1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26 
27 /* SPI register offsets */
28 #define SPI_CR					0x0000
29 #define SPI_MR					0x0004
30 #define SPI_RDR					0x0008
31 #define SPI_TDR					0x000c
32 #define SPI_SR					0x0010
33 #define SPI_IER					0x0014
34 #define SPI_IDR					0x0018
35 #define SPI_IMR					0x001c
36 #define SPI_CSR0				0x0030
37 #define SPI_CSR1				0x0034
38 #define SPI_CSR2				0x0038
39 #define SPI_CSR3				0x003c
40 #define SPI_FMR					0x0040
41 #define SPI_FLR					0x0044
42 #define SPI_VERSION				0x00fc
43 #define SPI_RPR					0x0100
44 #define SPI_RCR					0x0104
45 #define SPI_TPR					0x0108
46 #define SPI_TCR					0x010c
47 #define SPI_RNPR				0x0110
48 #define SPI_RNCR				0x0114
49 #define SPI_TNPR				0x0118
50 #define SPI_TNCR				0x011c
51 #define SPI_PTCR				0x0120
52 #define SPI_PTSR				0x0124
53 
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET			0
56 #define SPI_SPIEN_SIZE				1
57 #define SPI_SPIDIS_OFFSET			1
58 #define SPI_SPIDIS_SIZE				1
59 #define SPI_SWRST_OFFSET			7
60 #define SPI_SWRST_SIZE				1
61 #define SPI_LASTXFER_OFFSET			24
62 #define SPI_LASTXFER_SIZE			1
63 #define SPI_TXFCLR_OFFSET			16
64 #define SPI_TXFCLR_SIZE				1
65 #define SPI_RXFCLR_OFFSET			17
66 #define SPI_RXFCLR_SIZE				1
67 #define SPI_FIFOEN_OFFSET			30
68 #define SPI_FIFOEN_SIZE				1
69 #define SPI_FIFODIS_OFFSET			31
70 #define SPI_FIFODIS_SIZE			1
71 
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET				0
74 #define SPI_MSTR_SIZE				1
75 #define SPI_PS_OFFSET				1
76 #define SPI_PS_SIZE				1
77 #define SPI_PCSDEC_OFFSET			2
78 #define SPI_PCSDEC_SIZE				1
79 #define SPI_FDIV_OFFSET				3
80 #define SPI_FDIV_SIZE				1
81 #define SPI_MODFDIS_OFFSET			4
82 #define SPI_MODFDIS_SIZE			1
83 #define SPI_WDRBT_OFFSET			5
84 #define SPI_WDRBT_SIZE				1
85 #define SPI_LLB_OFFSET				7
86 #define SPI_LLB_SIZE				1
87 #define SPI_PCS_OFFSET				16
88 #define SPI_PCS_SIZE				4
89 #define SPI_DLYBCS_OFFSET			24
90 #define SPI_DLYBCS_SIZE				8
91 
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET				0
94 #define SPI_RD_SIZE				16
95 
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET				0
98 #define SPI_TD_SIZE				16
99 
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET				0
102 #define SPI_RDRF_SIZE				1
103 #define SPI_TDRE_OFFSET				1
104 #define SPI_TDRE_SIZE				1
105 #define SPI_MODF_OFFSET				2
106 #define SPI_MODF_SIZE				1
107 #define SPI_OVRES_OFFSET			3
108 #define SPI_OVRES_SIZE				1
109 #define SPI_ENDRX_OFFSET			4
110 #define SPI_ENDRX_SIZE				1
111 #define SPI_ENDTX_OFFSET			5
112 #define SPI_ENDTX_SIZE				1
113 #define SPI_RXBUFF_OFFSET			6
114 #define SPI_RXBUFF_SIZE				1
115 #define SPI_TXBUFE_OFFSET			7
116 #define SPI_TXBUFE_SIZE				1
117 #define SPI_NSSR_OFFSET				8
118 #define SPI_NSSR_SIZE				1
119 #define SPI_TXEMPTY_OFFSET			9
120 #define SPI_TXEMPTY_SIZE			1
121 #define SPI_SPIENS_OFFSET			16
122 #define SPI_SPIENS_SIZE				1
123 #define SPI_TXFEF_OFFSET			24
124 #define SPI_TXFEF_SIZE				1
125 #define SPI_TXFFF_OFFSET			25
126 #define SPI_TXFFF_SIZE				1
127 #define SPI_TXFTHF_OFFSET			26
128 #define SPI_TXFTHF_SIZE				1
129 #define SPI_RXFEF_OFFSET			27
130 #define SPI_RXFEF_SIZE				1
131 #define SPI_RXFFF_OFFSET			28
132 #define SPI_RXFFF_SIZE				1
133 #define SPI_RXFTHF_OFFSET			29
134 #define SPI_RXFTHF_SIZE				1
135 #define SPI_TXFPTEF_OFFSET			30
136 #define SPI_TXFPTEF_SIZE			1
137 #define SPI_RXFPTEF_OFFSET			31
138 #define SPI_RXFPTEF_SIZE			1
139 
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET				0
142 #define SPI_CPOL_SIZE				1
143 #define SPI_NCPHA_OFFSET			1
144 #define SPI_NCPHA_SIZE				1
145 #define SPI_CSAAT_OFFSET			3
146 #define SPI_CSAAT_SIZE				1
147 #define SPI_BITS_OFFSET				4
148 #define SPI_BITS_SIZE				4
149 #define SPI_SCBR_OFFSET				8
150 #define SPI_SCBR_SIZE				8
151 #define SPI_DLYBS_OFFSET			16
152 #define SPI_DLYBS_SIZE				8
153 #define SPI_DLYBCT_OFFSET			24
154 #define SPI_DLYBCT_SIZE				8
155 
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET			0
158 #define SPI_RXCTR_SIZE				16
159 
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET			0
162 #define SPI_TXCTR_SIZE				16
163 
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET			0
166 #define SPI_RXNCR_SIZE				16
167 
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET			0
170 #define SPI_TXNCR_SIZE				16
171 
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET			0
174 #define SPI_RXTEN_SIZE				1
175 #define SPI_RXTDIS_OFFSET			1
176 #define SPI_RXTDIS_SIZE				1
177 #define SPI_TXTEN_OFFSET			8
178 #define SPI_TXTEN_SIZE				1
179 #define SPI_TXTDIS_OFFSET			9
180 #define SPI_TXTDIS_SIZE				1
181 
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET			0
184 #define SPI_TXRDYM_SIZE				2
185 #define SPI_RXRDYM_OFFSET			4
186 #define SPI_RXRDYM_SIZE				2
187 #define SPI_TXFTHRES_OFFSET			16
188 #define SPI_TXFTHRES_SIZE			6
189 #define SPI_RXFTHRES_OFFSET			24
190 #define SPI_RXFTHRES_SIZE			6
191 
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET				0
194 #define SPI_TXFL_SIZE				6
195 #define SPI_RXFL_OFFSET				16
196 #define SPI_RXFL_SIZE				6
197 
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT				0
200 #define SPI_BITS_9_BPT				1
201 #define SPI_BITS_10_BPT				2
202 #define SPI_BITS_11_BPT				3
203 #define SPI_BITS_12_BPT				4
204 #define SPI_BITS_13_BPT				5
205 #define SPI_BITS_14_BPT				6
206 #define SPI_BITS_15_BPT				7
207 #define SPI_BITS_16_BPT				8
208 #define SPI_ONE_DATA				0
209 #define SPI_TWO_DATA				1
210 #define SPI_FOUR_DATA				2
211 
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214 	(1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 	  | SPI_BF(name, value))
222 
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225 	readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227 	writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229 	writew_relaxed((value), (port)->regs + SPI_##reg)
230 
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES	16
235 
236 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
237 
238 #define AUTOSUSPEND_TIMEOUT	2000
239 
240 struct atmel_spi_caps {
241 	bool	is_spi2;
242 	bool	has_wdrbt;
243 	bool	has_dma_support;
244 	bool	has_pdc_support;
245 };
246 
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253 	spinlock_t		lock;
254 	unsigned long		flags;
255 
256 	phys_addr_t		phybase;
257 	void __iomem		*regs;
258 	int			irq;
259 	struct clk		*clk;
260 	struct platform_device	*pdev;
261 	unsigned long		spi_clk;
262 
263 	struct spi_transfer	*current_transfer;
264 	int			current_remaining_bytes;
265 	int			done_status;
266 	dma_addr_t		dma_addr_rx_bbuf;
267 	dma_addr_t		dma_addr_tx_bbuf;
268 	void			*addr_rx_bbuf;
269 	void			*addr_tx_bbuf;
270 
271 	struct completion	xfer_completion;
272 
273 	struct atmel_spi_caps	caps;
274 
275 	bool			use_dma;
276 	bool			use_pdc;
277 
278 	bool			keep_cs;
279 
280 	u32			fifo_size;
281 	u8			native_cs_free;
282 	u8			native_cs_for_gpio;
283 };
284 
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287 	u32			csr;
288 };
289 
290 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS	0xffffffff
292 
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
atmel_spi_is_v2(struct atmel_spi * as)301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303 	return as->caps.is_spi2;
304 }
305 
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323 
cs_activate(struct atmel_spi * as,struct spi_device * spi)324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326 	struct atmel_spi_device *asd = spi->controller_state;
327 	int chip_select;
328 	u32 mr;
329 
330 	if (spi->cs_gpiod)
331 		chip_select = as->native_cs_for_gpio;
332 	else
333 		chip_select = spi->chip_select;
334 
335 	if (atmel_spi_is_v2(as)) {
336 		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 		/* For the low SPI version, there is a issue that PDC transfer
338 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339 		 */
340 		spi_writel(as, CSR0, asd->csr);
341 		if (as->caps.has_wdrbt) {
342 			spi_writel(as, MR,
343 					SPI_BF(PCS, ~(0x01 << chip_select))
344 					| SPI_BIT(WDRBT)
345 					| SPI_BIT(MODFDIS)
346 					| SPI_BIT(MSTR));
347 		} else {
348 			spi_writel(as, MR,
349 					SPI_BF(PCS, ~(0x01 << chip_select))
350 					| SPI_BIT(MODFDIS)
351 					| SPI_BIT(MSTR));
352 		}
353 
354 		mr = spi_readl(as, MR);
355 		if (spi->cs_gpiod)
356 			gpiod_set_value(spi->cs_gpiod, 1);
357 	} else {
358 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
359 		int i;
360 		u32 csr;
361 
362 		/* Make sure clock polarity is correct */
363 		for (i = 0; i < spi->master->num_chipselect; i++) {
364 			csr = spi_readl(as, CSR0 + 4 * i);
365 			if ((csr ^ cpol) & SPI_BIT(CPOL))
366 				spi_writel(as, CSR0 + 4 * i,
367 						csr ^ SPI_BIT(CPOL));
368 		}
369 
370 		mr = spi_readl(as, MR);
371 		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
372 		if (spi->cs_gpiod)
373 			gpiod_set_value(spi->cs_gpiod, 1);
374 		spi_writel(as, MR, mr);
375 	}
376 
377 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
378 }
379 
cs_deactivate(struct atmel_spi * as,struct spi_device * spi)380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
381 {
382 	int chip_select;
383 	u32 mr;
384 
385 	if (spi->cs_gpiod)
386 		chip_select = as->native_cs_for_gpio;
387 	else
388 		chip_select = spi->chip_select;
389 
390 	/* only deactivate *this* device; sometimes transfers to
391 	 * another device may be active when this routine is called.
392 	 */
393 	mr = spi_readl(as, MR);
394 	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
395 		mr = SPI_BFINS(PCS, 0xf, mr);
396 		spi_writel(as, MR, mr);
397 	}
398 
399 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
400 
401 	if (!spi->cs_gpiod)
402 		spi_writel(as, CR, SPI_BIT(LASTXFER));
403 	else
404 		gpiod_set_value(spi->cs_gpiod, 0);
405 }
406 
atmel_spi_lock(struct atmel_spi * as)407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
408 {
409 	spin_lock_irqsave(&as->lock, as->flags);
410 }
411 
atmel_spi_unlock(struct atmel_spi * as)412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
413 {
414 	spin_unlock_irqrestore(&as->lock, as->flags);
415 }
416 
atmel_spi_is_vmalloc_xfer(struct spi_transfer * xfer)417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
418 {
419 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
420 }
421 
atmel_spi_use_dma(struct atmel_spi * as,struct spi_transfer * xfer)422 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
423 				struct spi_transfer *xfer)
424 {
425 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
426 }
427 
atmel_spi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)428 static bool atmel_spi_can_dma(struct spi_master *master,
429 			      struct spi_device *spi,
430 			      struct spi_transfer *xfer)
431 {
432 	struct atmel_spi *as = spi_master_get_devdata(master);
433 
434 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
435 		return atmel_spi_use_dma(as, xfer) &&
436 			!atmel_spi_is_vmalloc_xfer(xfer);
437 	else
438 		return atmel_spi_use_dma(as, xfer);
439 
440 }
441 
atmel_spi_dma_slave_config(struct atmel_spi * as,struct dma_slave_config * slave_config,u8 bits_per_word)442 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
443 				struct dma_slave_config *slave_config,
444 				u8 bits_per_word)
445 {
446 	struct spi_master *master = platform_get_drvdata(as->pdev);
447 	int err = 0;
448 
449 	if (bits_per_word > 8) {
450 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
451 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452 	} else {
453 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
454 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455 	}
456 
457 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
458 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
459 	slave_config->src_maxburst = 1;
460 	slave_config->dst_maxburst = 1;
461 	slave_config->device_fc = false;
462 
463 	/*
464 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
465 	 * the Mode Register).
466 	 * So according to the datasheet, when FIFOs are available (and
467 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
468 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
469 	 * Data Register in a single access.
470 	 * However, the first data has to be written into the lowest 16 bits and
471 	 * the second data into the highest 16 bits of the Transmit
472 	 * Data Register. For 8bit data (the most frequent case), it would
473 	 * require to rework tx_buf so each data would actualy fit 16 bits.
474 	 * So we'd rather write only one data at the time. Hence the transmit
475 	 * path works the same whether FIFOs are available (and enabled) or not.
476 	 */
477 	slave_config->direction = DMA_MEM_TO_DEV;
478 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
479 		dev_err(&as->pdev->dev,
480 			"failed to configure tx dma channel\n");
481 		err = -EINVAL;
482 	}
483 
484 	/*
485 	 * This driver configures the spi controller for master mode (MSTR bit
486 	 * set to '1' in the Mode Register).
487 	 * So according to the datasheet, when FIFOs are available (and
488 	 * enabled), the Receive FIFO operates in Single Data Mode.
489 	 * So the receive path works the same whether FIFOs are available (and
490 	 * enabled) or not.
491 	 */
492 	slave_config->direction = DMA_DEV_TO_MEM;
493 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
494 		dev_err(&as->pdev->dev,
495 			"failed to configure rx dma channel\n");
496 		err = -EINVAL;
497 	}
498 
499 	return err;
500 }
501 
atmel_spi_configure_dma(struct spi_master * master,struct atmel_spi * as)502 static int atmel_spi_configure_dma(struct spi_master *master,
503 				   struct atmel_spi *as)
504 {
505 	struct dma_slave_config	slave_config;
506 	struct device *dev = &as->pdev->dev;
507 	int err;
508 
509 	master->dma_tx = dma_request_chan(dev, "tx");
510 	if (IS_ERR(master->dma_tx)) {
511 		err = PTR_ERR(master->dma_tx);
512 		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
513 		goto error_clear;
514 	}
515 
516 	master->dma_rx = dma_request_chan(dev, "rx");
517 	if (IS_ERR(master->dma_rx)) {
518 		err = PTR_ERR(master->dma_rx);
519 		/*
520 		 * No reason to check EPROBE_DEFER here since we have already
521 		 * requested tx channel.
522 		 */
523 		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
524 		goto error;
525 	}
526 
527 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
528 	if (err)
529 		goto error;
530 
531 	dev_info(&as->pdev->dev,
532 			"Using %s (tx) and %s (rx) for DMA transfers\n",
533 			dma_chan_name(master->dma_tx),
534 			dma_chan_name(master->dma_rx));
535 
536 	return 0;
537 error:
538 	if (!IS_ERR(master->dma_rx))
539 		dma_release_channel(master->dma_rx);
540 	if (!IS_ERR(master->dma_tx))
541 		dma_release_channel(master->dma_tx);
542 error_clear:
543 	master->dma_tx = master->dma_rx = NULL;
544 	return err;
545 }
546 
atmel_spi_stop_dma(struct spi_master * master)547 static void atmel_spi_stop_dma(struct spi_master *master)
548 {
549 	if (master->dma_rx)
550 		dmaengine_terminate_all(master->dma_rx);
551 	if (master->dma_tx)
552 		dmaengine_terminate_all(master->dma_tx);
553 }
554 
atmel_spi_release_dma(struct spi_master * master)555 static void atmel_spi_release_dma(struct spi_master *master)
556 {
557 	if (master->dma_rx) {
558 		dma_release_channel(master->dma_rx);
559 		master->dma_rx = NULL;
560 	}
561 	if (master->dma_tx) {
562 		dma_release_channel(master->dma_tx);
563 		master->dma_tx = NULL;
564 	}
565 }
566 
567 /* This function is called by the DMA driver from tasklet context */
dma_callback(void * data)568 static void dma_callback(void *data)
569 {
570 	struct spi_master	*master = data;
571 	struct atmel_spi	*as = spi_master_get_devdata(master);
572 
573 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
574 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
575 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
576 		       as->current_transfer->len);
577 	}
578 	complete(&as->xfer_completion);
579 }
580 
581 /*
582  * Next transfer using PIO without FIFO.
583  */
atmel_spi_next_xfer_single(struct spi_master * master,struct spi_transfer * xfer)584 static void atmel_spi_next_xfer_single(struct spi_master *master,
585 				       struct spi_transfer *xfer)
586 {
587 	struct atmel_spi	*as = spi_master_get_devdata(master);
588 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
589 
590 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
591 
592 	/* Make sure data is not remaining in RDR */
593 	spi_readl(as, RDR);
594 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
595 		spi_readl(as, RDR);
596 		cpu_relax();
597 	}
598 
599 	if (xfer->bits_per_word > 8)
600 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
601 	else
602 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
603 
604 	dev_dbg(master->dev.parent,
605 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
606 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
607 		xfer->bits_per_word);
608 
609 	/* Enable relevant interrupts */
610 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
611 }
612 
613 /*
614  * Next transfer using PIO with FIFO.
615  */
atmel_spi_next_xfer_fifo(struct spi_master * master,struct spi_transfer * xfer)616 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
617 				     struct spi_transfer *xfer)
618 {
619 	struct atmel_spi *as = spi_master_get_devdata(master);
620 	u32 current_remaining_data, num_data;
621 	u32 offset = xfer->len - as->current_remaining_bytes;
622 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
623 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
624 	u16 td0, td1;
625 	u32 fifomr;
626 
627 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
628 
629 	/* Compute the number of data to transfer in the current iteration */
630 	current_remaining_data = ((xfer->bits_per_word > 8) ?
631 				  ((u32)as->current_remaining_bytes >> 1) :
632 				  (u32)as->current_remaining_bytes);
633 	num_data = min(current_remaining_data, as->fifo_size);
634 
635 	/* Flush RX and TX FIFOs */
636 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
637 	while (spi_readl(as, FLR))
638 		cpu_relax();
639 
640 	/* Set RX FIFO Threshold to the number of data to transfer */
641 	fifomr = spi_readl(as, FMR);
642 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
643 
644 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
645 	(void)spi_readl(as, SR);
646 
647 	/* Fill TX FIFO */
648 	while (num_data >= 2) {
649 		if (xfer->bits_per_word > 8) {
650 			td0 = *words++;
651 			td1 = *words++;
652 		} else {
653 			td0 = *bytes++;
654 			td1 = *bytes++;
655 		}
656 
657 		spi_writel(as, TDR, (td1 << 16) | td0);
658 		num_data -= 2;
659 	}
660 
661 	if (num_data) {
662 		if (xfer->bits_per_word > 8)
663 			td0 = *words++;
664 		else
665 			td0 = *bytes++;
666 
667 		spi_writew(as, TDR, td0);
668 		num_data--;
669 	}
670 
671 	dev_dbg(master->dev.parent,
672 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
673 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
674 		xfer->bits_per_word);
675 
676 	/*
677 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
678 	 * transfer completion.
679 	 */
680 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
681 }
682 
683 /*
684  * Next transfer using PIO.
685  */
atmel_spi_next_xfer_pio(struct spi_master * master,struct spi_transfer * xfer)686 static void atmel_spi_next_xfer_pio(struct spi_master *master,
687 				    struct spi_transfer *xfer)
688 {
689 	struct atmel_spi *as = spi_master_get_devdata(master);
690 
691 	if (as->fifo_size)
692 		atmel_spi_next_xfer_fifo(master, xfer);
693 	else
694 		atmel_spi_next_xfer_single(master, xfer);
695 }
696 
697 /*
698  * Submit next transfer for DMA.
699  */
atmel_spi_next_xfer_dma_submit(struct spi_master * master,struct spi_transfer * xfer,u32 * plen)700 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
701 				struct spi_transfer *xfer,
702 				u32 *plen)
703 	__must_hold(&as->lock)
704 {
705 	struct atmel_spi	*as = spi_master_get_devdata(master);
706 	struct dma_chan		*rxchan = master->dma_rx;
707 	struct dma_chan		*txchan = master->dma_tx;
708 	struct dma_async_tx_descriptor *rxdesc;
709 	struct dma_async_tx_descriptor *txdesc;
710 	struct dma_slave_config	slave_config;
711 	dma_cookie_t		cookie;
712 
713 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
714 
715 	/* Check that the channels are available */
716 	if (!rxchan || !txchan)
717 		return -ENODEV;
718 
719 	/* release lock for DMA operations */
720 	atmel_spi_unlock(as);
721 
722 	*plen = xfer->len;
723 
724 	if (atmel_spi_dma_slave_config(as, &slave_config,
725 				       xfer->bits_per_word))
726 		goto err_exit;
727 
728 	/* Send both scatterlists */
729 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
730 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
731 		rxdesc = dmaengine_prep_slave_single(rxchan,
732 						     as->dma_addr_rx_bbuf,
733 						     xfer->len,
734 						     DMA_DEV_TO_MEM,
735 						     DMA_PREP_INTERRUPT |
736 						     DMA_CTRL_ACK);
737 	} else {
738 		rxdesc = dmaengine_prep_slave_sg(rxchan,
739 						 xfer->rx_sg.sgl,
740 						 xfer->rx_sg.nents,
741 						 DMA_DEV_TO_MEM,
742 						 DMA_PREP_INTERRUPT |
743 						 DMA_CTRL_ACK);
744 	}
745 	if (!rxdesc)
746 		goto err_dma;
747 
748 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
749 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
750 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
751 		txdesc = dmaengine_prep_slave_single(txchan,
752 						     as->dma_addr_tx_bbuf,
753 						     xfer->len, DMA_MEM_TO_DEV,
754 						     DMA_PREP_INTERRUPT |
755 						     DMA_CTRL_ACK);
756 	} else {
757 		txdesc = dmaengine_prep_slave_sg(txchan,
758 						 xfer->tx_sg.sgl,
759 						 xfer->tx_sg.nents,
760 						 DMA_MEM_TO_DEV,
761 						 DMA_PREP_INTERRUPT |
762 						 DMA_CTRL_ACK);
763 	}
764 	if (!txdesc)
765 		goto err_dma;
766 
767 	dev_dbg(master->dev.parent,
768 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
769 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
770 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
771 
772 	/* Enable relevant interrupts */
773 	spi_writel(as, IER, SPI_BIT(OVRES));
774 
775 	/* Put the callback on the RX transfer only, that should finish last */
776 	rxdesc->callback = dma_callback;
777 	rxdesc->callback_param = master;
778 
779 	/* Submit and fire RX and TX with TX last so we're ready to read! */
780 	cookie = rxdesc->tx_submit(rxdesc);
781 	if (dma_submit_error(cookie))
782 		goto err_dma;
783 	cookie = txdesc->tx_submit(txdesc);
784 	if (dma_submit_error(cookie))
785 		goto err_dma;
786 	rxchan->device->device_issue_pending(rxchan);
787 	txchan->device->device_issue_pending(txchan);
788 
789 	/* take back lock */
790 	atmel_spi_lock(as);
791 	return 0;
792 
793 err_dma:
794 	spi_writel(as, IDR, SPI_BIT(OVRES));
795 	atmel_spi_stop_dma(master);
796 err_exit:
797 	atmel_spi_lock(as);
798 	return -ENOMEM;
799 }
800 
atmel_spi_next_xfer_data(struct spi_master * master,struct spi_transfer * xfer,dma_addr_t * tx_dma,dma_addr_t * rx_dma,u32 * plen)801 static void atmel_spi_next_xfer_data(struct spi_master *master,
802 				struct spi_transfer *xfer,
803 				dma_addr_t *tx_dma,
804 				dma_addr_t *rx_dma,
805 				u32 *plen)
806 {
807 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
808 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
809 	if (*plen > master->max_dma_len)
810 		*plen = master->max_dma_len;
811 }
812 
atmel_spi_set_xfer_speed(struct atmel_spi * as,struct spi_device * spi,struct spi_transfer * xfer)813 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
814 				    struct spi_device *spi,
815 				    struct spi_transfer *xfer)
816 {
817 	u32			scbr, csr;
818 	unsigned long		bus_hz;
819 	int chip_select;
820 
821 	if (spi->cs_gpiod)
822 		chip_select = as->native_cs_for_gpio;
823 	else
824 		chip_select = spi->chip_select;
825 
826 	/* v1 chips start out at half the peripheral bus speed. */
827 	bus_hz = as->spi_clk;
828 	if (!atmel_spi_is_v2(as))
829 		bus_hz /= 2;
830 
831 	/*
832 	 * Calculate the lowest divider that satisfies the
833 	 * constraint, assuming div32/fdiv/mbz == 0.
834 	 */
835 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
836 
837 	/*
838 	 * If the resulting divider doesn't fit into the
839 	 * register bitfield, we can't satisfy the constraint.
840 	 */
841 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
842 		dev_err(&spi->dev,
843 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
844 			xfer->speed_hz, scbr, bus_hz/255);
845 		return -EINVAL;
846 	}
847 	if (scbr == 0) {
848 		dev_err(&spi->dev,
849 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
850 			xfer->speed_hz, scbr, bus_hz);
851 		return -EINVAL;
852 	}
853 	csr = spi_readl(as, CSR0 + 4 * chip_select);
854 	csr = SPI_BFINS(SCBR, scbr, csr);
855 	spi_writel(as, CSR0 + 4 * chip_select, csr);
856 	xfer->effective_speed_hz = bus_hz / scbr;
857 
858 	return 0;
859 }
860 
861 /*
862  * Submit next transfer for PDC.
863  * lock is held, spi irq is blocked
864  */
atmel_spi_pdc_next_xfer(struct spi_master * master,struct spi_message * msg,struct spi_transfer * xfer)865 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
866 					struct spi_message *msg,
867 					struct spi_transfer *xfer)
868 {
869 	struct atmel_spi	*as = spi_master_get_devdata(master);
870 	u32			len;
871 	dma_addr_t		tx_dma, rx_dma;
872 
873 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
874 
875 	len = as->current_remaining_bytes;
876 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
877 	as->current_remaining_bytes -= len;
878 
879 	spi_writel(as, RPR, rx_dma);
880 	spi_writel(as, TPR, tx_dma);
881 
882 	if (msg->spi->bits_per_word > 8)
883 		len >>= 1;
884 	spi_writel(as, RCR, len);
885 	spi_writel(as, TCR, len);
886 
887 	dev_dbg(&msg->spi->dev,
888 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
889 		xfer, xfer->len, xfer->tx_buf,
890 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
891 		(unsigned long long)xfer->rx_dma);
892 
893 	if (as->current_remaining_bytes) {
894 		len = as->current_remaining_bytes;
895 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
896 		as->current_remaining_bytes -= len;
897 
898 		spi_writel(as, RNPR, rx_dma);
899 		spi_writel(as, TNPR, tx_dma);
900 
901 		if (msg->spi->bits_per_word > 8)
902 			len >>= 1;
903 		spi_writel(as, RNCR, len);
904 		spi_writel(as, TNCR, len);
905 
906 		dev_dbg(&msg->spi->dev,
907 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
908 			xfer, xfer->len, xfer->tx_buf,
909 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
910 			(unsigned long long)xfer->rx_dma);
911 	}
912 
913 	/* REVISIT: We're waiting for RXBUFF before we start the next
914 	 * transfer because we need to handle some difficult timing
915 	 * issues otherwise. If we wait for TXBUFE in one transfer and
916 	 * then starts waiting for RXBUFF in the next, it's difficult
917 	 * to tell the difference between the RXBUFF interrupt we're
918 	 * actually waiting for and the RXBUFF interrupt of the
919 	 * previous transfer.
920 	 *
921 	 * It should be doable, though. Just not now...
922 	 */
923 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
924 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
925 }
926 
927 /*
928  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
929  *  - The buffer is either valid for CPU access, else NULL
930  *  - If the buffer is valid, so is its DMA address
931  *
932  * This driver manages the dma address unless message->is_dma_mapped.
933  */
934 static int
atmel_spi_dma_map_xfer(struct atmel_spi * as,struct spi_transfer * xfer)935 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
936 {
937 	struct device	*dev = &as->pdev->dev;
938 
939 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
940 	if (xfer->tx_buf) {
941 		/* tx_buf is a const void* where we need a void * for the dma
942 		 * mapping */
943 		void *nonconst_tx = (void *)xfer->tx_buf;
944 
945 		xfer->tx_dma = dma_map_single(dev,
946 				nonconst_tx, xfer->len,
947 				DMA_TO_DEVICE);
948 		if (dma_mapping_error(dev, xfer->tx_dma))
949 			return -ENOMEM;
950 	}
951 	if (xfer->rx_buf) {
952 		xfer->rx_dma = dma_map_single(dev,
953 				xfer->rx_buf, xfer->len,
954 				DMA_FROM_DEVICE);
955 		if (dma_mapping_error(dev, xfer->rx_dma)) {
956 			if (xfer->tx_buf)
957 				dma_unmap_single(dev,
958 						xfer->tx_dma, xfer->len,
959 						DMA_TO_DEVICE);
960 			return -ENOMEM;
961 		}
962 	}
963 	return 0;
964 }
965 
atmel_spi_dma_unmap_xfer(struct spi_master * master,struct spi_transfer * xfer)966 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
967 				     struct spi_transfer *xfer)
968 {
969 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
970 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
971 				 xfer->len, DMA_TO_DEVICE);
972 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
973 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
974 				 xfer->len, DMA_FROM_DEVICE);
975 }
976 
atmel_spi_disable_pdc_transfer(struct atmel_spi * as)977 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
978 {
979 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
980 }
981 
982 static void
atmel_spi_pump_single_data(struct atmel_spi * as,struct spi_transfer * xfer)983 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
984 {
985 	u8		*rxp;
986 	u16		*rxp16;
987 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
988 
989 	if (xfer->bits_per_word > 8) {
990 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
991 		*rxp16 = spi_readl(as, RDR);
992 	} else {
993 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
994 		*rxp = spi_readl(as, RDR);
995 	}
996 	if (xfer->bits_per_word > 8) {
997 		if (as->current_remaining_bytes > 2)
998 			as->current_remaining_bytes -= 2;
999 		else
1000 			as->current_remaining_bytes = 0;
1001 	} else {
1002 		as->current_remaining_bytes--;
1003 	}
1004 }
1005 
1006 static void
atmel_spi_pump_fifo_data(struct atmel_spi * as,struct spi_transfer * xfer)1007 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1008 {
1009 	u32 fifolr = spi_readl(as, FLR);
1010 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1011 	u32 offset = xfer->len - as->current_remaining_bytes;
1012 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1013 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1014 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1015 
1016 	/* Update the number of remaining bytes to transfer */
1017 	num_bytes = ((xfer->bits_per_word > 8) ?
1018 		     (num_data << 1) :
1019 		     num_data);
1020 
1021 	if (as->current_remaining_bytes > num_bytes)
1022 		as->current_remaining_bytes -= num_bytes;
1023 	else
1024 		as->current_remaining_bytes = 0;
1025 
1026 	/* Handle odd number of bytes when data are more than 8bit width */
1027 	if (xfer->bits_per_word > 8)
1028 		as->current_remaining_bytes &= ~0x1;
1029 
1030 	/* Read data */
1031 	while (num_data) {
1032 		rd = spi_readl(as, RDR);
1033 		if (xfer->bits_per_word > 8)
1034 			*words++ = rd;
1035 		else
1036 			*bytes++ = rd;
1037 		num_data--;
1038 	}
1039 }
1040 
1041 /* Called from IRQ
1042  *
1043  * Must update "current_remaining_bytes" to keep track of data
1044  * to transfer.
1045  */
1046 static void
atmel_spi_pump_pio_data(struct atmel_spi * as,struct spi_transfer * xfer)1047 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1048 {
1049 	if (as->fifo_size)
1050 		atmel_spi_pump_fifo_data(as, xfer);
1051 	else
1052 		atmel_spi_pump_single_data(as, xfer);
1053 }
1054 
1055 /* Interrupt
1056  *
1057  * No need for locking in this Interrupt handler: done_status is the
1058  * only information modified.
1059  */
1060 static irqreturn_t
atmel_spi_pio_interrupt(int irq,void * dev_id)1061 atmel_spi_pio_interrupt(int irq, void *dev_id)
1062 {
1063 	struct spi_master	*master = dev_id;
1064 	struct atmel_spi	*as = spi_master_get_devdata(master);
1065 	u32			status, pending, imr;
1066 	struct spi_transfer	*xfer;
1067 	int			ret = IRQ_NONE;
1068 
1069 	imr = spi_readl(as, IMR);
1070 	status = spi_readl(as, SR);
1071 	pending = status & imr;
1072 
1073 	if (pending & SPI_BIT(OVRES)) {
1074 		ret = IRQ_HANDLED;
1075 		spi_writel(as, IDR, SPI_BIT(OVRES));
1076 		dev_warn(master->dev.parent, "overrun\n");
1077 
1078 		/*
1079 		 * When we get an overrun, we disregard the current
1080 		 * transfer. Data will not be copied back from any
1081 		 * bounce buffer and msg->actual_len will not be
1082 		 * updated with the last xfer.
1083 		 *
1084 		 * We will also not process any remaning transfers in
1085 		 * the message.
1086 		 */
1087 		as->done_status = -EIO;
1088 		smp_wmb();
1089 
1090 		/* Clear any overrun happening while cleaning up */
1091 		spi_readl(as, SR);
1092 
1093 		complete(&as->xfer_completion);
1094 
1095 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1096 		atmel_spi_lock(as);
1097 
1098 		if (as->current_remaining_bytes) {
1099 			ret = IRQ_HANDLED;
1100 			xfer = as->current_transfer;
1101 			atmel_spi_pump_pio_data(as, xfer);
1102 			if (!as->current_remaining_bytes)
1103 				spi_writel(as, IDR, pending);
1104 
1105 			complete(&as->xfer_completion);
1106 		}
1107 
1108 		atmel_spi_unlock(as);
1109 	} else {
1110 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1111 		ret = IRQ_HANDLED;
1112 		spi_writel(as, IDR, pending);
1113 	}
1114 
1115 	return ret;
1116 }
1117 
1118 static irqreturn_t
atmel_spi_pdc_interrupt(int irq,void * dev_id)1119 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1120 {
1121 	struct spi_master	*master = dev_id;
1122 	struct atmel_spi	*as = spi_master_get_devdata(master);
1123 	u32			status, pending, imr;
1124 	int			ret = IRQ_NONE;
1125 
1126 	imr = spi_readl(as, IMR);
1127 	status = spi_readl(as, SR);
1128 	pending = status & imr;
1129 
1130 	if (pending & SPI_BIT(OVRES)) {
1131 
1132 		ret = IRQ_HANDLED;
1133 
1134 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1135 				     | SPI_BIT(OVRES)));
1136 
1137 		/* Clear any overrun happening while cleaning up */
1138 		spi_readl(as, SR);
1139 
1140 		as->done_status = -EIO;
1141 
1142 		complete(&as->xfer_completion);
1143 
1144 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1145 		ret = IRQ_HANDLED;
1146 
1147 		spi_writel(as, IDR, pending);
1148 
1149 		complete(&as->xfer_completion);
1150 	}
1151 
1152 	return ret;
1153 }
1154 
atmel_word_delay_csr(struct spi_device * spi,struct atmel_spi * as)1155 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1156 {
1157 	struct spi_delay *delay = &spi->word_delay;
1158 	u32 value = delay->value;
1159 
1160 	switch (delay->unit) {
1161 	case SPI_DELAY_UNIT_NSECS:
1162 		value /= 1000;
1163 		break;
1164 	case SPI_DELAY_UNIT_USECS:
1165 		break;
1166 	default:
1167 		return -EINVAL;
1168 	}
1169 
1170 	return (as->spi_clk / 1000000 * value) >> 5;
1171 }
1172 
initialize_native_cs_for_gpio(struct atmel_spi * as)1173 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1174 {
1175 	int i;
1176 	struct spi_master *master = platform_get_drvdata(as->pdev);
1177 
1178 	if (!as->native_cs_free)
1179 		return; /* already initialized */
1180 
1181 	if (!master->cs_gpiods)
1182 		return; /* No CS GPIO */
1183 
1184 	/*
1185 	 * On the first version of the controller (AT91RM9200), CS0
1186 	 * can't be used associated with GPIO
1187 	 */
1188 	if (atmel_spi_is_v2(as))
1189 		i = 0;
1190 	else
1191 		i = 1;
1192 
1193 	for (; i < 4; i++)
1194 		if (master->cs_gpiods[i])
1195 			as->native_cs_free |= BIT(i);
1196 
1197 	if (as->native_cs_free)
1198 		as->native_cs_for_gpio = ffs(as->native_cs_free);
1199 }
1200 
atmel_spi_setup(struct spi_device * spi)1201 static int atmel_spi_setup(struct spi_device *spi)
1202 {
1203 	struct atmel_spi	*as;
1204 	struct atmel_spi_device	*asd;
1205 	u32			csr;
1206 	unsigned int		bits = spi->bits_per_word;
1207 	int chip_select;
1208 	int			word_delay_csr;
1209 
1210 	as = spi_master_get_devdata(spi->master);
1211 
1212 	/* see notes above re chipselect */
1213 	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1214 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1215 		return -EINVAL;
1216 	}
1217 
1218 	/* Setup() is called during spi_register_controller(aka
1219 	 * spi_register_master) but after all membmers of the cs_gpiod
1220 	 * array have been filled, so we can looked for which native
1221 	 * CS will be free for using with GPIO
1222 	 */
1223 	initialize_native_cs_for_gpio(as);
1224 
1225 	if (spi->cs_gpiod && as->native_cs_free) {
1226 		dev_err(&spi->dev,
1227 			"No native CS available to support this GPIO CS\n");
1228 		return -EBUSY;
1229 	}
1230 
1231 	if (spi->cs_gpiod)
1232 		chip_select = as->native_cs_for_gpio;
1233 	else
1234 		chip_select = spi->chip_select;
1235 
1236 	csr = SPI_BF(BITS, bits - 8);
1237 	if (spi->mode & SPI_CPOL)
1238 		csr |= SPI_BIT(CPOL);
1239 	if (!(spi->mode & SPI_CPHA))
1240 		csr |= SPI_BIT(NCPHA);
1241 
1242 	if (!spi->cs_gpiod)
1243 		csr |= SPI_BIT(CSAAT);
1244 	csr |= SPI_BF(DLYBS, 0);
1245 
1246 	word_delay_csr = atmel_word_delay_csr(spi, as);
1247 	if (word_delay_csr < 0)
1248 		return word_delay_csr;
1249 
1250 	/* DLYBCT adds delays between words.  This is useful for slow devices
1251 	 * that need a bit of time to setup the next transfer.
1252 	 */
1253 	csr |= SPI_BF(DLYBCT, word_delay_csr);
1254 
1255 	asd = spi->controller_state;
1256 	if (!asd) {
1257 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1258 		if (!asd)
1259 			return -ENOMEM;
1260 
1261 		spi->controller_state = asd;
1262 	}
1263 
1264 	asd->csr = csr;
1265 
1266 	dev_dbg(&spi->dev,
1267 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1268 		bits, spi->mode, spi->chip_select, csr);
1269 
1270 	if (!atmel_spi_is_v2(as))
1271 		spi_writel(as, CSR0 + 4 * chip_select, csr);
1272 
1273 	return 0;
1274 }
1275 
atmel_spi_one_transfer(struct spi_master * master,struct spi_message * msg,struct spi_transfer * xfer)1276 static int atmel_spi_one_transfer(struct spi_master *master,
1277 					struct spi_message *msg,
1278 					struct spi_transfer *xfer)
1279 {
1280 	struct atmel_spi	*as;
1281 	struct spi_device	*spi = msg->spi;
1282 	u8			bits;
1283 	u32			len;
1284 	struct atmel_spi_device	*asd;
1285 	int			timeout;
1286 	int			ret;
1287 	unsigned long		dma_timeout;
1288 
1289 	as = spi_master_get_devdata(master);
1290 
1291 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1292 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1293 		return -EINVAL;
1294 	}
1295 
1296 	asd = spi->controller_state;
1297 	bits = (asd->csr >> 4) & 0xf;
1298 	if (bits != xfer->bits_per_word - 8) {
1299 		dev_dbg(&spi->dev,
1300 			"you can't yet change bits_per_word in transfers\n");
1301 		return -ENOPROTOOPT;
1302 	}
1303 
1304 	/*
1305 	 * DMA map early, for performance (empties dcache ASAP) and
1306 	 * better fault reporting.
1307 	 */
1308 	if ((!msg->is_dma_mapped)
1309 		&& as->use_pdc) {
1310 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1311 			return -ENOMEM;
1312 	}
1313 
1314 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1315 
1316 	as->done_status = 0;
1317 	as->current_transfer = xfer;
1318 	as->current_remaining_bytes = xfer->len;
1319 	while (as->current_remaining_bytes) {
1320 		reinit_completion(&as->xfer_completion);
1321 
1322 		if (as->use_pdc) {
1323 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1324 		} else if (atmel_spi_use_dma(as, xfer)) {
1325 			len = as->current_remaining_bytes;
1326 			ret = atmel_spi_next_xfer_dma_submit(master,
1327 								xfer, &len);
1328 			if (ret) {
1329 				dev_err(&spi->dev,
1330 					"unable to use DMA, fallback to PIO\n");
1331 				atmel_spi_next_xfer_pio(master, xfer);
1332 			} else {
1333 				as->current_remaining_bytes -= len;
1334 				if (as->current_remaining_bytes < 0)
1335 					as->current_remaining_bytes = 0;
1336 			}
1337 		} else {
1338 			atmel_spi_next_xfer_pio(master, xfer);
1339 		}
1340 
1341 		/* interrupts are disabled, so free the lock for schedule */
1342 		atmel_spi_unlock(as);
1343 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1344 							  SPI_DMA_TIMEOUT);
1345 		atmel_spi_lock(as);
1346 		if (WARN_ON(dma_timeout == 0)) {
1347 			dev_err(&spi->dev, "spi transfer timeout\n");
1348 			as->done_status = -EIO;
1349 		}
1350 
1351 		if (as->done_status)
1352 			break;
1353 	}
1354 
1355 	if (as->done_status) {
1356 		if (as->use_pdc) {
1357 			dev_warn(master->dev.parent,
1358 				"overrun (%u/%u remaining)\n",
1359 				spi_readl(as, TCR), spi_readl(as, RCR));
1360 
1361 			/*
1362 			 * Clean up DMA registers and make sure the data
1363 			 * registers are empty.
1364 			 */
1365 			spi_writel(as, RNCR, 0);
1366 			spi_writel(as, TNCR, 0);
1367 			spi_writel(as, RCR, 0);
1368 			spi_writel(as, TCR, 0);
1369 			for (timeout = 1000; timeout; timeout--)
1370 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1371 					break;
1372 			if (!timeout)
1373 				dev_warn(master->dev.parent,
1374 					 "timeout waiting for TXEMPTY");
1375 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1376 				spi_readl(as, RDR);
1377 
1378 			/* Clear any overrun happening while cleaning up */
1379 			spi_readl(as, SR);
1380 
1381 		} else if (atmel_spi_use_dma(as, xfer)) {
1382 			atmel_spi_stop_dma(master);
1383 		}
1384 
1385 		if (!msg->is_dma_mapped
1386 			&& as->use_pdc)
1387 			atmel_spi_dma_unmap_xfer(master, xfer);
1388 
1389 		return 0;
1390 
1391 	} else {
1392 		/* only update length if no error */
1393 		msg->actual_length += xfer->len;
1394 	}
1395 
1396 	if (!msg->is_dma_mapped
1397 		&& as->use_pdc)
1398 		atmel_spi_dma_unmap_xfer(master, xfer);
1399 
1400 	spi_transfer_delay_exec(xfer);
1401 
1402 	if (xfer->cs_change) {
1403 		if (list_is_last(&xfer->transfer_list,
1404 				 &msg->transfers)) {
1405 			as->keep_cs = true;
1406 		} else {
1407 			cs_deactivate(as, msg->spi);
1408 			udelay(10);
1409 			cs_activate(as, msg->spi);
1410 		}
1411 	}
1412 
1413 	return 0;
1414 }
1415 
atmel_spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)1416 static int atmel_spi_transfer_one_message(struct spi_master *master,
1417 						struct spi_message *msg)
1418 {
1419 	struct atmel_spi *as;
1420 	struct spi_transfer *xfer;
1421 	struct spi_device *spi = msg->spi;
1422 	int ret = 0;
1423 
1424 	as = spi_master_get_devdata(master);
1425 
1426 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1427 					msg, dev_name(&spi->dev));
1428 
1429 	atmel_spi_lock(as);
1430 	cs_activate(as, spi);
1431 
1432 	as->keep_cs = false;
1433 
1434 	msg->status = 0;
1435 	msg->actual_length = 0;
1436 
1437 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1438 		trace_spi_transfer_start(msg, xfer);
1439 
1440 		ret = atmel_spi_one_transfer(master, msg, xfer);
1441 		if (ret)
1442 			goto msg_done;
1443 
1444 		trace_spi_transfer_stop(msg, xfer);
1445 	}
1446 
1447 	if (as->use_pdc)
1448 		atmel_spi_disable_pdc_transfer(as);
1449 
1450 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1451 		dev_dbg(&spi->dev,
1452 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1453 			xfer, xfer->len,
1454 			xfer->tx_buf, &xfer->tx_dma,
1455 			xfer->rx_buf, &xfer->rx_dma);
1456 	}
1457 
1458 msg_done:
1459 	if (!as->keep_cs)
1460 		cs_deactivate(as, msg->spi);
1461 
1462 	atmel_spi_unlock(as);
1463 
1464 	msg->status = as->done_status;
1465 	spi_finalize_current_message(spi->master);
1466 
1467 	return ret;
1468 }
1469 
atmel_spi_cleanup(struct spi_device * spi)1470 static void atmel_spi_cleanup(struct spi_device *spi)
1471 {
1472 	struct atmel_spi_device	*asd = spi->controller_state;
1473 
1474 	if (!asd)
1475 		return;
1476 
1477 	spi->controller_state = NULL;
1478 	kfree(asd);
1479 }
1480 
atmel_get_version(struct atmel_spi * as)1481 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1482 {
1483 	return spi_readl(as, VERSION) & 0x00000fff;
1484 }
1485 
atmel_get_caps(struct atmel_spi * as)1486 static void atmel_get_caps(struct atmel_spi *as)
1487 {
1488 	unsigned int version;
1489 
1490 	version = atmel_get_version(as);
1491 
1492 	as->caps.is_spi2 = version > 0x121;
1493 	as->caps.has_wdrbt = version >= 0x210;
1494 	as->caps.has_dma_support = version >= 0x212;
1495 	as->caps.has_pdc_support = version < 0x212;
1496 }
1497 
atmel_spi_init(struct atmel_spi * as)1498 static void atmel_spi_init(struct atmel_spi *as)
1499 {
1500 	spi_writel(as, CR, SPI_BIT(SWRST));
1501 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1502 
1503 	/* It is recommended to enable FIFOs first thing after reset */
1504 	if (as->fifo_size)
1505 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1506 
1507 	if (as->caps.has_wdrbt) {
1508 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1509 				| SPI_BIT(MSTR));
1510 	} else {
1511 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1512 	}
1513 
1514 	if (as->use_pdc)
1515 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1516 	spi_writel(as, CR, SPI_BIT(SPIEN));
1517 }
1518 
atmel_spi_probe(struct platform_device * pdev)1519 static int atmel_spi_probe(struct platform_device *pdev)
1520 {
1521 	struct resource		*regs;
1522 	int			irq;
1523 	struct clk		*clk;
1524 	int			ret;
1525 	struct spi_master	*master;
1526 	struct atmel_spi	*as;
1527 
1528 	/* Select default pin state */
1529 	pinctrl_pm_select_default_state(&pdev->dev);
1530 
1531 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1532 	if (!regs)
1533 		return -ENXIO;
1534 
1535 	irq = platform_get_irq(pdev, 0);
1536 	if (irq < 0)
1537 		return irq;
1538 
1539 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1540 	if (IS_ERR(clk))
1541 		return PTR_ERR(clk);
1542 
1543 	/* setup spi core then atmel-specific driver state */
1544 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1545 	if (!master)
1546 		return -ENOMEM;
1547 
1548 	/* the spi->mode bits understood by this driver: */
1549 	master->use_gpio_descriptors = true;
1550 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1551 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1552 	master->dev.of_node = pdev->dev.of_node;
1553 	master->bus_num = pdev->id;
1554 	master->num_chipselect = 4;
1555 	master->setup = atmel_spi_setup;
1556 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1557 	master->transfer_one_message = atmel_spi_transfer_one_message;
1558 	master->cleanup = atmel_spi_cleanup;
1559 	master->auto_runtime_pm = true;
1560 	master->max_dma_len = SPI_MAX_DMA_XFER;
1561 	master->can_dma = atmel_spi_can_dma;
1562 	platform_set_drvdata(pdev, master);
1563 
1564 	as = spi_master_get_devdata(master);
1565 
1566 	spin_lock_init(&as->lock);
1567 
1568 	as->pdev = pdev;
1569 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1570 	if (IS_ERR(as->regs)) {
1571 		ret = PTR_ERR(as->regs);
1572 		goto out_unmap_regs;
1573 	}
1574 	as->phybase = regs->start;
1575 	as->irq = irq;
1576 	as->clk = clk;
1577 
1578 	init_completion(&as->xfer_completion);
1579 
1580 	atmel_get_caps(as);
1581 
1582 	as->use_dma = false;
1583 	as->use_pdc = false;
1584 	if (as->caps.has_dma_support) {
1585 		ret = atmel_spi_configure_dma(master, as);
1586 		if (ret == 0) {
1587 			as->use_dma = true;
1588 		} else if (ret == -EPROBE_DEFER) {
1589 			goto out_unmap_regs;
1590 		}
1591 	} else if (as->caps.has_pdc_support) {
1592 		as->use_pdc = true;
1593 	}
1594 
1595 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1596 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1597 						      SPI_MAX_DMA_XFER,
1598 						      &as->dma_addr_rx_bbuf,
1599 						      GFP_KERNEL | GFP_DMA);
1600 		if (!as->addr_rx_bbuf) {
1601 			as->use_dma = false;
1602 		} else {
1603 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1604 					SPI_MAX_DMA_XFER,
1605 					&as->dma_addr_tx_bbuf,
1606 					GFP_KERNEL | GFP_DMA);
1607 			if (!as->addr_tx_bbuf) {
1608 				as->use_dma = false;
1609 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1610 						  as->addr_rx_bbuf,
1611 						  as->dma_addr_rx_bbuf);
1612 			}
1613 		}
1614 		if (!as->use_dma)
1615 			dev_info(master->dev.parent,
1616 				 "  can not allocate dma coherent memory\n");
1617 	}
1618 
1619 	if (as->caps.has_dma_support && !as->use_dma)
1620 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1621 
1622 	if (as->use_pdc) {
1623 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1624 					0, dev_name(&pdev->dev), master);
1625 	} else {
1626 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1627 					0, dev_name(&pdev->dev), master);
1628 	}
1629 	if (ret)
1630 		goto out_unmap_regs;
1631 
1632 	/* Initialize the hardware */
1633 	ret = clk_prepare_enable(clk);
1634 	if (ret)
1635 		goto out_free_irq;
1636 
1637 	as->spi_clk = clk_get_rate(clk);
1638 
1639 	as->fifo_size = 0;
1640 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1641 				  &as->fifo_size)) {
1642 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1643 	}
1644 
1645 	atmel_spi_init(as);
1646 
1647 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1648 	pm_runtime_use_autosuspend(&pdev->dev);
1649 	pm_runtime_set_active(&pdev->dev);
1650 	pm_runtime_enable(&pdev->dev);
1651 
1652 	ret = devm_spi_register_master(&pdev->dev, master);
1653 	if (ret)
1654 		goto out_free_dma;
1655 
1656 	/* go! */
1657 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1658 			atmel_get_version(as), (unsigned long)regs->start,
1659 			irq);
1660 
1661 	return 0;
1662 
1663 out_free_dma:
1664 	pm_runtime_disable(&pdev->dev);
1665 	pm_runtime_set_suspended(&pdev->dev);
1666 
1667 	if (as->use_dma)
1668 		atmel_spi_release_dma(master);
1669 
1670 	spi_writel(as, CR, SPI_BIT(SWRST));
1671 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1672 	clk_disable_unprepare(clk);
1673 out_free_irq:
1674 out_unmap_regs:
1675 	spi_master_put(master);
1676 	return ret;
1677 }
1678 
atmel_spi_remove(struct platform_device * pdev)1679 static int atmel_spi_remove(struct platform_device *pdev)
1680 {
1681 	struct spi_master	*master = platform_get_drvdata(pdev);
1682 	struct atmel_spi	*as = spi_master_get_devdata(master);
1683 
1684 	pm_runtime_get_sync(&pdev->dev);
1685 
1686 	/* reset the hardware and block queue progress */
1687 	if (as->use_dma) {
1688 		atmel_spi_stop_dma(master);
1689 		atmel_spi_release_dma(master);
1690 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1691 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1692 					  as->addr_tx_bbuf,
1693 					  as->dma_addr_tx_bbuf);
1694 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1695 					  as->addr_rx_bbuf,
1696 					  as->dma_addr_rx_bbuf);
1697 		}
1698 	}
1699 
1700 	spin_lock_irq(&as->lock);
1701 	spi_writel(as, CR, SPI_BIT(SWRST));
1702 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1703 	spi_readl(as, SR);
1704 	spin_unlock_irq(&as->lock);
1705 
1706 	clk_disable_unprepare(as->clk);
1707 
1708 	pm_runtime_put_noidle(&pdev->dev);
1709 	pm_runtime_disable(&pdev->dev);
1710 
1711 	return 0;
1712 }
1713 
1714 #ifdef CONFIG_PM
atmel_spi_runtime_suspend(struct device * dev)1715 static int atmel_spi_runtime_suspend(struct device *dev)
1716 {
1717 	struct spi_master *master = dev_get_drvdata(dev);
1718 	struct atmel_spi *as = spi_master_get_devdata(master);
1719 
1720 	clk_disable_unprepare(as->clk);
1721 	pinctrl_pm_select_sleep_state(dev);
1722 
1723 	return 0;
1724 }
1725 
atmel_spi_runtime_resume(struct device * dev)1726 static int atmel_spi_runtime_resume(struct device *dev)
1727 {
1728 	struct spi_master *master = dev_get_drvdata(dev);
1729 	struct atmel_spi *as = spi_master_get_devdata(master);
1730 
1731 	pinctrl_pm_select_default_state(dev);
1732 
1733 	return clk_prepare_enable(as->clk);
1734 }
1735 
1736 #ifdef CONFIG_PM_SLEEP
atmel_spi_suspend(struct device * dev)1737 static int atmel_spi_suspend(struct device *dev)
1738 {
1739 	struct spi_master *master = dev_get_drvdata(dev);
1740 	int ret;
1741 
1742 	/* Stop the queue running */
1743 	ret = spi_master_suspend(master);
1744 	if (ret)
1745 		return ret;
1746 
1747 	if (!pm_runtime_suspended(dev))
1748 		atmel_spi_runtime_suspend(dev);
1749 
1750 	return 0;
1751 }
1752 
atmel_spi_resume(struct device * dev)1753 static int atmel_spi_resume(struct device *dev)
1754 {
1755 	struct spi_master *master = dev_get_drvdata(dev);
1756 	struct atmel_spi *as = spi_master_get_devdata(master);
1757 	int ret;
1758 
1759 	ret = clk_prepare_enable(as->clk);
1760 	if (ret)
1761 		return ret;
1762 
1763 	atmel_spi_init(as);
1764 
1765 	clk_disable_unprepare(as->clk);
1766 
1767 	if (!pm_runtime_suspended(dev)) {
1768 		ret = atmel_spi_runtime_resume(dev);
1769 		if (ret)
1770 			return ret;
1771 	}
1772 
1773 	/* Start the queue running */
1774 	return spi_master_resume(master);
1775 }
1776 #endif
1777 
1778 static const struct dev_pm_ops atmel_spi_pm_ops = {
1779 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1780 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1781 			   atmel_spi_runtime_resume, NULL)
1782 };
1783 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1784 #else
1785 #define ATMEL_SPI_PM_OPS	NULL
1786 #endif
1787 
1788 static const struct of_device_id atmel_spi_dt_ids[] = {
1789 	{ .compatible = "atmel,at91rm9200-spi" },
1790 	{ /* sentinel */ }
1791 };
1792 
1793 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1794 
1795 static struct platform_driver atmel_spi_driver = {
1796 	.driver		= {
1797 		.name	= "atmel_spi",
1798 		.pm	= ATMEL_SPI_PM_OPS,
1799 		.of_match_table	= atmel_spi_dt_ids,
1800 	},
1801 	.probe		= atmel_spi_probe,
1802 	.remove		= atmel_spi_remove,
1803 };
1804 module_platform_driver(atmel_spi_driver);
1805 
1806 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1807 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1808 MODULE_LICENSE("GPL");
1809 MODULE_ALIAS("platform:atmel_spi");
1810