 
35 	return cqe_hdr;
36 }
37 
frag_num(unsigned int i)38 static unsigned int frag_num(unsigned int i)
39 {
40 #ifdef __BIG_ENDIAN
41 	return (i & ~3) + 3 - (i & 3);
42 #else
43 	return i;
44 #endif
45 }
46 
otx2_dma_map_skb_frag(struct otx2_nic * pfvf,struct sk_buff * skb,int seg,int * len)47 static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
48 					struct sk_buff *skb, int seg, int *len)
49 {
50 	const skb_frag_t *frag;
51 	struct page *page;
52 	int offset;
53 
54 	/* First segment is always skb->data */
55 	if (!seg) {
56 		page = virt_to_page(skb->data);
57 		offset = offset_in_page(skb->data);
58 		*len = skb_headlen(skb);
59 	} else {
60 		frag = &skb_shinfo(skb)->frags[seg - 1];
61 		page = skb_frag_page(frag);
62 		offset = skb_frag_off(frag);
63 		*len = skb_frag_size(frag);
64 	}
65 	return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE);
66 }
67 
otx2_dma_unmap_skb_frags(struct otx2_nic * pfvf,struct sg_list * sg)68 static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
69 {
70 	int seg;
71 
72 	for (seg = 0; seg < sg->num_segs; seg++) {
73 		otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
74 				    sg->size[seg], DMA_TO_DEVICE);
75 	}
76 	sg->num_segs = 0;
77 }
78 
otx2_snd_pkt_handler(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,struct otx2_snd_queue * sq,struct nix_cqe_tx_s * cqe,int budget,int * tx_pkts,int * tx_bytes)79 static void otx2_snd_pkt_handler(struct otx2_nic *pfvf,
80 				 struct otx2_cq_queue *cq,
81 				 struct otx2_snd_queue *sq,
82 				 struct nix_cqe_tx_s *cqe,
83 				 int budget, int *tx_pkts, int *tx_bytes)
84 {
85 	struct nix_send_comp_s *snd_comp = &cqe->comp;
86 	struct skb_shared_hwtstamps ts;
87 	struct sk_buff *skb = NULL;
88 	u64 timestamp, tsns;
89 	struct sg_list *sg;
90 	int err;
91 
92 	if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf))
93 		net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n",
94 				    pfvf->netdev->name, cq->cint_idx,
95 				    snd_comp->status);
96 
97 	sg = &sq->sg[snd_comp->sqe_id];
98 	skb = (struct sk_buff *)sg->skb;
99 	if (unlikely(!skb))
100 		return;
101 
102 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
103 		timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id];
104 		if (timestamp != 1) {
105 			err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
106 			if (!err) {
107 				memset(&ts, 0, sizeof(ts));
108 				ts.hwtstamp = ns_to_ktime(tsns);
109 				skb_tstamp_tx(skb, &ts);
110 			}
111 		}
112 	}
113 
114 	*tx_bytes += skb->len;
115 	(*tx_pkts)++;
116 	otx2_dma_unmap_skb_frags(pfvf, sg);
117 	napi_consume_skb(skb, budget);
118 	sg->skb = (u64)NULL;
119 }
120 
otx2_set_rxtstamp(struct otx2_nic * pfvf,struct sk_buff * skb,void * data)121 static void otx2_set_rxtstamp(struct otx2_nic *pfvf,
122 			      struct sk_buff *skb, void *data)
123 {
124 	u64 tsns;
125 	int err;
126 
127 	if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED))
128 		return;
129 
130 	/* The first 8 bytes is the timestamp */
131 	err = otx2_ptp_tstamp2time(pfvf, be64_to_cpu(*(__be64 *)data), &tsns);
132 	if (err)
133 		return;
134 
135 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns);
136 }
137 
otx2_skb_add_frag(struct otx2_nic * pfvf,struct sk_buff * skb,u64 iova,int len,struct nix_rx_parse_s * parse)138 static void otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb,
139 			      u64 iova, int len, struct nix_rx_parse_s *parse)
140 {
141 	struct page *page;
142 	int off = 0;
143 	void *va;
144 
145 	va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova));
146 
147 	if (likely(!skb_shinfo(skb)->nr_frags)) {
148 		/* Check if data starts at some nonzero offset
149 		 * from the start of the buffer.  For now the
150 		 * only possible offset is 8 bytes in the case
151 		 * where packet is prepended by a timestamp.
152 		 */
153 		if (parse->laptr) {
154 			otx2_set_rxtstamp(pfvf, skb, va);
155 			off = OTX2_HW_TIMESTAMP_LEN;
156 		}
157 	}
158 
159 	page = virt_to_page(va);
160 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
161 			va - page_address(page) + off, len - off, pfvf->rbsize);
162 
163 	otx2_dma_unmap_page(pfvf, iova - OTX2_HEAD_ROOM,
164 			    pfvf->rbsize, DMA_FROM_DEVICE);
165 }
166 
otx2_set_rxhash(struct otx2_nic * pfvf,struct nix_cqe_rx_s * cqe,struct sk_buff * skb)167 static void otx2_set_rxhash(struct otx2_nic *pfvf,
168 			    struct nix_cqe_rx_s *cqe, struct sk_buff *skb)
169 {
170 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
171 	struct otx2_rss_info *rss;
172 	u32 hash = 0;
173 
174 	if (!(pfvf->netdev->features & NETIF_F_RXHASH))
175 		return;
176 
177 	rss = &pfvf->hw.rss_info;
178 	if (rss->flowkey_cfg) {
179 		if (rss->flowkey_cfg &
180 		    ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6))
181 			hash_type = PKT_HASH_TYPE_L4;
182 		else
183 			hash_type = PKT_HASH_TYPE_L3;
184 		hash = cqe->hdr.flow_tag;
185 	}
186 	skb_set_hash(skb, hash, hash_type);
187 }
188 
otx2_free_rcv_seg(struct otx2_nic * pfvf,struct nix_cqe_rx_s * cqe,int qidx)189 static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe,
190 			      int qidx)
191 {
192 	struct nix_rx_sg_s *sg = &cqe->sg;
193 	void *end, *start;
194 	u64 *seg_addr;
195 	int seg;
196 
197 	start = (void *)sg;
198 	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
199 	while (start < end) {
200 		sg = (struct nix_rx_sg_s *)start;
201 		seg_addr = &sg->seg_addr;
202 		for (seg = 0; seg < sg->segs; seg++, seg_addr++)
203 			pfvf->hw_ops->aura_freeptr(pfvf, qidx,
204 						   *seg_addr & ~0x07ULL);
205 		start += sizeof(*sg);
206 	}
207 }
208 
otx2_check_rcv_errors(struct otx2_nic * pfvf,struct nix_cqe_rx_s * cqe,int qidx)209 static bool otx2_check_rcv_errors(struct otx2_nic *pfvf,
210 				  struct nix_cqe_rx_s *cqe, int qidx)
211 {
212 	struct otx2_drv_stats *stats = &pfvf->hw.drv_stats;
213 	struct nix_rx_parse_s *parse = &cqe->parse;
214 
215 	if (netif_msg_rx_err(pfvf))
216 		netdev_err(pfvf->netdev,
217 			   "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n",
218 			   qidx, parse->errlev, parse->errcode);
219 
220 	if (parse->errlev == NPC_ERRLVL_RE) {
221 		switch (parse->errcode) {
222 		case ERRCODE_FCS:
223 		case ERRCODE_FCS_RCV:
224 			atomic_inc(&stats->rx_fcs_errs);
225 			break;
226 		case ERRCODE_UNDERSIZE:
227 			atomic_inc(&stats->rx_undersize_errs);
228 			break;
229 		case ERRCODE_OVERSIZE:
230 			atomic_inc(&stats->rx_oversize_errs);
231 			break;
232 		case ERRCODE_OL2_LEN_MISMATCH:
233 			atomic_inc(&stats->rx_len_errs);
234 			break;
235 		default:
236 			atomic_inc(&stats->rx_other_errs);
237 			break;
238 		}
239 	} else if (parse->errlev == NPC_ERRLVL_NIX) {
240 		switch (parse->errcode) {
241 		case ERRCODE_OL3_LEN:
242 		case ERRCODE_OL4_LEN:
243 		case ERRCODE_IL3_LEN:
244 		case ERRCODE_IL4_LEN:
245 			atomic_inc(&stats->rx_len_errs);
246 			break;
247 		case ERRCODE_OL4_CSUM:
248 		case ERRCODE_IL4_CSUM:
249 			atomic_inc(&stats->rx_csum_errs);
250 			break;
251 		default:
252 			atomic_inc(&stats->rx_other_errs);
253 			break;
254 		}
255 	} else {
256 		atomic_inc(&stats->rx_other_errs);
257 		/* For now ignore all the NPC parser errors and
258 		 * pass the packets to stack.
259 		 */
260 		return false;
261 	}
262 
263 	/* If RXALL is enabled pass on packets to stack. */
264 	if (pfvf->netdev->features & NETIF_F_RXALL)
265 		return false;
266 
267 	/* Free buffer back to pool */
268 	if (cqe->sg.segs)
269 		otx2_free_rcv_seg(pfvf, cqe, qidx);
270 	return true;
271 }
272 
otx2_rcv_pkt_handler(struct otx2_nic * pfvf,struct napi_struct * napi,struct otx2_cq_queue * cq,struct nix_cqe_rx_s * cqe)273 static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf,
274 				 struct napi_struct *napi,
275 				 struct otx2_cq_queue *cq,
276 				 struct nix_cqe_rx_s *cqe)
277 {
278 	struct nix_rx_parse_s *parse = &cqe->parse;
279 	struct nix_rx_sg_s *sg = &cqe->sg;
280 	struct sk_buff *skb = NULL;
281 	void *end, *start;
282 	u64 *seg_addr;
283 	u16 *seg_size;
284 	int seg;
285 
286 	if (unlikely(parse->errlev || parse->errcode)) {
287 		if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx))
288 			return;
289 	}
290 
291 	skb = napi_get_frags(napi);
292 	if (unlikely(!skb))
293 		return;
294 
295 	start = (void *)sg;
296 	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
297 	while (start < end) {
298 		sg = (struct nix_rx_sg_s *)start;
299 		seg_addr = &sg->seg_addr;
300 		seg_size = (void *)sg;
301 		for (seg = 0; seg < sg->segs; seg++, seg_addr++) {
302 			otx2_skb_add_frag(pfvf, skb, *seg_addr, seg_size[seg],
303 					  parse);
304 			cq->pool_ptrs++;
305 		}
306 		start += sizeof(*sg);
307 	}
308 	otx2_set_rxhash(pfvf, cqe, skb);
309 
310 	skb_record_rx_queue(skb, cq->cq_idx);
311 	if (pfvf->netdev->features & NETIF_F_RXCSUM)
312 		skb->ip_summed = CHECKSUM_UNNECESSARY;
313 
314 	napi_gro_frags(napi);
315 }
316 
otx2_rx_napi_handler(struct otx2_nic * pfvf,struct napi_struct * napi,struct otx2_cq_queue * cq,int budget)317 static int otx2_rx_napi_handler(struct otx2_nic *pfvf,
318 				struct napi_struct *napi,
319 				struct otx2_cq_queue *cq, int budget)
320 {
321 	struct nix_cqe_rx_s *cqe;
322 	int processed_cqe = 0;
323 
324 	while (likely(processed_cqe < budget)) {
325 		cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head);
326 		if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID ||
327 		    !cqe->sg.seg_addr) {
328 			if (!processed_cqe)
329 				return 0;
330 			break;
331 		}
332 		cq->cq_head++;
333 		cq->cq_head &= (cq->cqe_cnt - 1);
334 
335 		otx2_rcv_pkt_handler(pfvf, napi, cq, cqe);
336 
337 		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
338 		cqe->sg.seg_addr = 0x00;
339 		processed_cqe++;
340 	}
341 
342 	/* Free CQEs to HW */
343 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
344 		     ((u64)cq->cq_idx << 32) | processed_cqe);
345 
346 	if (unlikely(!cq->pool_ptrs))
347 		return 0;
348 	/* Refill pool with new buffers */
349 	pfvf->hw_ops->refill_pool_ptrs(pfvf, cq);
350 
351 	return processed_cqe;
352 }
353 
otx2_refill_pool_ptrs(void * dev,struct otx2_cq_queue * cq)354 void otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
355 {
356 	struct otx2_nic *pfvf = dev;
357 	dma_addr_t bufptr;
358 
359 	while (cq->pool_ptrs) {
360 		if (otx2_alloc_buffer(pfvf, cq, &bufptr))
361 			break;
362 		otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM);
363 		cq->pool_ptrs--;
364 	}
365 }
366 
otx2_tx_napi_handler(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,int budget)367 static int otx2_tx_napi_handler(struct otx2_nic *pfvf,
368 				struct otx2_cq_queue *cq, int budget)
369 {
370 	int tx_pkts = 0, tx_bytes = 0;
371 	struct nix_cqe_tx_s *cqe;
372 	int processed_cqe = 0;
373 
374 	while (likely(processed_cqe < budget)) {
375 		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
376 		if (unlikely(!cqe)) {
377 			if (!processed_cqe)
378 				return 0;
379 			break;
380 		}
381 		otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[cq->cint_idx],
382 				     cqe, budget, &tx_pkts, &tx_bytes);
383 
384 		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
385 		processed_cqe++;
386 	}
387 
388 	/* Free CQEs to HW */
389 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
390 		     ((u64)cq->cq_idx << 32) | processed_cqe);
391 
392 	if (likely(tx_pkts)) {
393 		struct netdev_queue *txq;
394 
395 		txq = netdev_get_tx_queue(pfvf->netdev, cq->cint_idx);
396 		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
397 		/* Check if queue was stopped earlier due to ring full */
398 		smp_mb();
399 		if (netif_tx_queue_stopped(txq) &&
400 		    netif_carrier_ok(pfvf->netdev))
401 			netif_tx_wake_queue(txq);
402 	}
403 	return 0;
404 }
405 
otx2_napi_handler(struct napi_struct * napi,int budget)406 int otx2_napi_handler(struct napi_struct *napi, int budget)
407 {
408 	struct otx2_cq_poll *cq_poll;
409 	int workdone = 0, cq_idx, i;
410 	struct otx2_cq_queue *cq;
411 	struct otx2_qset *qset;
412 	struct otx2_nic *pfvf;
413 
414 	cq_poll = container_of(napi, struct otx2_cq_poll, napi);
415 	pfvf = (struct otx2_nic *)cq_poll->dev;
416 	qset = &pfvf->qset;
417 
418 	for (i = CQS_PER_CINT - 1; i >= 0; i--) {
419 		cq_idx = cq_poll->cq_ids[i];
420 		if (unlikely(cq_idx == CINT_INVALID_CQ))
421 			continue;
422 		cq = &qset->cq[cq_idx];
423 		if (cq->cq_type == CQ_RX) {
424 			/* If the RQ refill WQ task is running, skip napi
425 			 * scheduler for this queue.
426 			 */
427 			if (cq->refill_task_sched)
428 				continue;
429 			workdone += otx2_rx_napi_handler(pfvf, napi,
430 							 cq, budget);
431 		} else {
432 			workdone += otx2_tx_napi_handler(pfvf, cq, budget);
433 		}
434 	}
435 
436 	/* Clear the IRQ */
437 	otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0));
438 
439 	if (workdone < budget && napi_complete_done(napi, workdone)) {
440 		/* If interface is going down, don't re-enable IRQ */
441 		if (pfvf->flags & OTX2_FLAG_INTF_DOWN)
442 			return workdone;
443 
444 		/* Re-enable interrupts */
445 		otx2_write64(pfvf, NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx),
446 			     BIT_ULL(0));
447 	}
448 	return workdone;
449 }
450 
otx2_sqe_flush(void * dev,struct otx2_snd_queue * sq,int size,int qidx)451 void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq,
452 		    int size, int qidx)
453 {
454 	u64 status;
455 
456 	/* Packet data stores should finish before SQE is flushed to HW */
457 	dma_wmb();
458 
459 	do {
460 		memcpy(sq->lmt_addr, sq->sqe_base, size);
461 		status = otx2_lmt_flush(sq->io_addr);
462 	} while (status == 0);
463 
464 	sq->head++;
465 	sq->head &= (sq->sqe_cnt - 1);
466 }
467 
468 #define MAX_SEGS_PER_SG	3
469 /* Add SQE scatter/gather subdescriptor structure */
otx2_sqe_add_sg(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct sk_buff * skb,int num_segs,int * offset)470 static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
471 			    struct sk_buff *skb, int num_segs, int *offset)
472 {
473 	struct nix_sqe_sg_s *sg = NULL;
474 	u64 dma_addr, *iova = NULL;
475 	u16 *sg_lens = NULL;
476 	int seg, len;
477 
478 	sq->sg[sq->head].num_segs = 0;
479 
480 	for (seg = 0; seg < num_segs; seg++) {
481 		if ((seg % MAX_SEGS_PER_SG) == 0) {
482 			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
483 			sg->ld_type = NIX_SEND_LDTYPE_LDD;
484 			sg->subdc = NIX_SUBDC_SG;
485 			sg->segs = 0;
486 			sg_lens = (void *)sg;
487 			iova = (void *)sg + sizeof(*sg);
488 			/* Next subdc always starts at a 16byte boundary.
489 			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
490 			 */
491 			if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
492 				*offset += sizeof(*sg) + (3 * sizeof(u64));
493 			else
494 				*offset += sizeof(*sg) + sizeof(u64);
495 		}
496 		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
497 		if (dma_mapping_error(pfvf->dev, dma_addr))
498 			return false;
499 
500 		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len;
501 		sg->segs++;
502 		*iova++ = dma_addr;
503 
504 		/* Save DMA mapping info for later unmapping */
505 		sq->sg[sq->head].dma_addr[seg] = dma_addr;
506 		sq->sg[sq->head].size[seg] = len;
507 		sq->sg[sq->head].num_segs++;
508 	}
509 
510 	sq->sg[sq->head].skb = (u64)skb;
511 	return true;
512 }
513 
514 /* Add SQE extended header subdescriptor */
otx2_sqe_add_ext(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct sk_buff * skb,int * offset)515 static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
516 			     struct sk_buff *skb, int *offset)
517 {
518 	struct nix_sqe_ext_s *ext;
519 
520 	ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset);
521 	ext->subdc = NIX_SUBDC_EXT;
522 	if (skb_shinfo(skb)->gso_size) {
523 		ext->lso = 1;
524 		ext->lso_sb = skb_transport_offset(skb) + tcp_hdrlen(skb);
525 		ext->lso_mps = skb_shinfo(skb)->gso_size;
526 
527 		/* Only TSOv4 and TSOv6 GSO offloads are supported */
528 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
529 			ext->lso_format = pfvf->hw.lso_tsov4_idx;
530 
531 			/* HW adds payload size to 'ip_hdr->tot_len' while
532 			 * sending TSO segment, hence set payload length
533 			 * in IP header of the packet to just header length.
534 			 */
535 			ip_hdr(skb)->tot_len =
536 				htons(ext->lso_sb - skb_network_offset(skb));
537 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
538 			ext->lso_format = pfvf->hw.lso_tsov6_idx;
539 
540 			ipv6_hdr(skb)->payload_len =
541 				htons(ext->lso_sb - skb_network_offset(skb));
542 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
543 			__be16 l3_proto = vlan_get_protocol(skb);
544 			struct udphdr *udph = udp_hdr(skb);
545 			u16 iplen;
546 
547 			ext->lso_sb = skb_transport_offset(skb) +
548 					sizeof(struct udphdr);
549 
550 			/* HW adds payload size to length fields in IP and
551 			 * UDP headers while segmentation, hence adjust the
552 			 * lengths to just header sizes.
553 			 */
554 			iplen = htons(ext->lso_sb - skb_network_offset(skb));
555 			if (l3_proto == htons(ETH_P_IP)) {
556 				ip_hdr(skb)->tot_len = iplen;
557 				ext->lso_format = pfvf->hw.lso_udpv4_idx;
558 			} else {
559 				ipv6_hdr(skb)->payload_len = iplen;
560 				ext->lso_format = pfvf->hw.lso_udpv6_idx;
561 			}
562 
563 			udph->len = htons(sizeof(struct udphdr));
564 		}
565 	} else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
566 		ext->tstmp = 1;
567 	}
568 
569 #define OTX2_VLAN_PTR_OFFSET     (ETH_HLEN - ETH_TLEN)
570 	if (skb_vlan_tag_present(skb)) {
571 		if (skb->vlan_proto == htons(ETH_P_8021Q)) {
572 			ext->vlan1_ins_ena = 1;
573 			ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET;
574 			ext->vlan1_ins_tci = skb_vlan_tag_get(skb);
575 		} else if (skb->vlan_proto == htons(ETH_P_8021AD)) {
576 			ext->vlan0_ins_ena = 1;
577 			ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET;
578 			ext->vlan0_ins_tci = skb_vlan_tag_get(skb);
579 		}
580 	}
581 
582 	*offset += sizeof(*ext);
583 }
584 
otx2_sqe_add_mem(struct otx2_snd_queue * sq,int * offset,int alg,u64 iova)585 static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset,
586 			     int alg, u64 iova)
587 {
588 	struct nix_sqe_mem_s *mem;
589 
590 	mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset);
591 	mem->subdc = NIX_SUBDC_MEM;
592 	mem->alg = alg;
593 	mem->wmem = 1; /* wait for the memory operation */
594 	mem->addr = iova;
595 
596 	*offset += sizeof(*mem);
597 }
598 
599 /* Add SQE header subdescriptor structure */
otx2_sqe_add_hdr(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct nix_sqe_hdr_s * sqe_hdr,struct sk_buff * skb,u16 qidx)600 static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
601 			     struct nix_sqe_hdr_s *sqe_hdr,
602 			     struct sk_buff *skb, u16 qidx)
603 {
604 	int proto = 0;
605 
606 	/* Check if SQE was framed before, if yes then no need to
607 	 * set these constants again and again.
608 	 */
609 	if (!sqe_hdr->total) {
610 		/* Don't free Tx buffers to Aura */
611 		sqe_hdr->df = 1;
612 		sqe_hdr->aura = sq->aura_id;
613 		/* Post a CQE Tx after pkt transmission */
614 		sqe_hdr->pnc = 1;
615 		sqe_hdr->sq = qidx;
616 	}
617 	sqe_hdr->total = skb->len;
618 	/* Set SQE identifier which will be used later for freeing SKB */
619 	sqe_hdr->sqe_id = sq->head;
620 
621 	/* Offload TCP/UDP checksum to HW */
622 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
623 		sqe_hdr->ol3ptr = skb_network_offset(skb);
624 		sqe_hdr->ol4ptr = skb_transport_offset(skb);
625 		/* get vlan protocol Ethertype */
626 		if (eth_type_vlan(skb->protocol))
627 			skb->protocol = vlan_get_protocol(skb);
628 
629 		if (skb->protocol == htons(ETH_P_IP)) {
630 			proto = ip_hdr(skb)->protocol;
631 			/* In case of TSO, HW needs this to be explicitly set.
632 			 * So set this always, instead of adding a check.
633 			 */
634 			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM;
635 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
636 			proto = ipv6_hdr(skb)->nexthdr;
637 			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6;
638 		}
639 
640 		if (proto == IPPROTO_TCP)
641 			sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM;
642 		else if (proto == IPPROTO_UDP)
643 			sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM;
644 	}
645 }
646 
otx2_dma_map_tso_skb(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct sk_buff * skb,int sqe,int hdr_len)647 static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf,
648 				struct otx2_snd_queue *sq,
649 				struct sk_buff *skb, int sqe, int hdr_len)
650 {
651 	int num_segs = skb_shinfo(skb)->nr_frags + 1;
652 	struct sg_list *sg = &sq->sg[sqe];
653 	u64 dma_addr;
654 	int seg, len;
655 
656 	sg->num_segs = 0;
657 
658 	/* Get payload length at skb->data */
659 	len = skb_headlen(skb) - hdr_len;
660 
661 	for (seg = 0; seg < num_segs; seg++) {
662 		/* Skip skb->data, if there is no payload */
663 		if (!seg && !len)
664 			continue;
665 		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
666 		if (dma_mapping_error(pfvf->dev, dma_addr))
667 			goto unmap;
668 
669 		/* Save DMA mapping info for later unmapping */
670 		sg->dma_addr[sg->num_segs] = dma_addr;
671 		sg->size[sg->num_segs] = len;
672 		sg->num_segs++;
673 	}
674 	return 0;
675 unmap:
676 	otx2_dma_unmap_skb_frags(pfvf, sg);
677 	return -EINVAL;
678 }
679 
otx2_tso_frag_dma_addr(struct otx2_snd_queue * sq,struct sk_buff * skb,int seg,u64 seg_addr,int hdr_len,int sqe)680 static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq,
681 				  struct sk_buff *skb, int seg,
682 				  u64 seg_addr, int hdr_len, int sqe)
683 {
684 	struct sg_list *sg = &sq->sg[sqe];
685 	const skb_frag_t *frag;
686 	int offset;
687 
688 	if (seg < 0)
689 		return sg->dma_addr[0] + (seg_addr - (u64)skb->data);
690 
691 	frag = &skb_shinfo(skb)->frags[seg];
692 	offset = seg_addr - (u64)skb_frag_address(frag);
693 	if (skb_headlen(skb) - hdr_len)
694 		seg++;
695 	return sg->dma_addr[seg] + offset;
696 }
697 
otx2_sqe_tso_add_sg(struct otx2_snd_queue * sq,struct sg_list * list,int * offset)698 static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq,
699 				struct sg_list *list, int *offset)
700 {
701 	struct nix_sqe_sg_s *sg = NULL;
702 	u16 *sg_lens = NULL;
703 	u64 *iova = NULL;
704 	int seg;
705 
706 	/* Add SG descriptors with buffer addresses */
707 	for (seg = 0; seg < list->num_segs; seg++) {
708 		if ((seg % MAX_SEGS_PER_SG) == 0) {
709 			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
710 			sg->ld_type = NIX_SEND_LDTYPE_LDD;
711 			sg->subdc = NIX_SUBDC_SG;
712 			sg->segs = 0;
713 			sg_lens = (void *)sg;
714 			iova = (void *)sg + sizeof(*sg);
715 			/* Next subdc always starts at a 16byte boundary.
716 			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
717 			 */
718 			if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
719 				*offset += sizeof(*sg) + (3 * sizeof(u64));
720 			else
721 				*offset += sizeof(*sg) + sizeof(u64);
722 		}
723 		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg];
724 		*iova++ = list->dma_addr[seg];
725 		sg->segs++;
726 	}
727 }
728 
otx2_sq_append_tso(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct sk_buff * skb,u16 qidx)729 static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
730 			       struct sk_buff *skb, u16 qidx)
731 {
732 	struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx);
733 	int hdr_len, tcp_data, seg_len, pkt_len, offset;
734 	struct nix_sqe_hdr_s *sqe_hdr;
735 	int first_sqe = sq->head;
736 	struct sg_list list;
737 	struct tso_t tso;
738 
739 	hdr_len = tso_start(skb, &tso);
740 
741 	/* Map SKB's fragments to DMA.
742 	 * It's done here to avoid mapping for every TSO segment's packet.
743 	 */
744 	if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) {
745 		dev_kfree_skb_any(skb);
746 		return;
747 	}
748 
749 	netdev_tx_sent_queue(txq, skb->len);
750 
751 	tcp_data = skb->len - hdr_len;
752 	while (tcp_data > 0) {
753 		char *hdr;
754 
755 		seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data);
756 		tcp_data -= seg_len;
757 
758 		/* Set SQE's SEND_HDR */
759 		memset(sq->sqe_base, 0, sq->sqe_size);
760 		sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
761 		otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
762 		offset = sizeof(*sqe_hdr);
763 
764 		/* Add TSO segment's pkt header */
765 		hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE);
766 		tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0);
767 		list.dma_addr[0] =
768 			sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE);
769 		list.size[0] = hdr_len;
770 		list.num_segs = 1;
771 
772 		/* Add TSO segment's payload data fragments */
773 		pkt_len = hdr_len;
774 		while (seg_len > 0) {
775 			int size;
776 
777 			size = min_t(int, tso.size, seg_len);
778 
779 			list.size[list.num_segs] = size;
780 			list.dma_addr[list.num_segs] =
781 				otx2_tso_frag_dma_addr(sq, skb,
782 						       tso.next_frag_idx - 1,
783 						       (u64)tso.data, hdr_len,
784 						       first_sqe);
785 			list.num_segs++;
786 			pkt_len += size;
787 			seg_len -= size;
788 			tso_build_data(skb, &tso, size);
789 		}
790 		sqe_hdr->total = pkt_len;
791 		otx2_sqe_tso_add_sg(sq, &list, &offset);
792 
793 		/* DMA mappings and skb needs to be freed only after last
794 		 * TSO segment is transmitted out. So set 'PNC' only for
795 		 * last segment. Also point last segment's sqe_id to first
796 		 * segment's SQE index where skb address and DMA mappings
797 		 * are saved.
798 		 */
799 		if (!tcp_data) {
800 			sqe_hdr->pnc = 1;
801 			sqe_hdr->sqe_id = first_sqe;
802 			sq->sg[first_sqe].skb = (u64)skb;
803 		} else {
804 			sqe_hdr->pnc = 0;
805 		}
806 
807 		sqe_hdr->sizem1 = (offset / 16) - 1;
808 
809 		/* Flush SQE to HW */
810 		pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
811 	}
812 }
813 
is_hw_tso_supported(struct otx2_nic * pfvf,struct sk_buff * skb)814 static bool is_hw_tso_supported(struct otx2_nic *pfvf,
815 				struct sk_buff *skb)
816 {
817 	int payload_len, last_seg_size;
818 
819 	if (test_bit(HW_TSO, &pfvf->hw.cap_flag))
820 		return true;
821 
822 	/* On 96xx A0, HW TSO not supported */
823 	if (!is_96xx_B0(pfvf->pdev))
824 		return false;
825 
826 	/* HW has an issue due to which when the payload of the last LSO
827 	 * segment is shorter than 16 bytes, some header fields may not
828 	 * be correctly modified, hence don't offload such TSO segments.
829 	 */
830 
831 	payload_len = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
832 	last_seg_size = payload_len % skb_shinfo(skb)->gso_size;
833 	if (last_seg_size && last_seg_size < 16)
834 		return false;
835 
836 	return true;
837 }
838 
otx2_get_sqe_count(struct otx2_nic * pfvf,struct sk_buff * skb)839 static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb)
840 {
841 	if (!skb_shinfo(skb)->gso_size)
842 		return 1;
843 
844 	/* HW TSO */
845 	if (is_hw_tso_supported(pfvf, skb))
846 		return 1;
847 
848 	/* SW TSO */
849 	return skb_shinfo(skb)->gso_segs;
850 }
851 
otx2_set_txtstamp(struct otx2_nic * pfvf,struct sk_buff * skb,struct otx2_snd_queue * sq,int * offset)852 static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb,
853 			      struct otx2_snd_queue *sq, int *offset)
854 {
855 	u64 iova;
856 
857 	if (!skb_shinfo(skb)->gso_size &&
858 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
859 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
860 		iova = sq->timestamps->iova + (sq->head * sizeof(u64));
861 		otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova);
862 	} else {
863 		skb_tx_timestamp(skb);
864 	}
865 }
866 
otx2_sq_append_skb(struct net_device * netdev,struct otx2_snd_queue * sq,struct sk_buff * skb,u16 qidx)867 bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq,
868 			struct sk_buff *skb, u16 qidx)
869 {
870 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx);
871 	struct otx2_nic *pfvf = netdev_priv(netdev);
872 	int offset, num_segs, free_sqe;
873 	struct nix_sqe_hdr_s *sqe_hdr;
874 
875 	/* Check if there is room for new SQE.
876 	 * 'Num of SQBs freed to SQ's pool - SQ's Aura count'
877 	 * will give free SQE count.
878 	 */
879 	free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb;
880 
881 	if (free_sqe < sq->sqe_thresh ||
882 	    free_sqe < otx2_get_sqe_count(pfvf, skb))
883 		return false;
884 
885 	num_segs = skb_shinfo(skb)->nr_frags + 1;
886 
887 	/* If SKB doesn't fit in a single SQE, linearize it.
888 	 * TODO: Consider adding JUMP descriptor instead.
889 	 */
890 	if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) {
891 		if (__skb_linearize(skb)) {
892 			dev_kfree_skb_any(skb);
893 			return true;
894 		}
895 		num_segs = skb_shinfo(skb)->nr_frags + 1;
896 	}
897 
898 	if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) {
899 		/* Insert vlan tag before giving pkt to tso */
900 		if (skb_vlan_tag_present(skb))
901 			skb = __vlan_hwaccel_push_inside(skb);
902 		otx2_sq_append_tso(pfvf, sq, skb, qidx);
903 		return true;
904 	}
905 
906 	/* Set SQE's SEND_HDR.
907 	 * Do not clear the first 64bit as it contains constant info.
908 	 */
909 	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
910 	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
911 	otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
912 	offset = sizeof(*sqe_hdr);
913 
914 	/* Add extended header if needed */
915 	otx2_sqe_add_ext(pfvf, sq, skb, &offset);
916 
917 	/* Add SG subdesc with data frags */
918 	if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) {
919 		otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]);
920 		return false;
921 	}
922 
923 	otx2_set_txtstamp(pfvf, skb, sq, &offset);
924 
925 	sqe_hdr->sizem1 = (offset / 16) - 1;
926 
927 	netdev_tx_sent_queue(txq, skb->len);
928 
929 	/* Flush SQE to HW */
930 	pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
931 
932 	return true;
933 }
934 EXPORT_SYMBOL(otx2_sq_append_skb);
935 
otx2_cleanup_rx_cqes(struct otx2_nic * pfvf,struct otx2_cq_queue * cq)936 void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
937 {
938 	struct nix_cqe_rx_s *cqe;
939 	int processed_cqe = 0;
940 	u64 iova, pa;
941 
942 	while ((cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq))) {
943 		if (!cqe->sg.subdc)
944 			continue;
945 		processed_cqe++;
946 		if (cqe->sg.segs > 1) {
947 			otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx);
948 			continue;
949 		}
950 		iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
951 		pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
952 		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, DMA_FROM_DEVICE);
953 		put_page(virt_to_page(phys_to_virt(pa)));
954 	}
955 
956 	/* Free CQEs to HW */
957 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
958 		     ((u64)cq->cq_idx << 32) | processed_cqe);
959 }
960 
otx2_cleanup_tx_cqes(struct otx2_nic * pfvf,struct otx2_cq_queue * cq)961 void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
962 {
963 	struct sk_buff *skb = NULL;
964 	struct otx2_snd_queue *sq;
965 	struct nix_cqe_tx_s *cqe;
966 	int processed_cqe = 0;
967 	struct sg_list *sg;
968 
969 	sq = &pfvf->qset.sq[cq->cint_idx];
970 
971 	while ((cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq))) {
972 		sg = &sq->sg[cqe->comp.sqe_id];
973 		skb = (struct sk_buff *)sg->skb;
974 		if (skb) {
975 			otx2_dma_unmap_skb_frags(pfvf, sg);
976 			dev_kfree_skb_any(skb);
977 			sg->skb = (u64)NULL;
978 		}
979 		processed_cqe++;
980 	}
981 
982 	/* Free CQEs to HW */
983 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
984 		     ((u64)cq->cq_idx << 32) | processed_cqe);
985 }
986 
otx2_rxtx_enable(struct otx2_nic * pfvf,bool enable)987 int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable)
988 {
989 	struct msg_req *msg;
990 	int err;
991 
992 	mutex_lock(&pfvf->mbox.lock);
993 	if (enable)
994 		msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox);
995 	else
996 		msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox);
997 
998 	if (!msg) {
999 		mutex_unlock(&pfvf->mbox.lock);
1000 		return -ENOMEM;
1001 	}
1002 
1003 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1004 	mutex_unlock(&pfvf->mbox.lock);
1005 	return err;
1006 }
1007