1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // HiSilicon SPI Controller Driver for Kunpeng SoCs
4 //
5 // Copyright (c) 2021 HiSilicon Technologies Co., Ltd.
6 // Author: Jay Fang <f.fangjian@huawei.com>
7 //
8 // This code is based on spi-dw-core.c.
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/property.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
19 #include <linux/spi/spi.h>
20 
21 /* Register offsets */
22 #define HISI_SPI_CSCR		0x00	/* cs control register */
23 #define HISI_SPI_CR		0x04	/* spi common control register */
24 #define HISI_SPI_ENR		0x08	/* spi enable register */
25 #define HISI_SPI_FIFOC		0x0c	/* fifo level control register */
26 #define HISI_SPI_IMR		0x10	/* interrupt mask register */
27 #define HISI_SPI_DIN		0x14	/* data in register */
28 #define HISI_SPI_DOUT		0x18	/* data out register */
29 #define HISI_SPI_SR		0x1c	/* status register */
30 #define HISI_SPI_RISR		0x20	/* raw interrupt status register */
31 #define HISI_SPI_ISR		0x24	/* interrupt status register */
32 #define HISI_SPI_ICR		0x28	/* interrupt clear register */
33 #define HISI_SPI_VERSION	0xe0	/* version register */
34 
35 /* Bit fields in HISI_SPI_CR */
36 #define CR_LOOP_MASK		GENMASK(1, 1)
37 #define CR_CPOL_MASK		GENMASK(2, 2)
38 #define CR_CPHA_MASK		GENMASK(3, 3)
39 #define CR_DIV_PRE_MASK		GENMASK(11, 4)
40 #define CR_DIV_POST_MASK	GENMASK(19, 12)
41 #define CR_BPW_MASK		GENMASK(24, 20)
42 #define CR_SPD_MODE_MASK	GENMASK(25, 25)
43 
44 /* Bit fields in HISI_SPI_FIFOC */
45 #define FIFOC_TX_MASK		GENMASK(5, 3)
46 #define FIFOC_RX_MASK		GENMASK(11, 9)
47 
48 /* Bit fields in HISI_SPI_IMR, 4 bits */
49 #define IMR_RXOF		BIT(0)		/* Receive Overflow */
50 #define IMR_RXTO		BIT(1)		/* Receive Timeout */
51 #define IMR_RX			BIT(2)		/* Receive */
52 #define IMR_TX			BIT(3)		/* Transmit */
53 #define IMR_MASK		(IMR_RXOF | IMR_RXTO | IMR_RX | IMR_TX)
54 
55 /* Bit fields in HISI_SPI_SR, 5 bits */
56 #define SR_TXE			BIT(0)		/* Transmit FIFO empty */
57 #define SR_TXNF			BIT(1)		/* Transmit FIFO not full */
58 #define SR_RXNE			BIT(2)		/* Receive FIFO not empty */
59 #define SR_RXF			BIT(3)		/* Receive FIFO full */
60 #define SR_BUSY			BIT(4)		/* Busy Flag */
61 
62 /* Bit fields in HISI_SPI_ISR, 4 bits */
63 #define ISR_RXOF		BIT(0)		/* Receive Overflow */
64 #define ISR_RXTO		BIT(1)		/* Receive Timeout */
65 #define ISR_RX			BIT(2)		/* Receive */
66 #define ISR_TX			BIT(3)		/* Transmit */
67 #define ISR_MASK		(ISR_RXOF | ISR_RXTO | ISR_RX | ISR_TX)
68 
69 /* Bit fields in HISI_SPI_ICR, 2 bits */
70 #define ICR_RXOF		BIT(0)		/* Receive Overflow */
71 #define ICR_RXTO		BIT(1)		/* Receive Timeout */
72 #define ICR_MASK		(ICR_RXOF | ICR_RXTO)
73 
74 #define DIV_POST_MAX		0xFF
75 #define DIV_POST_MIN		0x00
76 #define DIV_PRE_MAX		0xFE
77 #define DIV_PRE_MIN		0x02
78 #define CLK_DIV_MAX		((1 + DIV_POST_MAX) * DIV_PRE_MAX)
79 #define CLK_DIV_MIN		((1 + DIV_POST_MIN) * DIV_PRE_MIN)
80 
81 #define DEFAULT_NUM_CS		1
82 
83 #define HISI_SPI_WAIT_TIMEOUT_MS	10UL
84 
85 enum hisi_spi_rx_level_trig {
86 	HISI_SPI_RX_1,
87 	HISI_SPI_RX_4,
88 	HISI_SPI_RX_8,
89 	HISI_SPI_RX_16,
90 	HISI_SPI_RX_32,
91 	HISI_SPI_RX_64,
92 	HISI_SPI_RX_128
93 };
94 
95 enum hisi_spi_tx_level_trig {
96 	HISI_SPI_TX_1_OR_LESS,
97 	HISI_SPI_TX_4_OR_LESS,
98 	HISI_SPI_TX_8_OR_LESS,
99 	HISI_SPI_TX_16_OR_LESS,
100 	HISI_SPI_TX_32_OR_LESS,
101 	HISI_SPI_TX_64_OR_LESS,
102 	HISI_SPI_TX_128_OR_LESS
103 };
104 
105 enum hisi_spi_frame_n_bytes {
106 	HISI_SPI_N_BYTES_NULL,
107 	HISI_SPI_N_BYTES_U8,
108 	HISI_SPI_N_BYTES_U16,
109 	HISI_SPI_N_BYTES_U32 = 4
110 };
111 
112 /* Slave spi_dev related */
113 struct hisi_chip_data {
114 	u32 cr;
115 	u32 speed_hz;	/* baud rate */
116 	u16 clk_div;	/* baud rate divider */
117 
118 	/* clk_div = (1 + div_post) * div_pre */
119 	u8 div_post;	/* value from 0 to 255 */
120 	u8 div_pre;	/* value from 2 to 254 (even only!) */
121 };
122 
123 struct hisi_spi {
124 	struct device		*dev;
125 
126 	void __iomem		*regs;
127 	int			irq;
128 	u32			fifo_len; /* depth of the FIFO buffer */
129 
130 	/* Current message transfer state info */
131 	const void		*tx;
132 	unsigned int		tx_len;
133 	void			*rx;
134 	unsigned int		rx_len;
135 	u8			n_bytes; /* current is a 1/2/4 bytes op */
136 };
137 
hisi_spi_busy(struct hisi_spi * hs)138 static u32 hisi_spi_busy(struct hisi_spi *hs)
139 {
140 	return readl(hs->regs + HISI_SPI_SR) & SR_BUSY;
141 }
142 
hisi_spi_rx_not_empty(struct hisi_spi * hs)143 static u32 hisi_spi_rx_not_empty(struct hisi_spi *hs)
144 {
145 	return readl(hs->regs + HISI_SPI_SR) & SR_RXNE;
146 }
147 
hisi_spi_tx_not_full(struct hisi_spi * hs)148 static u32 hisi_spi_tx_not_full(struct hisi_spi *hs)
149 {
150 	return readl(hs->regs + HISI_SPI_SR) & SR_TXNF;
151 }
152 
hisi_spi_flush_fifo(struct hisi_spi * hs)153 static void hisi_spi_flush_fifo(struct hisi_spi *hs)
154 {
155 	unsigned long limit = loops_per_jiffy << 1;
156 
157 	do {
158 		while (hisi_spi_rx_not_empty(hs))
159 			readl(hs->regs + HISI_SPI_DOUT);
160 	} while (hisi_spi_busy(hs) && limit--);
161 }
162 
163 /* Disable the controller and all interrupts */
hisi_spi_disable(struct hisi_spi * hs)164 static void hisi_spi_disable(struct hisi_spi *hs)
165 {
166 	writel(0, hs->regs + HISI_SPI_ENR);
167 	writel(IMR_MASK, hs->regs + HISI_SPI_IMR);
168 	writel(ICR_MASK, hs->regs + HISI_SPI_ICR);
169 }
170 
hisi_spi_n_bytes(struct spi_transfer * transfer)171 static u8 hisi_spi_n_bytes(struct spi_transfer *transfer)
172 {
173 	if (transfer->bits_per_word <= 8)
174 		return HISI_SPI_N_BYTES_U8;
175 	else if (transfer->bits_per_word <= 16)
176 		return HISI_SPI_N_BYTES_U16;
177 	else
178 		return HISI_SPI_N_BYTES_U32;
179 }
180 
hisi_spi_reader(struct hisi_spi * hs)181 static void hisi_spi_reader(struct hisi_spi *hs)
182 {
183 	u32 max = min_t(u32, hs->rx_len, hs->fifo_len);
184 	u32 rxw;
185 
186 	while (hisi_spi_rx_not_empty(hs) && max--) {
187 		rxw = readl(hs->regs + HISI_SPI_DOUT);
188 		/* Check the transfer's original "rx" is not null */
189 		if (hs->rx) {
190 			switch (hs->n_bytes) {
191 			case HISI_SPI_N_BYTES_U8:
192 				*(u8 *)(hs->rx) = rxw;
193 				break;
194 			case HISI_SPI_N_BYTES_U16:
195 				*(u16 *)(hs->rx) = rxw;
196 				break;
197 			case HISI_SPI_N_BYTES_U32:
198 				*(u32 *)(hs->rx) = rxw;
199 				break;
200 			}
201 			hs->rx += hs->n_bytes;
202 		}
203 		--hs->rx_len;
204 	}
205 }
206 
hisi_spi_writer(struct hisi_spi * hs)207 static void hisi_spi_writer(struct hisi_spi *hs)
208 {
209 	u32 max = min_t(u32, hs->tx_len, hs->fifo_len);
210 	u32 txw = 0;
211 
212 	while (hisi_spi_tx_not_full(hs) && max--) {
213 		/* Check the transfer's original "tx" is not null */
214 		if (hs->tx) {
215 			switch (hs->n_bytes) {
216 			case HISI_SPI_N_BYTES_U8:
217 				txw = *(u8 *)(hs->tx);
218 				break;
219 			case HISI_SPI_N_BYTES_U16:
220 				txw = *(u16 *)(hs->tx);
221 				break;
222 			case HISI_SPI_N_BYTES_U32:
223 				txw = *(u32 *)(hs->tx);
224 				break;
225 			}
226 			hs->tx += hs->n_bytes;
227 		}
228 		writel(txw, hs->regs + HISI_SPI_DIN);
229 		--hs->tx_len;
230 	}
231 }
232 
__hisi_calc_div_reg(struct hisi_chip_data * chip)233 static void __hisi_calc_div_reg(struct hisi_chip_data *chip)
234 {
235 	chip->div_pre = DIV_PRE_MAX;
236 	while (chip->div_pre >= DIV_PRE_MIN) {
237 		if (chip->clk_div % chip->div_pre == 0)
238 			break;
239 
240 		chip->div_pre -= 2;
241 	}
242 
243 	if (chip->div_pre > chip->clk_div)
244 		chip->div_pre = chip->clk_div;
245 
246 	chip->div_post = (chip->clk_div / chip->div_pre) - 1;
247 }
248 
hisi_calc_effective_speed(struct spi_controller * master,struct hisi_chip_data * chip,u32 speed_hz)249 static u32 hisi_calc_effective_speed(struct spi_controller *master,
250 			struct hisi_chip_data *chip, u32 speed_hz)
251 {
252 	u32 effective_speed;
253 
254 	/* Note clock divider doesn't support odd numbers */
255 	chip->clk_div = DIV_ROUND_UP(master->max_speed_hz, speed_hz) + 1;
256 	chip->clk_div &= 0xfffe;
257 	if (chip->clk_div > CLK_DIV_MAX)
258 		chip->clk_div = CLK_DIV_MAX;
259 
260 	effective_speed = master->max_speed_hz / chip->clk_div;
261 	if (chip->speed_hz != effective_speed) {
262 		__hisi_calc_div_reg(chip);
263 		chip->speed_hz = effective_speed;
264 	}
265 
266 	return effective_speed;
267 }
268 
hisi_spi_prepare_cr(struct spi_device * spi)269 static u32 hisi_spi_prepare_cr(struct spi_device *spi)
270 {
271 	u32 cr = FIELD_PREP(CR_SPD_MODE_MASK, 1);
272 
273 	cr |= FIELD_PREP(CR_CPHA_MASK, (spi->mode & SPI_CPHA) ? 1 : 0);
274 	cr |= FIELD_PREP(CR_CPOL_MASK, (spi->mode & SPI_CPOL) ? 1 : 0);
275 	cr |= FIELD_PREP(CR_LOOP_MASK, (spi->mode & SPI_LOOP) ? 1 : 0);
276 
277 	return cr;
278 }
279 
hisi_spi_hw_init(struct hisi_spi * hs)280 static void hisi_spi_hw_init(struct hisi_spi *hs)
281 {
282 	hisi_spi_disable(hs);
283 
284 	/* FIFO default config */
285 	writel(FIELD_PREP(FIFOC_TX_MASK, HISI_SPI_TX_64_OR_LESS) |
286 		FIELD_PREP(FIFOC_RX_MASK, HISI_SPI_RX_16),
287 		hs->regs + HISI_SPI_FIFOC);
288 
289 	hs->fifo_len = 256;
290 }
291 
hisi_spi_irq(int irq,void * dev_id)292 static irqreturn_t hisi_spi_irq(int irq, void *dev_id)
293 {
294 	struct spi_controller *master = dev_id;
295 	struct hisi_spi *hs = spi_controller_get_devdata(master);
296 	u32 irq_status = readl(hs->regs + HISI_SPI_ISR) & ISR_MASK;
297 
298 	if (!irq_status)
299 		return IRQ_NONE;
300 
301 	if (!master->cur_msg)
302 		return IRQ_HANDLED;
303 
304 	/* Error handling */
305 	if (irq_status & ISR_RXOF) {
306 		dev_err(hs->dev, "interrupt_transfer: fifo overflow\n");
307 		master->cur_msg->status = -EIO;
308 		goto finalize_transfer;
309 	}
310 
311 	/*
312 	 * Read data from the Rx FIFO every time. If there is
313 	 * nothing left to receive, finalize the transfer.
314 	 */
315 	hisi_spi_reader(hs);
316 	if (!hs->rx_len)
317 		goto finalize_transfer;
318 
319 	/* Send data out when Tx FIFO IRQ triggered */
320 	if (irq_status & ISR_TX)
321 		hisi_spi_writer(hs);
322 
323 	return IRQ_HANDLED;
324 
325 finalize_transfer:
326 	hisi_spi_disable(hs);
327 	spi_finalize_current_transfer(master);
328 	return IRQ_HANDLED;
329 }
330 
hisi_spi_transfer_one(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * transfer)331 static int hisi_spi_transfer_one(struct spi_controller *master,
332 		struct spi_device *spi, struct spi_transfer *transfer)
333 {
334 	struct hisi_spi *hs = spi_controller_get_devdata(master);
335 	struct hisi_chip_data *chip = spi_get_ctldata(spi);
336 	u32 cr = chip->cr;
337 
338 	/* Update per transfer options for speed and bpw */
339 	transfer->effective_speed_hz =
340 		hisi_calc_effective_speed(master, chip, transfer->speed_hz);
341 	cr |= FIELD_PREP(CR_DIV_PRE_MASK, chip->div_pre);
342 	cr |= FIELD_PREP(CR_DIV_POST_MASK, chip->div_post);
343 	cr |= FIELD_PREP(CR_BPW_MASK, transfer->bits_per_word - 1);
344 	writel(cr, hs->regs + HISI_SPI_CR);
345 
346 	hisi_spi_flush_fifo(hs);
347 
348 	hs->n_bytes = hisi_spi_n_bytes(transfer);
349 	hs->tx = transfer->tx_buf;
350 	hs->tx_len = transfer->len / hs->n_bytes;
351 	hs->rx = transfer->rx_buf;
352 	hs->rx_len = hs->tx_len;
353 
354 	/*
355 	 * Ensure that the transfer data above has been updated
356 	 * before the interrupt to start.
357 	 */
358 	smp_mb();
359 
360 	/* Enable all interrupts and the controller */
361 	writel(~(u32)IMR_MASK, hs->regs + HISI_SPI_IMR);
362 	writel(1, hs->regs + HISI_SPI_ENR);
363 
364 	return 1;
365 }
366 
hisi_spi_handle_err(struct spi_controller * master,struct spi_message * msg)367 static void hisi_spi_handle_err(struct spi_controller *master,
368 		struct spi_message *msg)
369 {
370 	struct hisi_spi *hs = spi_controller_get_devdata(master);
371 
372 	hisi_spi_disable(hs);
373 
374 	/*
375 	 * Wait for interrupt handler that is
376 	 * already in timeout to complete.
377 	 */
378 	msleep(HISI_SPI_WAIT_TIMEOUT_MS);
379 }
380 
hisi_spi_setup(struct spi_device * spi)381 static int hisi_spi_setup(struct spi_device *spi)
382 {
383 	struct hisi_chip_data *chip;
384 
385 	/* Only alloc on first setup */
386 	chip = spi_get_ctldata(spi);
387 	if (!chip) {
388 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
389 		if (!chip)
390 			return -ENOMEM;
391 		spi_set_ctldata(spi, chip);
392 	}
393 
394 	chip->cr = hisi_spi_prepare_cr(spi);
395 
396 	return 0;
397 }
398 
hisi_spi_cleanup(struct spi_device * spi)399 static void hisi_spi_cleanup(struct spi_device *spi)
400 {
401 	struct hisi_chip_data *chip = spi_get_ctldata(spi);
402 
403 	kfree(chip);
404 	spi_set_ctldata(spi, NULL);
405 }
406 
hisi_spi_probe(struct platform_device * pdev)407 static int hisi_spi_probe(struct platform_device *pdev)
408 {
409 	struct device *dev = &pdev->dev;
410 	struct spi_controller *master;
411 	struct hisi_spi *hs;
412 	int ret, irq;
413 
414 	irq = platform_get_irq(pdev, 0);
415 	if (irq < 0)
416 		return irq;
417 
418 	master = devm_spi_alloc_master(dev, sizeof(*hs));
419 	if (!master)
420 		return -ENOMEM;
421 
422 	platform_set_drvdata(pdev, master);
423 
424 	hs = spi_controller_get_devdata(master);
425 	hs->dev = dev;
426 	hs->irq = irq;
427 
428 	hs->regs = devm_platform_ioremap_resource(pdev, 0);
429 	if (IS_ERR(hs->regs))
430 		return PTR_ERR(hs->regs);
431 
432 	/* Specify maximum SPI clocking speed (master only) by firmware */
433 	ret = device_property_read_u32(dev, "spi-max-frequency",
434 					&master->max_speed_hz);
435 	if (ret) {
436 		dev_err(dev, "failed to get max SPI clocking speed, ret=%d\n",
437 			ret);
438 		return -EINVAL;
439 	}
440 
441 	ret = device_property_read_u16(dev, "num-cs",
442 					&master->num_chipselect);
443 	if (ret)
444 		master->num_chipselect = DEFAULT_NUM_CS;
445 
446 	master->use_gpio_descriptors = true;
447 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
448 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
449 	master->bus_num = pdev->id;
450 	master->setup = hisi_spi_setup;
451 	master->cleanup = hisi_spi_cleanup;
452 	master->transfer_one = hisi_spi_transfer_one;
453 	master->handle_err = hisi_spi_handle_err;
454 	master->dev.fwnode = dev->fwnode;
455 
456 	hisi_spi_hw_init(hs);
457 
458 	ret = devm_request_irq(dev, hs->irq, hisi_spi_irq, 0, dev_name(dev),
459 			master);
460 	if (ret < 0) {
461 		dev_err(dev, "failed to get IRQ=%d, ret=%d\n", hs->irq, ret);
462 		return ret;
463 	}
464 
465 	ret = spi_register_controller(master);
466 	if (ret) {
467 		dev_err(dev, "failed to register spi master, ret=%d\n", ret);
468 		return ret;
469 	}
470 
471 	dev_info(dev, "hw version:0x%x max-freq:%u kHz\n",
472 		readl(hs->regs + HISI_SPI_VERSION),
473 		master->max_speed_hz / 1000);
474 
475 	return 0;
476 }
477 
hisi_spi_remove(struct platform_device * pdev)478 static int hisi_spi_remove(struct platform_device *pdev)
479 {
480 	struct spi_controller *master = platform_get_drvdata(pdev);
481 
482 	spi_unregister_controller(master);
483 
484 	return 0;
485 }
486 
487 static const struct acpi_device_id hisi_spi_acpi_match[] = {
488 	{"HISI03E1", 0},
489 	{}
490 };
491 MODULE_DEVICE_TABLE(acpi, hisi_spi_acpi_match);
492 
493 static struct platform_driver hisi_spi_driver = {
494 	.probe		= hisi_spi_probe,
495 	.remove		= hisi_spi_remove,
496 	.driver		= {
497 		.name	= "hisi-kunpeng-spi",
498 		.acpi_match_table = hisi_spi_acpi_match,
499 	},
500 };
501 module_platform_driver(hisi_spi_driver);
502 
503 MODULE_AUTHOR("Jay Fang <f.fangjian@huawei.com>");
504 MODULE_DESCRIPTION("HiSilicon SPI Controller Driver for Kunpeng SoCs");
505 MODULE_LICENSE("GPL v2");
506