1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * polling/bitbanging SPI master controller driver utilities
4  */
5 
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi_bitbang.h>
17 
18 #define SPI_BITBANG_CS_DELAY	100
19 
20 
21 /*----------------------------------------------------------------------*/
22 
23 /*
24  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
25  * Use this for GPIO or shift-register level hardware APIs.
26  *
27  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
28  * to glue code.  These bitbang setup() and cleanup() routines are always
29  * used, though maybe they're called from controller-aware code.
30  *
31  * chipselect() and friends may use spi_device->controller_data and
32  * controller registers as appropriate.
33  *
34  *
35  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
36  * which means you could use a bitbang driver either to get hardware
37  * working quickly, or testing for differences that aren't speed related.
38  */
39 
40 struct spi_bitbang_cs {
41 	unsigned	nsecs;	/* (clock cycle time)/2 */
42 	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
43 					u32 word, u8 bits, unsigned flags);
44 	unsigned	(*txrx_bufs)(struct spi_device *,
45 					u32 (*txrx_word)(
46 						struct spi_device *spi,
47 						unsigned nsecs,
48 						u32 word, u8 bits,
49 						unsigned flags),
50 					unsigned, struct spi_transfer *,
51 					unsigned);
52 };
53 
bitbang_txrx_8(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits,unsigned flags),unsigned ns,struct spi_transfer * t,unsigned flags)54 static unsigned bitbang_txrx_8(
55 	struct spi_device	*spi,
56 	u32			(*txrx_word)(struct spi_device *spi,
57 					unsigned nsecs,
58 					u32 word, u8 bits,
59 					unsigned flags),
60 	unsigned		ns,
61 	struct spi_transfer	*t,
62 	unsigned flags
63 )
64 {
65 	unsigned		bits = t->bits_per_word;
66 	unsigned		count = t->len;
67 	const u8		*tx = t->tx_buf;
68 	u8			*rx = t->rx_buf;
69 
70 	while (likely(count > 0)) {
71 		u8		word = 0;
72 
73 		if (tx)
74 			word = *tx++;
75 		word = txrx_word(spi, ns, word, bits, flags);
76 		if (rx)
77 			*rx++ = word;
78 		count -= 1;
79 	}
80 	return t->len - count;
81 }
82 
bitbang_txrx_16(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits,unsigned flags),unsigned ns,struct spi_transfer * t,unsigned flags)83 static unsigned bitbang_txrx_16(
84 	struct spi_device	*spi,
85 	u32			(*txrx_word)(struct spi_device *spi,
86 					unsigned nsecs,
87 					u32 word, u8 bits,
88 					unsigned flags),
89 	unsigned		ns,
90 	struct spi_transfer	*t,
91 	unsigned flags
92 )
93 {
94 	unsigned		bits = t->bits_per_word;
95 	unsigned		count = t->len;
96 	const u16		*tx = t->tx_buf;
97 	u16			*rx = t->rx_buf;
98 
99 	while (likely(count > 1)) {
100 		u16		word = 0;
101 
102 		if (tx)
103 			word = *tx++;
104 		word = txrx_word(spi, ns, word, bits, flags);
105 		if (rx)
106 			*rx++ = word;
107 		count -= 2;
108 	}
109 	return t->len - count;
110 }
111 
bitbang_txrx_32(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits,unsigned flags),unsigned ns,struct spi_transfer * t,unsigned flags)112 static unsigned bitbang_txrx_32(
113 	struct spi_device	*spi,
114 	u32			(*txrx_word)(struct spi_device *spi,
115 					unsigned nsecs,
116 					u32 word, u8 bits,
117 					unsigned flags),
118 	unsigned		ns,
119 	struct spi_transfer	*t,
120 	unsigned flags
121 )
122 {
123 	unsigned		bits = t->bits_per_word;
124 	unsigned		count = t->len;
125 	const u32		*tx = t->tx_buf;
126 	u32			*rx = t->rx_buf;
127 
128 	while (likely(count > 3)) {
129 		u32		word = 0;
130 
131 		if (tx)
132 			word = *tx++;
133 		word = txrx_word(spi, ns, word, bits, flags);
134 		if (rx)
135 			*rx++ = word;
136 		count -= 4;
137 	}
138 	return t->len - count;
139 }
140 
spi_bitbang_setup_transfer(struct spi_device * spi,struct spi_transfer * t)141 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142 {
143 	struct spi_bitbang_cs	*cs = spi->controller_state;
144 	u8			bits_per_word;
145 	u32			hz;
146 
147 	if (t) {
148 		bits_per_word = t->bits_per_word;
149 		hz = t->speed_hz;
150 	} else {
151 		bits_per_word = 0;
152 		hz = 0;
153 	}
154 
155 	/* spi_transfer level calls that work per-word */
156 	if (!bits_per_word)
157 		bits_per_word = spi->bits_per_word;
158 	if (bits_per_word <= 8)
159 		cs->txrx_bufs = bitbang_txrx_8;
160 	else if (bits_per_word <= 16)
161 		cs->txrx_bufs = bitbang_txrx_16;
162 	else if (bits_per_word <= 32)
163 		cs->txrx_bufs = bitbang_txrx_32;
164 	else
165 		return -EINVAL;
166 
167 	/* nsecs = (clock period)/2 */
168 	if (!hz)
169 		hz = spi->max_speed_hz;
170 	if (hz) {
171 		cs->nsecs = (1000000000/2) / hz;
172 		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173 			return -EINVAL;
174 	}
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179 
180 /*
181  * spi_bitbang_setup - default setup for per-word I/O loops
182  */
spi_bitbang_setup(struct spi_device * spi)183 int spi_bitbang_setup(struct spi_device *spi)
184 {
185 	struct spi_bitbang_cs	*cs = spi->controller_state;
186 	struct spi_bitbang	*bitbang;
187 
188 	bitbang = spi_master_get_devdata(spi->master);
189 
190 	if (!cs) {
191 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
192 		if (!cs)
193 			return -ENOMEM;
194 		spi->controller_state = cs;
195 	}
196 
197 	/* per-word shift register access, in hardware or bitbanging */
198 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
199 	if (!cs->txrx_word)
200 		return -EINVAL;
201 
202 	if (bitbang->setup_transfer) {
203 		int retval = bitbang->setup_transfer(spi, NULL);
204 		if (retval < 0)
205 			return retval;
206 	}
207 
208 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
209 
210 	return 0;
211 }
212 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
213 
214 /*
215  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
216  */
spi_bitbang_cleanup(struct spi_device * spi)217 void spi_bitbang_cleanup(struct spi_device *spi)
218 {
219 	kfree(spi->controller_state);
220 }
221 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
222 
spi_bitbang_bufs(struct spi_device * spi,struct spi_transfer * t)223 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
224 {
225 	struct spi_bitbang_cs	*cs = spi->controller_state;
226 	unsigned		nsecs = cs->nsecs;
227 	struct spi_bitbang	*bitbang;
228 
229 	bitbang = spi_master_get_devdata(spi->master);
230 	if (bitbang->set_line_direction) {
231 		int err;
232 
233 		err = bitbang->set_line_direction(spi, !!(t->tx_buf));
234 		if (err < 0)
235 			return err;
236 	}
237 
238 	if (spi->mode & SPI_3WIRE) {
239 		unsigned flags;
240 
241 		flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
242 		return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
243 	}
244 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
245 }
246 
247 /*----------------------------------------------------------------------*/
248 
249 /*
250  * SECOND PART ... simple transfer queue runner.
251  *
252  * This costs a task context per controller, running the queue by
253  * performing each transfer in sequence.  Smarter hardware can queue
254  * several DMA transfers at once, and process several controller queues
255  * in parallel; this driver doesn't match such hardware very well.
256  *
257  * Drivers can provide word-at-a-time i/o primitives, or provide
258  * transfer-at-a-time ones to leverage dma or fifo hardware.
259  */
260 
spi_bitbang_prepare_hardware(struct spi_master * spi)261 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
262 {
263 	struct spi_bitbang	*bitbang;
264 
265 	bitbang = spi_master_get_devdata(spi);
266 
267 	mutex_lock(&bitbang->lock);
268 	bitbang->busy = 1;
269 	mutex_unlock(&bitbang->lock);
270 
271 	return 0;
272 }
273 
spi_bitbang_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * transfer)274 static int spi_bitbang_transfer_one(struct spi_master *master,
275 				    struct spi_device *spi,
276 				    struct spi_transfer *transfer)
277 {
278 	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
279 	int status = 0;
280 
281 	if (bitbang->setup_transfer) {
282 		status = bitbang->setup_transfer(spi, transfer);
283 		if (status < 0)
284 			goto out;
285 	}
286 
287 	if (transfer->len)
288 		status = bitbang->txrx_bufs(spi, transfer);
289 
290 	if (status == transfer->len)
291 		status = 0;
292 	else if (status >= 0)
293 		status = -EREMOTEIO;
294 
295 out:
296 	spi_finalize_current_transfer(master);
297 
298 	return status;
299 }
300 
spi_bitbang_unprepare_hardware(struct spi_master * spi)301 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
302 {
303 	struct spi_bitbang	*bitbang;
304 
305 	bitbang = spi_master_get_devdata(spi);
306 
307 	mutex_lock(&bitbang->lock);
308 	bitbang->busy = 0;
309 	mutex_unlock(&bitbang->lock);
310 
311 	return 0;
312 }
313 
spi_bitbang_set_cs(struct spi_device * spi,bool enable)314 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
315 {
316 	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
317 
318 	/* SPI core provides CS high / low, but bitbang driver
319 	 * expects CS active
320 	 * spi device driver takes care of handling SPI_CS_HIGH
321 	 */
322 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
323 
324 	ndelay(SPI_BITBANG_CS_DELAY);
325 	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
326 			    BITBANG_CS_INACTIVE);
327 	ndelay(SPI_BITBANG_CS_DELAY);
328 }
329 
330 /*----------------------------------------------------------------------*/
331 
spi_bitbang_init(struct spi_bitbang * bitbang)332 int spi_bitbang_init(struct spi_bitbang *bitbang)
333 {
334 	struct spi_master *master = bitbang->master;
335 	bool custom_cs;
336 
337 	if (!master)
338 		return -EINVAL;
339 	/*
340 	 * We only need the chipselect callback if we are actually using it.
341 	 * If we just use GPIO descriptors, it is surplus. If the
342 	 * SPI_MASTER_GPIO_SS flag is set, we always need to call the
343 	 * driver-specific chipselect routine.
344 	 */
345 	custom_cs = (!master->use_gpio_descriptors ||
346 		     (master->flags & SPI_MASTER_GPIO_SS));
347 
348 	if (custom_cs && !bitbang->chipselect)
349 		return -EINVAL;
350 
351 	mutex_init(&bitbang->lock);
352 
353 	if (!master->mode_bits)
354 		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
355 
356 	if (master->transfer || master->transfer_one_message)
357 		return -EINVAL;
358 
359 	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
360 	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
361 	master->transfer_one = spi_bitbang_transfer_one;
362 	/*
363 	 * When using GPIO descriptors, the ->set_cs() callback doesn't even
364 	 * get called unless SPI_MASTER_GPIO_SS is set.
365 	 */
366 	if (custom_cs)
367 		master->set_cs = spi_bitbang_set_cs;
368 
369 	if (!bitbang->txrx_bufs) {
370 		bitbang->use_dma = 0;
371 		bitbang->txrx_bufs = spi_bitbang_bufs;
372 		if (!master->setup) {
373 			if (!bitbang->setup_transfer)
374 				bitbang->setup_transfer =
375 					 spi_bitbang_setup_transfer;
376 			master->setup = spi_bitbang_setup;
377 			master->cleanup = spi_bitbang_cleanup;
378 		}
379 	}
380 
381 	return 0;
382 }
383 EXPORT_SYMBOL_GPL(spi_bitbang_init);
384 
385 /**
386  * spi_bitbang_start - start up a polled/bitbanging SPI master driver
387  * @bitbang: driver handle
388  *
389  * Caller should have zero-initialized all parts of the structure, and then
390  * provided callbacks for chip selection and I/O loops.  If the master has
391  * a transfer method, its final step should call spi_bitbang_transfer; or,
392  * that's the default if the transfer routine is not initialized.  It should
393  * also set up the bus number and number of chipselects.
394  *
395  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
396  * hardware that basically exposes a shift register) or per-spi_transfer
397  * (which takes better advantage of hardware like fifos or DMA engines).
398  *
399  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
400  * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
401  * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
402  * routine isn't initialized.
403  *
404  * This routine registers the spi_master, which will process requests in a
405  * dedicated task, keeping IRQs unblocked most of the time.  To stop
406  * processing those requests, call spi_bitbang_stop().
407  *
408  * On success, this routine will take a reference to master. The caller is
409  * responsible for calling spi_bitbang_stop() to decrement the reference and
410  * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
411  * leak.
412  */
spi_bitbang_start(struct spi_bitbang * bitbang)413 int spi_bitbang_start(struct spi_bitbang *bitbang)
414 {
415 	struct spi_master *master = bitbang->master;
416 	int ret;
417 
418 	ret = spi_bitbang_init(bitbang);
419 	if (ret)
420 		return ret;
421 
422 	/* driver may get busy before register() returns, especially
423 	 * if someone registered boardinfo for devices
424 	 */
425 	ret = spi_register_master(spi_master_get(master));
426 	if (ret)
427 		spi_master_put(master);
428 
429 	return ret;
430 }
431 EXPORT_SYMBOL_GPL(spi_bitbang_start);
432 
433 /*
434  * spi_bitbang_stop - stops the task providing spi communication
435  */
spi_bitbang_stop(struct spi_bitbang * bitbang)436 void spi_bitbang_stop(struct spi_bitbang *bitbang)
437 {
438 	spi_unregister_master(bitbang->master);
439 }
440 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
441 
442 MODULE_LICENSE("GPL");
443 
444