1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4  *
5  * Copyright 2016 Broadcom
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
26 
27 #define DRIVER_NAME "bcm_qspi"
28 
29 
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID			0x000
32 #define BSPI_SCRATCH				0x004
33 #define BSPI_MAST_N_BOOT_CTRL			0x008
34 #define BSPI_BUSY_STATUS			0x00c
35 #define BSPI_INTR_STATUS			0x010
36 #define BSPI_B0_STATUS				0x014
37 #define BSPI_B0_CTRL				0x018
38 #define BSPI_B1_STATUS				0x01c
39 #define BSPI_B1_CTRL				0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL		0x024
41 #define BSPI_FLEX_MODE_ENABLE			0x028
42 #define BSPI_BITS_PER_CYCLE			0x02c
43 #define BSPI_BITS_PER_PHASE			0x030
44 #define BSPI_CMD_AND_MODE_BYTE			0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
46 #define BSPI_BSPI_XOR_VALUE			0x03c
47 #define BSPI_BSPI_XOR_ENABLE			0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE		0x044
49 #define BSPI_BSPI_PIO_IODIR			0x048
50 #define BSPI_BSPI_PIO_DATA			0x04c
51 
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR			0x100
54 #define BSPI_RAF_NUM_WORDS			0x104
55 #define BSPI_RAF_CTRL				0x108
56 #define BSPI_RAF_FULLNESS			0x10c
57 #define BSPI_RAF_WATERMARK			0x110
58 #define BSPI_RAF_STATUS			0x114
59 #define BSPI_RAF_READ_DATA			0x118
60 #define BSPI_RAF_WORD_CNT			0x11c
61 #define BSPI_RAF_CURR_ADDR			0x120
62 
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
69 
70 #define BSPI_ADDRLEN_3BYTES			3
71 #define BSPI_ADDRLEN_4BYTES			4
72 
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
74 
75 #define BSPI_RAF_CTRL_START_MASK		BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
77 
78 #define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
80 
81 #define BSPI_READ_LENGTH			256
82 
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB				0x000
85 #define MSPI_SPCR0_MSB				0x004
86 #define MSPI_SPCR1_LSB				0x008
87 #define MSPI_SPCR1_MSB				0x00c
88 #define MSPI_NEWQP				0x010
89 #define MSPI_ENDQP				0x014
90 #define MSPI_SPCR2				0x018
91 #define MSPI_MSPI_STATUS			0x020
92 #define MSPI_CPTQP				0x024
93 #define MSPI_SPCR3				0x028
94 #define MSPI_REV				0x02c
95 #define MSPI_TXRAM				0x040
96 #define MSPI_RXRAM				0x0c0
97 #define MSPI_CDRAM				0x140
98 #define MSPI_WRITE_LOCK			0x180
99 
100 #define MSPI_MASTER_BIT			BIT(7)
101 
102 #define MSPI_NUM_CDRAM				16
103 #define MSPI_CDRAM_CONT_BIT			BIT(7)
104 #define MSPI_CDRAM_BITSE_BIT			BIT(6)
105 #define MSPI_CDRAM_PCS				0xf
106 
107 #define MSPI_SPCR2_SPE				BIT(6)
108 #define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
109 
110 #define MSPI_SPCR3_FASTBR			BIT(0)
111 #define MSPI_SPCR3_FASTDT			BIT(1)
112 #define MSPI_SPCR3_SYSCLKSEL_MASK		GENMASK(11, 10)
113 #define MSPI_SPCR3_SYSCLKSEL_27			(MSPI_SPCR3_SYSCLKSEL_MASK & \
114 						 ~(BIT(10) | BIT(11)))
115 #define MSPI_SPCR3_SYSCLKSEL_108		(MSPI_SPCR3_SYSCLKSEL_MASK & \
116 						 BIT(11))
117 
118 #define MSPI_MSPI_STATUS_SPIF			BIT(0)
119 
120 #define INTR_BASE_BIT_SHIFT			0x02
121 #define INTR_COUNT				0x07
122 
123 #define NUM_CHIPSELECT				4
124 #define QSPI_SPBR_MAX				255U
125 #define MSPI_BASE_FREQ				27000000UL
126 
127 #define OPCODE_DIOR				0xBB
128 #define OPCODE_QIOR				0xEB
129 #define OPCODE_DIOR_4B				0xBC
130 #define OPCODE_QIOR_4B				0xEC
131 
132 #define MAX_CMD_SIZE				6
133 
134 #define ADDR_4MB_MASK				GENMASK(22, 0)
135 
136 /* stop at end of transfer, no other reason */
137 #define TRANS_STATUS_BREAK_NONE		0
138 /* stop at end of spi_message */
139 #define TRANS_STATUS_BREAK_EOM			1
140 /* stop at end of spi_transfer if delay */
141 #define TRANS_STATUS_BREAK_DELAY		2
142 /* stop at end of spi_transfer if cs_change */
143 #define TRANS_STATUS_BREAK_CS_CHANGE		4
144 /* stop if we run out of bytes */
145 #define TRANS_STATUS_BREAK_NO_BYTES		8
146 
147 /* events that make us stop filling TX slots */
148 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
149 			       TRANS_STATUS_BREAK_DELAY |		\
150 			       TRANS_STATUS_BREAK_CS_CHANGE)
151 
152 /* events that make us deassert CS */
153 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
154 				     TRANS_STATUS_BREAK_CS_CHANGE)
155 
156 struct bcm_qspi_parms {
157 	u32 speed_hz;
158 	u8 mode;
159 	u8 bits_per_word;
160 };
161 
162 struct bcm_xfer_mode {
163 	bool flex_mode;
164 	unsigned int width;
165 	unsigned int addrlen;
166 	unsigned int hp;
167 };
168 
169 enum base_type {
170 	MSPI,
171 	BSPI,
172 	CHIP_SELECT,
173 	BASEMAX,
174 };
175 
176 enum irq_source {
177 	SINGLE_L2,
178 	MUXED_L1,
179 };
180 
181 struct bcm_qspi_irq {
182 	const char *irq_name;
183 	const irq_handler_t irq_handler;
184 	int irq_source;
185 	u32 mask;
186 };
187 
188 struct bcm_qspi_dev_id {
189 	const struct bcm_qspi_irq *irqp;
190 	void *dev;
191 };
192 
193 
194 struct qspi_trans {
195 	struct spi_transfer *trans;
196 	int byte;
197 	bool mspi_last_trans;
198 };
199 
200 struct bcm_qspi {
201 	struct platform_device *pdev;
202 	struct spi_master *master;
203 	struct clk *clk;
204 	u32 base_clk;
205 	u32 max_speed_hz;
206 	void __iomem *base[BASEMAX];
207 
208 	/* Some SoCs provide custom interrupt status register(s) */
209 	struct bcm_qspi_soc_intc	*soc_intc;
210 
211 	struct bcm_qspi_parms last_parms;
212 	struct qspi_trans  trans_pos;
213 	int curr_cs;
214 	int bspi_maj_rev;
215 	int bspi_min_rev;
216 	int bspi_enabled;
217 	const struct spi_mem_op *bspi_rf_op;
218 	u32 bspi_rf_op_idx;
219 	u32 bspi_rf_op_len;
220 	u32 bspi_rf_op_status;
221 	struct bcm_xfer_mode xfer_mode;
222 	u32 s3_strap_override_ctrl;
223 	bool bspi_mode;
224 	bool big_endian;
225 	int num_irqs;
226 	struct bcm_qspi_dev_id *dev_ids;
227 	struct completion mspi_done;
228 	struct completion bspi_done;
229 	u8 mspi_maj_rev;
230 	u8 mspi_min_rev;
231 	bool mspi_spcr3_sysclk;
232 };
233 
has_bspi(struct bcm_qspi * qspi)234 static inline bool has_bspi(struct bcm_qspi *qspi)
235 {
236 	return qspi->bspi_mode;
237 }
238 
239 /* hardware supports spcr3 and fast baud-rate  */
bcm_qspi_has_fastbr(struct bcm_qspi * qspi)240 static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
241 {
242 	if (!has_bspi(qspi) &&
243 	    ((qspi->mspi_maj_rev >= 1) &&
244 	     (qspi->mspi_min_rev >= 5)))
245 		return true;
246 
247 	return false;
248 }
249 
250 /* hardware supports sys clk 108Mhz  */
bcm_qspi_has_sysclk_108(struct bcm_qspi * qspi)251 static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
252 {
253 	if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
254 	    ((qspi->mspi_maj_rev >= 1) &&
255 	     (qspi->mspi_min_rev >= 6))))
256 		return true;
257 
258 	return false;
259 }
260 
bcm_qspi_spbr_min(struct bcm_qspi * qspi)261 static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
262 {
263 	if (bcm_qspi_has_fastbr(qspi))
264 		return 1;
265 	else
266 		return 8;
267 }
268 
269 /* Read qspi controller register*/
bcm_qspi_read(struct bcm_qspi * qspi,enum base_type type,unsigned int offset)270 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
271 				unsigned int offset)
272 {
273 	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
274 }
275 
276 /* Write qspi controller register*/
bcm_qspi_write(struct bcm_qspi * qspi,enum base_type type,unsigned int offset,unsigned int data)277 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
278 				  unsigned int offset, unsigned int data)
279 {
280 	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
281 }
282 
283 /* BSPI helpers */
bcm_qspi_bspi_busy_poll(struct bcm_qspi * qspi)284 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
285 {
286 	int i;
287 
288 	/* this should normally finish within 10us */
289 	for (i = 0; i < 1000; i++) {
290 		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
291 			return 0;
292 		udelay(1);
293 	}
294 	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
295 	return -EIO;
296 }
297 
bcm_qspi_bspi_ver_three(struct bcm_qspi * qspi)298 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
299 {
300 	if (qspi->bspi_maj_rev < 4)
301 		return true;
302 	return false;
303 }
304 
bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi * qspi)305 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
306 {
307 	bcm_qspi_bspi_busy_poll(qspi);
308 	/* Force rising edge for the b0/b1 'flush' field */
309 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
310 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
311 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
312 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
313 }
314 
bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi * qspi)315 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
316 {
317 	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
318 				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
319 }
320 
bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi * qspi)321 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
322 {
323 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
324 
325 	/* BSPI v3 LR is LE only, convert data to host endianness */
326 	if (bcm_qspi_bspi_ver_three(qspi))
327 		data = le32_to_cpu(data);
328 
329 	return data;
330 }
331 
bcm_qspi_bspi_lr_start(struct bcm_qspi * qspi)332 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
333 {
334 	bcm_qspi_bspi_busy_poll(qspi);
335 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
336 		       BSPI_RAF_CTRL_START_MASK);
337 }
338 
bcm_qspi_bspi_lr_clear(struct bcm_qspi * qspi)339 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
340 {
341 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
342 		       BSPI_RAF_CTRL_CLEAR_MASK);
343 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
344 }
345 
bcm_qspi_bspi_lr_data_read(struct bcm_qspi * qspi)346 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
347 {
348 	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
349 	u32 data = 0;
350 
351 	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
352 		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
353 	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
354 		data = bcm_qspi_bspi_lr_read_fifo(qspi);
355 		if (likely(qspi->bspi_rf_op_len >= 4) &&
356 		    IS_ALIGNED((uintptr_t)buf, 4)) {
357 			buf[qspi->bspi_rf_op_idx++] = data;
358 			qspi->bspi_rf_op_len -= 4;
359 		} else {
360 			/* Read out remaining bytes, make sure*/
361 			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
362 
363 			data = cpu_to_le32(data);
364 			while (qspi->bspi_rf_op_len) {
365 				*cbuf++ = (u8)data;
366 				data >>= 8;
367 				qspi->bspi_rf_op_len--;
368 			}
369 		}
370 	}
371 }
372 
bcm_qspi_bspi_set_xfer_params(struct bcm_qspi * qspi,u8 cmd_byte,int bpp,int bpc,int flex_mode)373 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
374 					  int bpp, int bpc, int flex_mode)
375 {
376 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
377 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
378 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
379 	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
380 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
381 }
382 
bcm_qspi_bspi_set_flex_mode(struct bcm_qspi * qspi,const struct spi_mem_op * op,int hp)383 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
384 				       const struct spi_mem_op *op, int hp)
385 {
386 	int bpc = 0, bpp = 0;
387 	u8 command = op->cmd.opcode;
388 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
389 	int addrlen = op->addr.nbytes;
390 	int flex_mode = 1;
391 
392 	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
393 		width, addrlen, hp);
394 
395 	if (addrlen == BSPI_ADDRLEN_4BYTES)
396 		bpp = BSPI_BPP_ADDR_SELECT_MASK;
397 
398 	bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
399 
400 	switch (width) {
401 	case SPI_NBITS_SINGLE:
402 		if (addrlen == BSPI_ADDRLEN_3BYTES)
403 			/* default mode, does not need flex_cmd */
404 			flex_mode = 0;
405 		break;
406 	case SPI_NBITS_DUAL:
407 		bpc = 0x00000001;
408 		if (hp) {
409 			bpc |= 0x00010100; /* address and mode are 2-bit */
410 			bpp = BSPI_BPP_MODE_SELECT_MASK;
411 		}
412 		break;
413 	case SPI_NBITS_QUAD:
414 		bpc = 0x00000002;
415 		if (hp) {
416 			bpc |= 0x00020200; /* address and mode are 4-bit */
417 			bpp |= BSPI_BPP_MODE_SELECT_MASK;
418 		}
419 		break;
420 	default:
421 		return -EINVAL;
422 	}
423 
424 	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
425 
426 	return 0;
427 }
428 
bcm_qspi_bspi_set_override(struct bcm_qspi * qspi,const struct spi_mem_op * op,int hp)429 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
430 				      const struct spi_mem_op *op, int hp)
431 {
432 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
433 	int addrlen = op->addr.nbytes;
434 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
435 
436 	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
437 		width, addrlen, hp);
438 
439 	switch (width) {
440 	case SPI_NBITS_SINGLE:
441 		/* clear quad/dual mode */
442 		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
443 			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
444 		break;
445 	case SPI_NBITS_QUAD:
446 		/* clear dual mode and set quad mode */
447 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
448 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
449 		break;
450 	case SPI_NBITS_DUAL:
451 		/* clear quad mode set dual mode */
452 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
453 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
454 		break;
455 	default:
456 		return -EINVAL;
457 	}
458 
459 	if (addrlen == BSPI_ADDRLEN_4BYTES)
460 		/* set 4byte mode*/
461 		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
462 	else
463 		/* clear 4 byte mode */
464 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
465 
466 	/* set the override mode */
467 	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
468 	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
469 	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
470 
471 	return 0;
472 }
473 
bcm_qspi_bspi_set_mode(struct bcm_qspi * qspi,const struct spi_mem_op * op,int hp)474 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
475 				  const struct spi_mem_op *op, int hp)
476 {
477 	int error = 0;
478 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
479 	int addrlen = op->addr.nbytes;
480 
481 	/* default mode */
482 	qspi->xfer_mode.flex_mode = true;
483 
484 	if (!bcm_qspi_bspi_ver_three(qspi)) {
485 		u32 val, mask;
486 
487 		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
488 		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
489 		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
490 			qspi->xfer_mode.flex_mode = false;
491 			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
492 			error = bcm_qspi_bspi_set_override(qspi, op, hp);
493 		}
494 	}
495 
496 	if (qspi->xfer_mode.flex_mode)
497 		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
498 
499 	if (error) {
500 		dev_warn(&qspi->pdev->dev,
501 			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
502 			 width, addrlen, hp);
503 	} else if (qspi->xfer_mode.width != width ||
504 		   qspi->xfer_mode.addrlen != addrlen ||
505 		   qspi->xfer_mode.hp != hp) {
506 		qspi->xfer_mode.width = width;
507 		qspi->xfer_mode.addrlen = addrlen;
508 		qspi->xfer_mode.hp = hp;
509 		dev_dbg(&qspi->pdev->dev,
510 			"cs:%d %d-lane output, %d-byte address%s\n",
511 			qspi->curr_cs,
512 			qspi->xfer_mode.width,
513 			qspi->xfer_mode.addrlen,
514 			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
515 	}
516 
517 	return error;
518 }
519 
bcm_qspi_enable_bspi(struct bcm_qspi * qspi)520 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
521 {
522 	if (!has_bspi(qspi))
523 		return;
524 
525 	qspi->bspi_enabled = 1;
526 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
527 		return;
528 
529 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
530 	udelay(1);
531 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
532 	udelay(1);
533 }
534 
bcm_qspi_disable_bspi(struct bcm_qspi * qspi)535 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
536 {
537 	if (!has_bspi(qspi))
538 		return;
539 
540 	qspi->bspi_enabled = 0;
541 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
542 		return;
543 
544 	bcm_qspi_bspi_busy_poll(qspi);
545 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
546 	udelay(1);
547 }
548 
bcm_qspi_chip_select(struct bcm_qspi * qspi,int cs)549 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
550 {
551 	u32 rd = 0;
552 	u32 wr = 0;
553 
554 	if (qspi->base[CHIP_SELECT]) {
555 		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
556 		wr = (rd & ~0xff) | (1 << cs);
557 		if (rd == wr)
558 			return;
559 		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
560 		usleep_range(10, 20);
561 	}
562 
563 	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
564 	qspi->curr_cs = cs;
565 }
566 
567 /* MSPI helpers */
bcm_qspi_hw_set_parms(struct bcm_qspi * qspi,const struct bcm_qspi_parms * xp)568 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
569 				  const struct bcm_qspi_parms *xp)
570 {
571 	u32 spcr, spbr = 0;
572 
573 	if (xp->speed_hz)
574 		spbr = qspi->base_clk / (2 * xp->speed_hz);
575 
576 	spcr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
577 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
578 
579 	if (!qspi->mspi_maj_rev)
580 		/* legacy controller */
581 		spcr = MSPI_MASTER_BIT;
582 	else
583 		spcr = 0;
584 
585 	/* for 16 bit the data should be zero */
586 	if (xp->bits_per_word != 16)
587 		spcr |= xp->bits_per_word << 2;
588 	spcr |= xp->mode & 3;
589 
590 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
591 
592 	if (bcm_qspi_has_fastbr(qspi)) {
593 		spcr = 0;
594 
595 		/* enable fastbr */
596 		spcr |=	MSPI_SPCR3_FASTBR;
597 
598 		if (bcm_qspi_has_sysclk_108(qspi)) {
599 			/* SYSCLK_108 */
600 			spcr |= MSPI_SPCR3_SYSCLKSEL_108;
601 			qspi->base_clk = MSPI_BASE_FREQ * 4;
602 			/* Change spbr as we changed sysclk */
603 			bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, 4);
604 		}
605 
606 		bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
607 	}
608 
609 	qspi->last_parms = *xp;
610 }
611 
bcm_qspi_update_parms(struct bcm_qspi * qspi,struct spi_device * spi,struct spi_transfer * trans)612 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
613 				  struct spi_device *spi,
614 				  struct spi_transfer *trans)
615 {
616 	struct bcm_qspi_parms xp;
617 
618 	xp.speed_hz = trans->speed_hz;
619 	xp.bits_per_word = trans->bits_per_word;
620 	xp.mode = spi->mode;
621 
622 	bcm_qspi_hw_set_parms(qspi, &xp);
623 }
624 
bcm_qspi_setup(struct spi_device * spi)625 static int bcm_qspi_setup(struct spi_device *spi)
626 {
627 	struct bcm_qspi_parms *xp;
628 
629 	if (spi->bits_per_word > 16)
630 		return -EINVAL;
631 
632 	xp = spi_get_ctldata(spi);
633 	if (!xp) {
634 		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
635 		if (!xp)
636 			return -ENOMEM;
637 		spi_set_ctldata(spi, xp);
638 	}
639 	xp->speed_hz = spi->max_speed_hz;
640 	xp->mode = spi->mode;
641 
642 	if (spi->bits_per_word)
643 		xp->bits_per_word = spi->bits_per_word;
644 	else
645 		xp->bits_per_word = 8;
646 
647 	return 0;
648 }
649 
bcm_qspi_mspi_transfer_is_last(struct bcm_qspi * qspi,struct qspi_trans * qt)650 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
651 					   struct qspi_trans *qt)
652 {
653 	if (qt->mspi_last_trans &&
654 	    spi_transfer_is_last(qspi->master, qt->trans))
655 		return true;
656 	else
657 		return false;
658 }
659 
update_qspi_trans_byte_count(struct bcm_qspi * qspi,struct qspi_trans * qt,int flags)660 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
661 					struct qspi_trans *qt, int flags)
662 {
663 	int ret = TRANS_STATUS_BREAK_NONE;
664 
665 	/* count the last transferred bytes */
666 	if (qt->trans->bits_per_word <= 8)
667 		qt->byte++;
668 	else
669 		qt->byte += 2;
670 
671 	if (qt->byte >= qt->trans->len) {
672 		/* we're at the end of the spi_transfer */
673 		/* in TX mode, need to pause for a delay or CS change */
674 		if (qt->trans->delay.value &&
675 		    (flags & TRANS_STATUS_BREAK_DELAY))
676 			ret |= TRANS_STATUS_BREAK_DELAY;
677 		if (qt->trans->cs_change &&
678 		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
679 			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
680 
681 		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
682 			ret |= TRANS_STATUS_BREAK_EOM;
683 		else
684 			ret |= TRANS_STATUS_BREAK_NO_BYTES;
685 
686 		qt->trans = NULL;
687 	}
688 
689 	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
690 		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
691 	return ret;
692 }
693 
read_rxram_slot_u8(struct bcm_qspi * qspi,int slot)694 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
695 {
696 	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
697 
698 	/* mask out reserved bits */
699 	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
700 }
701 
read_rxram_slot_u16(struct bcm_qspi * qspi,int slot)702 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
703 {
704 	u32 reg_offset = MSPI_RXRAM;
705 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
706 	u32 msb_offset = reg_offset + (slot << 3);
707 
708 	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
709 		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
710 }
711 
read_from_hw(struct bcm_qspi * qspi,int slots)712 static void read_from_hw(struct bcm_qspi *qspi, int slots)
713 {
714 	struct qspi_trans tp;
715 	int slot;
716 
717 	bcm_qspi_disable_bspi(qspi);
718 
719 	if (slots > MSPI_NUM_CDRAM) {
720 		/* should never happen */
721 		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
722 		return;
723 	}
724 
725 	tp = qspi->trans_pos;
726 
727 	for (slot = 0; slot < slots; slot++) {
728 		if (tp.trans->bits_per_word <= 8) {
729 			u8 *buf = tp.trans->rx_buf;
730 
731 			if (buf)
732 				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
733 			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
734 				buf ? buf[tp.byte] : 0x0);
735 		} else {
736 			u16 *buf = tp.trans->rx_buf;
737 
738 			if (buf)
739 				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
740 								      slot);
741 			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
742 				buf ? buf[tp.byte / 2] : 0x0);
743 		}
744 
745 		update_qspi_trans_byte_count(qspi, &tp,
746 					     TRANS_STATUS_BREAK_NONE);
747 	}
748 
749 	qspi->trans_pos = tp;
750 }
751 
write_txram_slot_u8(struct bcm_qspi * qspi,int slot,u8 val)752 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
753 				       u8 val)
754 {
755 	u32 reg_offset = MSPI_TXRAM + (slot << 3);
756 
757 	/* mask out reserved bits */
758 	bcm_qspi_write(qspi, MSPI, reg_offset, val);
759 }
760 
write_txram_slot_u16(struct bcm_qspi * qspi,int slot,u16 val)761 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
762 					u16 val)
763 {
764 	u32 reg_offset = MSPI_TXRAM;
765 	u32 msb_offset = reg_offset + (slot << 3);
766 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
767 
768 	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
769 	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
770 }
771 
read_cdram_slot(struct bcm_qspi * qspi,int slot)772 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
773 {
774 	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
775 }
776 
write_cdram_slot(struct bcm_qspi * qspi,int slot,u32 val)777 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
778 {
779 	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
780 }
781 
782 /* Return number of slots written */
write_to_hw(struct bcm_qspi * qspi,struct spi_device * spi)783 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
784 {
785 	struct qspi_trans tp;
786 	int slot = 0, tstatus = 0;
787 	u32 mspi_cdram = 0;
788 
789 	bcm_qspi_disable_bspi(qspi);
790 	tp = qspi->trans_pos;
791 	bcm_qspi_update_parms(qspi, spi, tp.trans);
792 
793 	/* Run until end of transfer or reached the max data */
794 	while (!tstatus && slot < MSPI_NUM_CDRAM) {
795 		if (tp.trans->bits_per_word <= 8) {
796 			const u8 *buf = tp.trans->tx_buf;
797 			u8 val = buf ? buf[tp.byte] : 0x00;
798 
799 			write_txram_slot_u8(qspi, slot, val);
800 			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
801 		} else {
802 			const u16 *buf = tp.trans->tx_buf;
803 			u16 val = buf ? buf[tp.byte / 2] : 0x0000;
804 
805 			write_txram_slot_u16(qspi, slot, val);
806 			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
807 		}
808 		mspi_cdram = MSPI_CDRAM_CONT_BIT;
809 
810 		if (has_bspi(qspi))
811 			mspi_cdram &= ~1;
812 		else
813 			mspi_cdram |= (~(1 << spi->chip_select) &
814 				       MSPI_CDRAM_PCS);
815 
816 		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
817 				MSPI_CDRAM_BITSE_BIT);
818 
819 		write_cdram_slot(qspi, slot, mspi_cdram);
820 
821 		tstatus = update_qspi_trans_byte_count(qspi, &tp,
822 						       TRANS_STATUS_BREAK_TX);
823 		slot++;
824 	}
825 
826 	if (!slot) {
827 		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
828 		goto done;
829 	}
830 
831 	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
832 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
833 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
834 
835 	/*
836 	 *  case 1) EOM =1, cs_change =0: SSb inactive
837 	 *  case 2) EOM =1, cs_change =1: SSb stay active
838 	 *  case 3) EOM =0, cs_change =0: SSb stay active
839 	 *  case 4) EOM =0, cs_change =1: SSb inactive
840 	 */
841 	if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
842 	     == TRANS_STATUS_BREAK_CS_CHANGE) ||
843 	    ((tstatus & TRANS_STATUS_BREAK_DESELECT)
844 	     == TRANS_STATUS_BREAK_EOM)) {
845 		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
846 			~MSPI_CDRAM_CONT_BIT;
847 		write_cdram_slot(qspi, slot - 1, mspi_cdram);
848 	}
849 
850 	if (has_bspi(qspi))
851 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
852 
853 	/* Must flush previous writes before starting MSPI operation */
854 	mb();
855 	/* Set cont | spe | spifie */
856 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
857 
858 done:
859 	return slot;
860 }
861 
bcm_qspi_bspi_exec_mem_op(struct spi_device * spi,const struct spi_mem_op * op)862 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
863 				     const struct spi_mem_op *op)
864 {
865 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
866 	u32 addr = 0, len, rdlen, len_words, from = 0;
867 	int ret = 0;
868 	unsigned long timeo = msecs_to_jiffies(100);
869 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
870 
871 	if (bcm_qspi_bspi_ver_three(qspi))
872 		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
873 			return -EIO;
874 
875 	from = op->addr.val;
876 	if (!spi->cs_gpiod)
877 		bcm_qspi_chip_select(qspi, spi->chip_select);
878 	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
879 
880 	/*
881 	 * when using flex mode we need to send
882 	 * the upper address byte to bspi
883 	 */
884 	if (!bcm_qspi_bspi_ver_three(qspi)) {
885 		addr = from & 0xff000000;
886 		bcm_qspi_write(qspi, BSPI,
887 			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
888 	}
889 
890 	if (!qspi->xfer_mode.flex_mode)
891 		addr = from;
892 	else
893 		addr = from & 0x00ffffff;
894 
895 	if (bcm_qspi_bspi_ver_three(qspi) == true)
896 		addr = (addr + 0xc00000) & 0xffffff;
897 
898 	/*
899 	 * read into the entire buffer by breaking the reads
900 	 * into RAF buffer read lengths
901 	 */
902 	len = op->data.nbytes;
903 	qspi->bspi_rf_op_idx = 0;
904 
905 	do {
906 		if (len > BSPI_READ_LENGTH)
907 			rdlen = BSPI_READ_LENGTH;
908 		else
909 			rdlen = len;
910 
911 		reinit_completion(&qspi->bspi_done);
912 		bcm_qspi_enable_bspi(qspi);
913 		len_words = (rdlen + 3) >> 2;
914 		qspi->bspi_rf_op = op;
915 		qspi->bspi_rf_op_status = 0;
916 		qspi->bspi_rf_op_len = rdlen;
917 		dev_dbg(&qspi->pdev->dev,
918 			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
919 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
920 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
921 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
922 		if (qspi->soc_intc) {
923 			/*
924 			 * clear soc MSPI and BSPI interrupts and enable
925 			 * BSPI interrupts.
926 			 */
927 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
928 			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
929 		}
930 
931 		/* Must flush previous writes before starting BSPI operation */
932 		mb();
933 		bcm_qspi_bspi_lr_start(qspi);
934 		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
935 			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
936 			ret = -ETIMEDOUT;
937 			break;
938 		}
939 
940 		/* set msg return length */
941 		addr += rdlen;
942 		len -= rdlen;
943 	} while (len);
944 
945 	return ret;
946 }
947 
bcm_qspi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * trans)948 static int bcm_qspi_transfer_one(struct spi_master *master,
949 				 struct spi_device *spi,
950 				 struct spi_transfer *trans)
951 {
952 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
953 	int slots;
954 	unsigned long timeo = msecs_to_jiffies(100);
955 
956 	if (!spi->cs_gpiod)
957 		bcm_qspi_chip_select(qspi, spi->chip_select);
958 	qspi->trans_pos.trans = trans;
959 	qspi->trans_pos.byte = 0;
960 
961 	while (qspi->trans_pos.byte < trans->len) {
962 		reinit_completion(&qspi->mspi_done);
963 
964 		slots = write_to_hw(qspi, spi);
965 		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
966 			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
967 			return -ETIMEDOUT;
968 		}
969 
970 		read_from_hw(qspi, slots);
971 	}
972 	bcm_qspi_enable_bspi(qspi);
973 
974 	return 0;
975 }
976 
bcm_qspi_mspi_exec_mem_op(struct spi_device * spi,const struct spi_mem_op * op)977 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
978 				     const struct spi_mem_op *op)
979 {
980 	struct spi_master *master = spi->master;
981 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
982 	struct spi_transfer t[2];
983 	u8 cmd[6] = { };
984 	int ret, i;
985 
986 	memset(cmd, 0, sizeof(cmd));
987 	memset(t, 0, sizeof(t));
988 
989 	/* tx */
990 	/* opcode is in cmd[0] */
991 	cmd[0] = op->cmd.opcode;
992 	for (i = 0; i < op->addr.nbytes; i++)
993 		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
994 
995 	t[0].tx_buf = cmd;
996 	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
997 	t[0].bits_per_word = spi->bits_per_word;
998 	t[0].tx_nbits = op->cmd.buswidth;
999 	/* lets mspi know that this is not last transfer */
1000 	qspi->trans_pos.mspi_last_trans = false;
1001 	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1002 
1003 	/* rx */
1004 	qspi->trans_pos.mspi_last_trans = true;
1005 	if (!ret) {
1006 		/* rx */
1007 		t[1].rx_buf = op->data.buf.in;
1008 		t[1].len = op->data.nbytes;
1009 		t[1].rx_nbits =  op->data.buswidth;
1010 		t[1].bits_per_word = spi->bits_per_word;
1011 		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1012 	}
1013 
1014 	return ret;
1015 }
1016 
bcm_qspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1017 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1018 				const struct spi_mem_op *op)
1019 {
1020 	struct spi_device *spi = mem->spi;
1021 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1022 	int ret = 0;
1023 	bool mspi_read = false;
1024 	u32 addr = 0, len;
1025 	u_char *buf;
1026 
1027 	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1028 	    op->data.dir != SPI_MEM_DATA_IN)
1029 		return -ENOTSUPP;
1030 
1031 	buf = op->data.buf.in;
1032 	addr = op->addr.val;
1033 	len = op->data.nbytes;
1034 
1035 	if (bcm_qspi_bspi_ver_three(qspi) == true) {
1036 		/*
1037 		 * The address coming into this function is a raw flash offset.
1038 		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1039 		 * address. If it crosses a 4MB boundary, just revert back to
1040 		 * using MSPI.
1041 		 */
1042 		addr = (addr + 0xc00000) & 0xffffff;
1043 
1044 		if ((~ADDR_4MB_MASK & addr) ^
1045 		    (~ADDR_4MB_MASK & (addr + len - 1)))
1046 			mspi_read = true;
1047 	}
1048 
1049 	/* non-aligned and very short transfers are handled by MSPI */
1050 	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1051 	    len < 4)
1052 		mspi_read = true;
1053 
1054 	if (mspi_read)
1055 		return bcm_qspi_mspi_exec_mem_op(spi, op);
1056 
1057 	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1058 
1059 	if (!ret)
1060 		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1061 
1062 	return ret;
1063 }
1064 
bcm_qspi_cleanup(struct spi_device * spi)1065 static void bcm_qspi_cleanup(struct spi_device *spi)
1066 {
1067 	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1068 
1069 	kfree(xp);
1070 }
1071 
bcm_qspi_mspi_l2_isr(int irq,void * dev_id)1072 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1073 {
1074 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1075 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1076 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1077 
1078 	if (status & MSPI_MSPI_STATUS_SPIF) {
1079 		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1080 		/* clear interrupt */
1081 		status &= ~MSPI_MSPI_STATUS_SPIF;
1082 		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1083 		if (qspi->soc_intc)
1084 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1085 		complete(&qspi->mspi_done);
1086 		return IRQ_HANDLED;
1087 	}
1088 
1089 	return IRQ_NONE;
1090 }
1091 
bcm_qspi_bspi_lr_l2_isr(int irq,void * dev_id)1092 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1093 {
1094 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1095 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1096 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1097 	u32 status = qspi_dev_id->irqp->mask;
1098 
1099 	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1100 		bcm_qspi_bspi_lr_data_read(qspi);
1101 		if (qspi->bspi_rf_op_len == 0) {
1102 			qspi->bspi_rf_op = NULL;
1103 			if (qspi->soc_intc) {
1104 				/* disable soc BSPI interrupt */
1105 				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1106 							   false);
1107 				/* indicate done */
1108 				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1109 			}
1110 
1111 			if (qspi->bspi_rf_op_status)
1112 				bcm_qspi_bspi_lr_clear(qspi);
1113 			else
1114 				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1115 		}
1116 
1117 		if (qspi->soc_intc)
1118 			/* clear soc BSPI interrupt */
1119 			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1120 	}
1121 
1122 	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1123 	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1124 		complete(&qspi->bspi_done);
1125 
1126 	return IRQ_HANDLED;
1127 }
1128 
bcm_qspi_bspi_lr_err_l2_isr(int irq,void * dev_id)1129 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1130 {
1131 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1132 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1133 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1134 
1135 	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1136 	qspi->bspi_rf_op_status = -EIO;
1137 	if (qspi->soc_intc)
1138 		/* clear soc interrupt */
1139 		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1140 
1141 	complete(&qspi->bspi_done);
1142 	return IRQ_HANDLED;
1143 }
1144 
bcm_qspi_l1_isr(int irq,void * dev_id)1145 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1146 {
1147 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1148 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1149 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1150 	irqreturn_t ret = IRQ_NONE;
1151 
1152 	if (soc_intc) {
1153 		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1154 
1155 		if (status & MSPI_DONE)
1156 			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1157 		else if (status & BSPI_DONE)
1158 			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1159 		else if (status & BSPI_ERR)
1160 			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1161 	}
1162 
1163 	return ret;
1164 }
1165 
1166 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1167 	{
1168 		.irq_name = "spi_lr_fullness_reached",
1169 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1170 		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1171 	},
1172 	{
1173 		.irq_name = "spi_lr_session_aborted",
1174 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1175 		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1176 	},
1177 	{
1178 		.irq_name = "spi_lr_impatient",
1179 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1180 		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1181 	},
1182 	{
1183 		.irq_name = "spi_lr_session_done",
1184 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1185 		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1186 	},
1187 #ifdef QSPI_INT_DEBUG
1188 	/* this interrupt is for debug purposes only, dont request irq */
1189 	{
1190 		.irq_name = "spi_lr_overread",
1191 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1192 		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1193 	},
1194 #endif
1195 	{
1196 		.irq_name = "mspi_done",
1197 		.irq_handler = bcm_qspi_mspi_l2_isr,
1198 		.mask = INTR_MSPI_DONE_MASK,
1199 	},
1200 	{
1201 		.irq_name = "mspi_halted",
1202 		.irq_handler = bcm_qspi_mspi_l2_isr,
1203 		.mask = INTR_MSPI_HALTED_MASK,
1204 	},
1205 	{
1206 		/* single muxed L1 interrupt source */
1207 		.irq_name = "spi_l1_intr",
1208 		.irq_handler = bcm_qspi_l1_isr,
1209 		.irq_source = MUXED_L1,
1210 		.mask = QSPI_INTERRUPTS_ALL,
1211 	},
1212 };
1213 
bcm_qspi_bspi_init(struct bcm_qspi * qspi)1214 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1215 {
1216 	u32 val = 0;
1217 
1218 	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1219 	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1220 	qspi->bspi_min_rev = val & 0xff;
1221 	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1222 		/* Force mapping of BSPI address -> flash offset */
1223 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1224 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1225 	}
1226 	qspi->bspi_enabled = 1;
1227 	bcm_qspi_disable_bspi(qspi);
1228 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1229 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1230 }
1231 
bcm_qspi_hw_init(struct bcm_qspi * qspi)1232 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1233 {
1234 	struct bcm_qspi_parms parms;
1235 
1236 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1237 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1238 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1239 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1240 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1241 
1242 	parms.mode = SPI_MODE_3;
1243 	parms.bits_per_word = 8;
1244 	parms.speed_hz = qspi->max_speed_hz;
1245 	bcm_qspi_hw_set_parms(qspi, &parms);
1246 
1247 	if (has_bspi(qspi))
1248 		bcm_qspi_bspi_init(qspi);
1249 }
1250 
bcm_qspi_hw_uninit(struct bcm_qspi * qspi)1251 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1252 {
1253 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1254 	if (has_bspi(qspi))
1255 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1256 
1257 }
1258 
1259 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1260 	.exec_op = bcm_qspi_exec_mem_op,
1261 };
1262 
1263 struct bcm_qspi_data {
1264 	bool	has_mspi_rev;
1265 	bool	has_spcr3_sysclk;
1266 };
1267 
1268 static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1269 	.has_mspi_rev	= false,
1270 	.has_spcr3_sysclk = false,
1271 };
1272 
1273 static const struct bcm_qspi_data bcm_qspi_rev_data = {
1274 	.has_mspi_rev	= true,
1275 	.has_spcr3_sysclk = false,
1276 };
1277 
1278 static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1279 	.has_mspi_rev	= true,
1280 	.has_spcr3_sysclk = true,
1281 };
1282 
1283 static const struct of_device_id bcm_qspi_of_match[] = {
1284 	{
1285 		.compatible = "brcm,spi-bcm7445-qspi",
1286 		.data = &bcm_qspi_rev_data,
1287 
1288 	},
1289 	{
1290 		.compatible = "brcm,spi-bcm-qspi",
1291 		.data = &bcm_qspi_no_rev_data,
1292 	},
1293 	{
1294 		.compatible = "brcm,spi-bcm7216-qspi",
1295 		.data = &bcm_qspi_spcr3_data,
1296 	},
1297 	{
1298 		.compatible = "brcm,spi-bcm7278-qspi",
1299 		.data = &bcm_qspi_spcr3_data,
1300 	},
1301 	{},
1302 };
1303 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1304 
bcm_qspi_probe(struct platform_device * pdev,struct bcm_qspi_soc_intc * soc_intc)1305 int bcm_qspi_probe(struct platform_device *pdev,
1306 		   struct bcm_qspi_soc_intc *soc_intc)
1307 {
1308 	const struct of_device_id *of_id = NULL;
1309 	const struct bcm_qspi_data *data;
1310 	struct device *dev = &pdev->dev;
1311 	struct bcm_qspi *qspi;
1312 	struct spi_master *master;
1313 	struct resource *res;
1314 	int irq, ret = 0, num_ints = 0;
1315 	u32 val;
1316 	u32 rev = 0;
1317 	const char *name = NULL;
1318 	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1319 
1320 	/* We only support device-tree instantiation */
1321 	if (!dev->of_node)
1322 		return -ENODEV;
1323 
1324 	of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1325 	if (!of_id)
1326 		return -ENODEV;
1327 
1328 	data = of_id->data;
1329 
1330 	master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1331 	if (!master) {
1332 		dev_err(dev, "error allocating spi_master\n");
1333 		return -ENOMEM;
1334 	}
1335 
1336 	qspi = spi_master_get_devdata(master);
1337 
1338 	qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1339 	if (IS_ERR(qspi->clk))
1340 		return PTR_ERR(qspi->clk);
1341 
1342 	qspi->pdev = pdev;
1343 	qspi->trans_pos.trans = NULL;
1344 	qspi->trans_pos.byte = 0;
1345 	qspi->trans_pos.mspi_last_trans = true;
1346 	qspi->master = master;
1347 
1348 	master->bus_num = -1;
1349 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1350 	master->setup = bcm_qspi_setup;
1351 	master->transfer_one = bcm_qspi_transfer_one;
1352 	master->mem_ops = &bcm_qspi_mem_ops;
1353 	master->cleanup = bcm_qspi_cleanup;
1354 	master->dev.of_node = dev->of_node;
1355 	master->num_chipselect = NUM_CHIPSELECT;
1356 	master->use_gpio_descriptors = true;
1357 
1358 	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1359 
1360 	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1361 		master->num_chipselect = val;
1362 
1363 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1364 	if (!res)
1365 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1366 						   "mspi");
1367 
1368 	if (res) {
1369 		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1370 		if (IS_ERR(qspi->base[MSPI]))
1371 			return PTR_ERR(qspi->base[MSPI]);
1372 	} else {
1373 		return 0;
1374 	}
1375 
1376 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1377 	if (res) {
1378 		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1379 		if (IS_ERR(qspi->base[BSPI]))
1380 			return PTR_ERR(qspi->base[BSPI]);
1381 		qspi->bspi_mode = true;
1382 	} else {
1383 		qspi->bspi_mode = false;
1384 	}
1385 
1386 	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1387 
1388 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1389 	if (res) {
1390 		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1391 		if (IS_ERR(qspi->base[CHIP_SELECT]))
1392 			return PTR_ERR(qspi->base[CHIP_SELECT]);
1393 	}
1394 
1395 	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1396 				GFP_KERNEL);
1397 	if (!qspi->dev_ids)
1398 		return -ENOMEM;
1399 
1400 	for (val = 0; val < num_irqs; val++) {
1401 		irq = -1;
1402 		name = qspi_irq_tab[val].irq_name;
1403 		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1404 			/* get the l2 interrupts */
1405 			irq = platform_get_irq_byname_optional(pdev, name);
1406 		} else if (!num_ints && soc_intc) {
1407 			/* all mspi, bspi intrs muxed to one L1 intr */
1408 			irq = platform_get_irq(pdev, 0);
1409 		}
1410 
1411 		if (irq  >= 0) {
1412 			ret = devm_request_irq(&pdev->dev, irq,
1413 					       qspi_irq_tab[val].irq_handler, 0,
1414 					       name,
1415 					       &qspi->dev_ids[val]);
1416 			if (ret < 0) {
1417 				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1418 				goto qspi_probe_err;
1419 			}
1420 
1421 			qspi->dev_ids[val].dev = qspi;
1422 			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1423 			num_ints++;
1424 			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1425 				qspi_irq_tab[val].irq_name,
1426 				irq);
1427 		}
1428 	}
1429 
1430 	if (!num_ints) {
1431 		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1432 		ret = -EINVAL;
1433 		goto qspi_probe_err;
1434 	}
1435 
1436 	/*
1437 	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1438 	 * in specific ways
1439 	 */
1440 	if (soc_intc) {
1441 		qspi->soc_intc = soc_intc;
1442 		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1443 	} else {
1444 		qspi->soc_intc = NULL;
1445 	}
1446 
1447 	ret = clk_prepare_enable(qspi->clk);
1448 	if (ret) {
1449 		dev_err(dev, "failed to prepare clock\n");
1450 		goto qspi_probe_err;
1451 	}
1452 
1453 	qspi->base_clk = clk_get_rate(qspi->clk);
1454 
1455 	if (data->has_mspi_rev) {
1456 		rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1457 		/* some older revs do not have a MSPI_REV register */
1458 		if ((rev & 0xff) == 0xff)
1459 			rev = 0;
1460 	}
1461 
1462 	qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1463 	qspi->mspi_min_rev = rev & 0xf;
1464 	qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1465 
1466 	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1467 
1468 	bcm_qspi_hw_init(qspi);
1469 	init_completion(&qspi->mspi_done);
1470 	init_completion(&qspi->bspi_done);
1471 	qspi->curr_cs = -1;
1472 
1473 	platform_set_drvdata(pdev, qspi);
1474 
1475 	qspi->xfer_mode.width = -1;
1476 	qspi->xfer_mode.addrlen = -1;
1477 	qspi->xfer_mode.hp = -1;
1478 
1479 	ret = spi_register_master(master);
1480 	if (ret < 0) {
1481 		dev_err(dev, "can't register master\n");
1482 		goto qspi_reg_err;
1483 	}
1484 
1485 	return 0;
1486 
1487 qspi_reg_err:
1488 	bcm_qspi_hw_uninit(qspi);
1489 	clk_disable_unprepare(qspi->clk);
1490 qspi_probe_err:
1491 	kfree(qspi->dev_ids);
1492 	return ret;
1493 }
1494 /* probe function to be called by SoC specific platform driver probe */
1495 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1496 
bcm_qspi_remove(struct platform_device * pdev)1497 int bcm_qspi_remove(struct platform_device *pdev)
1498 {
1499 	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1500 
1501 	spi_unregister_master(qspi->master);
1502 	bcm_qspi_hw_uninit(qspi);
1503 	clk_disable_unprepare(qspi->clk);
1504 	kfree(qspi->dev_ids);
1505 
1506 	return 0;
1507 }
1508 /* function to be called by SoC specific platform driver remove() */
1509 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1510 
bcm_qspi_suspend(struct device * dev)1511 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1512 {
1513 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1514 
1515 	/* store the override strap value */
1516 	if (!bcm_qspi_bspi_ver_three(qspi))
1517 		qspi->s3_strap_override_ctrl =
1518 			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1519 
1520 	spi_master_suspend(qspi->master);
1521 	clk_disable_unprepare(qspi->clk);
1522 	bcm_qspi_hw_uninit(qspi);
1523 
1524 	return 0;
1525 };
1526 
bcm_qspi_resume(struct device * dev)1527 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1528 {
1529 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1530 	int ret = 0;
1531 
1532 	bcm_qspi_hw_init(qspi);
1533 	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1534 	if (qspi->soc_intc)
1535 		/* enable MSPI interrupt */
1536 		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1537 						 true);
1538 
1539 	ret = clk_prepare_enable(qspi->clk);
1540 	if (!ret)
1541 		spi_master_resume(qspi->master);
1542 
1543 	return ret;
1544 }
1545 
1546 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1547 
1548 /* pm_ops to be called by SoC specific platform driver */
1549 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1550 
1551 MODULE_AUTHOR("Kamal Dasu");
1552 MODULE_DESCRIPTION("Broadcom QSPI driver");
1553 MODULE_LICENSE("GPL v2");
1554 MODULE_ALIAS("platform:" DRIVER_NAME);
1555