1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7 
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21 
22 #define DRIVER_NAME "spi_stm32"
23 
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1			0x00
26 #define STM32F4_SPI_CR2			0x04
27 #define STM32F4_SPI_SR			0x08
28 #define STM32F4_SPI_DR			0x0C
29 #define STM32F4_SPI_I2SCFGR		0x1C
30 
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA		BIT(0)
33 #define STM32F4_SPI_CR1_CPOL		BIT(1)
34 #define STM32F4_SPI_CR1_MSTR		BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT	3
36 #define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE		BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST		BIT(7)
39 #define STM32F4_SPI_CR1_SSI		BIT(8)
40 #define STM32F4_SPI_CR1_SSM		BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY		BIT(10)
42 #define STM32F4_SPI_CR1_DFF		BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN		BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE		BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN		0
48 #define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
49 
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
53 #define STM32F4_SPI_CR2_SSOE		BIT(2)
54 #define STM32F4_SPI_CR2_FRF		BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE		BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE		BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE		BIT(7)
58 
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE		BIT(0)
61 #define STM32F4_SPI_SR_TXE		BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE		BIT(2)
63 #define STM32F4_SPI_SR_UDR		BIT(3)
64 #define STM32F4_SPI_SR_CRCERR		BIT(4)
65 #define STM32F4_SPI_SR_MODF		BIT(5)
66 #define STM32F4_SPI_SR_OVR		BIT(6)
67 #define STM32F4_SPI_SR_BSY		BIT(7)
68 #define STM32F4_SPI_SR_FRE		BIT(8)
69 
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
72 
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
76 
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1			0x00
79 #define STM32H7_SPI_CR2			0x04
80 #define STM32H7_SPI_CFG1		0x08
81 #define STM32H7_SPI_CFG2		0x0C
82 #define STM32H7_SPI_IER			0x10
83 #define STM32H7_SPI_SR			0x14
84 #define STM32H7_SPI_IFCR		0x18
85 #define STM32H7_SPI_TXDR		0x20
86 #define STM32H7_SPI_RXDR		0x30
87 #define STM32H7_SPI_I2SCFGR		0x50
88 
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE		BIT(0)
91 #define STM32H7_SPI_CR1_MASRX		BIT(8)
92 #define STM32H7_SPI_CR1_CSTART		BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP		BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR		BIT(11)
95 #define STM32H7_SPI_CR1_SSI		BIT(12)
96 
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
100 
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
106 #define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT	28
108 #define STM32H7_SPI_CFG1_MBR_MIN	0
109 #define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
110 
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER		BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA		BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL		BIT(25)
119 #define STM32H7_SPI_CFG2_SSM		BIT(26)
120 #define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
121 
122 /* STM32H7_SPI_IER bit fields */
123 #define STM32H7_SPI_IER_RXPIE		BIT(0)
124 #define STM32H7_SPI_IER_TXPIE		BIT(1)
125 #define STM32H7_SPI_IER_DXPIE		BIT(2)
126 #define STM32H7_SPI_IER_EOTIE		BIT(3)
127 #define STM32H7_SPI_IER_TXTFIE		BIT(4)
128 #define STM32H7_SPI_IER_OVRIE		BIT(6)
129 #define STM32H7_SPI_IER_MODFIE		BIT(9)
130 #define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
131 
132 /* STM32H7_SPI_SR bit fields */
133 #define STM32H7_SPI_SR_RXP		BIT(0)
134 #define STM32H7_SPI_SR_TXP		BIT(1)
135 #define STM32H7_SPI_SR_EOT		BIT(3)
136 #define STM32H7_SPI_SR_OVR		BIT(6)
137 #define STM32H7_SPI_SR_MODF		BIT(9)
138 #define STM32H7_SPI_SR_SUSP		BIT(11)
139 #define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
140 #define STM32H7_SPI_SR_RXWNE		BIT(15)
141 
142 /* STM32H7_SPI_IFCR bit fields */
143 #define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
144 
145 /* STM32H7_SPI_I2SCFGR bit fields */
146 #define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
147 
148 /* STM32H7 SPI Master Baud Rate min/max divisor */
149 #define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
150 #define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
151 
152 /* STM32H7 SPI Communication mode */
153 #define STM32H7_SPI_FULL_DUPLEX		0
154 #define STM32H7_SPI_SIMPLEX_TX		1
155 #define STM32H7_SPI_SIMPLEX_RX		2
156 #define STM32H7_SPI_HALF_DUPLEX		3
157 
158 /* SPI Communication type */
159 #define SPI_FULL_DUPLEX		0
160 #define SPI_SIMPLEX_TX		1
161 #define SPI_SIMPLEX_RX		2
162 #define SPI_3WIRE_TX		3
163 #define SPI_3WIRE_RX		4
164 
165 /*
166  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
167  * without fifo buffers.
168  */
169 #define SPI_DMA_MIN_BYTES	16
170 
171 /**
172  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
173  * @reg:		register offset
174  * @mask:		bitfield mask
175  * @shift:		left shift
176  */
177 struct stm32_spi_reg {
178 	int reg;
179 	int mask;
180 	int shift;
181 };
182 
183 /**
184  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
185  * @en: enable register and SPI enable bit
186  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
187  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
188  * @cpol: clock polarity register and polarity bit
189  * @cpha: clock phase register and phase bit
190  * @lsb_first: LSB transmitted first register and bit
191  * @br: baud rate register and bitfields
192  * @rx: SPI RX data register
193  * @tx: SPI TX data register
194  */
195 struct stm32_spi_regspec {
196 	const struct stm32_spi_reg en;
197 	const struct stm32_spi_reg dma_rx_en;
198 	const struct stm32_spi_reg dma_tx_en;
199 	const struct stm32_spi_reg cpol;
200 	const struct stm32_spi_reg cpha;
201 	const struct stm32_spi_reg lsb_first;
202 	const struct stm32_spi_reg br;
203 	const struct stm32_spi_reg rx;
204 	const struct stm32_spi_reg tx;
205 };
206 
207 struct stm32_spi;
208 
209 /**
210  * struct stm32_spi_cfg - stm32 compatible configuration data
211  * @regs: registers descriptions
212  * @get_fifo_size: routine to get fifo size
213  * @get_bpw_mask: routine to get bits per word mask
214  * @disable: routine to disable controller
215  * @config: routine to configure controller as SPI Master
216  * @set_bpw: routine to configure registers to for bits per word
217  * @set_mode: routine to configure registers to desired mode
218  * @set_data_idleness: optional routine to configure registers to desired idle
219  * time between frames (if driver has this functionality)
220  * @set_number_of_data: optional routine to configure registers to desired
221  * number of data (if driver has this functionality)
222  * @can_dma: routine to determine if the transfer is eligible for DMA use
223  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
224  * using DMA
225  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
226  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
227  * @transfer_one_irq: routine to configure interrupts for driver
228  * @irq_handler_event: Interrupt handler for SPI controller events
229  * @irq_handler_thread: thread of interrupt handler for SPI controller
230  * @baud_rate_div_min: minimum baud rate divisor
231  * @baud_rate_div_max: maximum baud rate divisor
232  * @has_fifo: boolean to know if fifo is used for driver
233  * @has_startbit: boolean to know if start bit is used to start transfer
234  */
235 struct stm32_spi_cfg {
236 	const struct stm32_spi_regspec *regs;
237 	int (*get_fifo_size)(struct stm32_spi *spi);
238 	int (*get_bpw_mask)(struct stm32_spi *spi);
239 	void (*disable)(struct stm32_spi *spi);
240 	int (*config)(struct stm32_spi *spi);
241 	void (*set_bpw)(struct stm32_spi *spi);
242 	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
243 	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
244 	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
245 	void (*transfer_one_dma_start)(struct stm32_spi *spi);
246 	void (*dma_rx_cb)(void *data);
247 	void (*dma_tx_cb)(void *data);
248 	int (*transfer_one_irq)(struct stm32_spi *spi);
249 	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
250 	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
251 	unsigned int baud_rate_div_min;
252 	unsigned int baud_rate_div_max;
253 	bool has_fifo;
254 };
255 
256 /**
257  * struct stm32_spi - private data of the SPI controller
258  * @dev: driver model representation of the controller
259  * @master: controller master interface
260  * @cfg: compatible configuration data
261  * @base: virtual memory area
262  * @clk: hw kernel clock feeding the SPI clock generator
263  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
264  * @lock: prevent I/O concurrent access
265  * @irq: SPI controller interrupt line
266  * @fifo_size: size of the embedded fifo in bytes
267  * @cur_midi: master inter-data idleness in ns
268  * @cur_speed: speed configured in Hz
269  * @cur_bpw: number of bits in a single SPI data frame
270  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
271  * @cur_comm: SPI communication mode
272  * @cur_xferlen: current transfer length in bytes
273  * @cur_usedma: boolean to know if dma is used in current transfer
274  * @tx_buf: data to be written, or NULL
275  * @rx_buf: data to be read, or NULL
276  * @tx_len: number of data to be written in bytes
277  * @rx_len: number of data to be read in bytes
278  * @dma_tx: dma channel for TX transfer
279  * @dma_rx: dma channel for RX transfer
280  * @phys_addr: SPI registers physical base address
281  */
282 struct stm32_spi {
283 	struct device *dev;
284 	struct spi_master *master;
285 	const struct stm32_spi_cfg *cfg;
286 	void __iomem *base;
287 	struct clk *clk;
288 	u32 clk_rate;
289 	spinlock_t lock; /* prevent I/O concurrent access */
290 	int irq;
291 	unsigned int fifo_size;
292 
293 	unsigned int cur_midi;
294 	unsigned int cur_speed;
295 	unsigned int cur_bpw;
296 	unsigned int cur_fthlv;
297 	unsigned int cur_comm;
298 	unsigned int cur_xferlen;
299 	bool cur_usedma;
300 
301 	const void *tx_buf;
302 	void *rx_buf;
303 	int tx_len;
304 	int rx_len;
305 	struct dma_chan *dma_tx;
306 	struct dma_chan *dma_rx;
307 	dma_addr_t phys_addr;
308 };
309 
310 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
311 	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
312 
313 	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
314 	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
315 
316 	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
317 	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
318 	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
319 	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
320 
321 	.rx = { STM32F4_SPI_DR },
322 	.tx = { STM32F4_SPI_DR },
323 };
324 
325 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
326 	/* SPI data transfer is enabled but spi_ker_ck is idle.
327 	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
328 	 */
329 	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
330 
331 	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
332 	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
333 
334 	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
335 	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
336 	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
337 	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
338 		STM32H7_SPI_CFG1_MBR_SHIFT },
339 
340 	.rx = { STM32H7_SPI_RXDR },
341 	.tx = { STM32H7_SPI_TXDR },
342 };
343 
stm32_spi_set_bits(struct stm32_spi * spi,u32 offset,u32 bits)344 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
345 				      u32 offset, u32 bits)
346 {
347 	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
348 		       spi->base + offset);
349 }
350 
stm32_spi_clr_bits(struct stm32_spi * spi,u32 offset,u32 bits)351 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
352 				      u32 offset, u32 bits)
353 {
354 	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
355 		       spi->base + offset);
356 }
357 
358 /**
359  * stm32h7_spi_get_fifo_size - Return fifo size
360  * @spi: pointer to the spi controller data structure
361  */
stm32h7_spi_get_fifo_size(struct stm32_spi * spi)362 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
363 {
364 	unsigned long flags;
365 	u32 count = 0;
366 
367 	spin_lock_irqsave(&spi->lock, flags);
368 
369 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
370 
371 	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
372 		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
373 
374 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
375 
376 	spin_unlock_irqrestore(&spi->lock, flags);
377 
378 	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
379 
380 	return count;
381 }
382 
383 /**
384  * stm32f4_spi_get_bpw_mask - Return bits per word mask
385  * @spi: pointer to the spi controller data structure
386  */
stm32f4_spi_get_bpw_mask(struct stm32_spi * spi)387 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
388 {
389 	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
390 	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
391 }
392 
393 /**
394  * stm32h7_spi_get_bpw_mask - Return bits per word mask
395  * @spi: pointer to the spi controller data structure
396  */
stm32h7_spi_get_bpw_mask(struct stm32_spi * spi)397 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
398 {
399 	unsigned long flags;
400 	u32 cfg1, max_bpw;
401 
402 	spin_lock_irqsave(&spi->lock, flags);
403 
404 	/*
405 	 * The most significant bit at DSIZE bit field is reserved when the
406 	 * maximum data size of periperal instances is limited to 16-bit
407 	 */
408 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
409 
410 	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
411 	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
412 
413 	spin_unlock_irqrestore(&spi->lock, flags);
414 
415 	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
416 
417 	return SPI_BPW_RANGE_MASK(4, max_bpw);
418 }
419 
420 /**
421  * stm32_spi_prepare_mbr - Determine baud rate divisor value
422  * @spi: pointer to the spi controller data structure
423  * @speed_hz: requested speed
424  * @min_div: minimum baud rate divisor
425  * @max_div: maximum baud rate divisor
426  *
427  * Return baud rate divisor value in case of success or -EINVAL
428  */
stm32_spi_prepare_mbr(struct stm32_spi * spi,u32 speed_hz,u32 min_div,u32 max_div)429 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
430 				 u32 min_div, u32 max_div)
431 {
432 	u32 div, mbrdiv;
433 
434 	/* Ensure spi->clk_rate is even */
435 	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
436 
437 	/*
438 	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
439 	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
440 	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
441 	 * no need to check it there.
442 	 * However, we need to ensure the following calculations.
443 	 */
444 	if ((div < min_div) || (div > max_div))
445 		return -EINVAL;
446 
447 	/* Determine the first power of 2 greater than or equal to div */
448 	if (div & (div - 1))
449 		mbrdiv = fls(div);
450 	else
451 		mbrdiv = fls(div) - 1;
452 
453 	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
454 
455 	return mbrdiv - 1;
456 }
457 
458 /**
459  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
460  * @spi: pointer to the spi controller data structure
461  * @xfer_len: length of the message to be transferred
462  */
stm32h7_spi_prepare_fthlv(struct stm32_spi * spi,u32 xfer_len)463 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
464 {
465 	u32 packet, bpw;
466 
467 	/* data packet should not exceed 1/2 of fifo space */
468 	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
469 
470 	/* align packet size with data registers access */
471 	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
472 	return DIV_ROUND_UP(packet, bpw);
473 }
474 
475 /**
476  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
477  * @spi: pointer to the spi controller data structure
478  *
479  * Read from tx_buf depends on remaining bytes to avoid to read beyond
480  * tx_buf end.
481  */
stm32f4_spi_write_tx(struct stm32_spi * spi)482 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
483 {
484 	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
485 				  STM32F4_SPI_SR_TXE)) {
486 		u32 offs = spi->cur_xferlen - spi->tx_len;
487 
488 		if (spi->cur_bpw == 16) {
489 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
490 
491 			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
492 			spi->tx_len -= sizeof(u16);
493 		} else {
494 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
495 
496 			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
497 			spi->tx_len -= sizeof(u8);
498 		}
499 	}
500 
501 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
502 }
503 
504 /**
505  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
506  * @spi: pointer to the spi controller data structure
507  *
508  * Read from tx_buf depends on remaining bytes to avoid to read beyond
509  * tx_buf end.
510  */
stm32h7_spi_write_txfifo(struct stm32_spi * spi)511 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
512 {
513 	while ((spi->tx_len > 0) &&
514 		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
515 			STM32H7_SPI_SR_TXP)) {
516 		u32 offs = spi->cur_xferlen - spi->tx_len;
517 
518 		if (spi->tx_len >= sizeof(u32)) {
519 			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
520 
521 			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
522 			spi->tx_len -= sizeof(u32);
523 		} else if (spi->tx_len >= sizeof(u16)) {
524 			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
525 
526 			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
527 			spi->tx_len -= sizeof(u16);
528 		} else {
529 			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
530 
531 			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
532 			spi->tx_len -= sizeof(u8);
533 		}
534 	}
535 
536 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
537 }
538 
539 /**
540  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
541  * @spi: pointer to the spi controller data structure
542  *
543  * Write in rx_buf depends on remaining bytes to avoid to write beyond
544  * rx_buf end.
545  */
stm32f4_spi_read_rx(struct stm32_spi * spi)546 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
547 {
548 	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
549 				  STM32F4_SPI_SR_RXNE)) {
550 		u32 offs = spi->cur_xferlen - spi->rx_len;
551 
552 		if (spi->cur_bpw == 16) {
553 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
554 
555 			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
556 			spi->rx_len -= sizeof(u16);
557 		} else {
558 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
559 
560 			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
561 			spi->rx_len -= sizeof(u8);
562 		}
563 	}
564 
565 	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
566 }
567 
568 /**
569  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
570  * @spi: pointer to the spi controller data structure
571  * @flush: boolean indicating that FIFO should be flushed
572  *
573  * Write in rx_buf depends on remaining bytes to avoid to write beyond
574  * rx_buf end.
575  */
stm32h7_spi_read_rxfifo(struct stm32_spi * spi,bool flush)576 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
577 {
578 	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
579 	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
580 
581 	while ((spi->rx_len > 0) &&
582 	       ((sr & STM32H7_SPI_SR_RXP) ||
583 		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
584 		u32 offs = spi->cur_xferlen - spi->rx_len;
585 
586 		if ((spi->rx_len >= sizeof(u32)) ||
587 		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
588 			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
589 
590 			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
591 			spi->rx_len -= sizeof(u32);
592 		} else if ((spi->rx_len >= sizeof(u16)) ||
593 			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
594 			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
595 
596 			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
597 			spi->rx_len -= sizeof(u16);
598 		} else {
599 			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
600 
601 			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
602 			spi->rx_len -= sizeof(u8);
603 		}
604 
605 		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
606 		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
607 	}
608 
609 	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
610 		flush ? "(flush)" : "", spi->rx_len);
611 }
612 
613 /**
614  * stm32_spi_enable - Enable SPI controller
615  * @spi: pointer to the spi controller data structure
616  */
stm32_spi_enable(struct stm32_spi * spi)617 static void stm32_spi_enable(struct stm32_spi *spi)
618 {
619 	dev_dbg(spi->dev, "enable controller\n");
620 
621 	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
622 			   spi->cfg->regs->en.mask);
623 }
624 
625 /**
626  * stm32f4_spi_disable - Disable SPI controller
627  * @spi: pointer to the spi controller data structure
628  */
stm32f4_spi_disable(struct stm32_spi * spi)629 static void stm32f4_spi_disable(struct stm32_spi *spi)
630 {
631 	unsigned long flags;
632 	u32 sr;
633 
634 	dev_dbg(spi->dev, "disable controller\n");
635 
636 	spin_lock_irqsave(&spi->lock, flags);
637 
638 	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
639 	      STM32F4_SPI_CR1_SPE)) {
640 		spin_unlock_irqrestore(&spi->lock, flags);
641 		return;
642 	}
643 
644 	/* Disable interrupts */
645 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
646 						 STM32F4_SPI_CR2_RXNEIE |
647 						 STM32F4_SPI_CR2_ERRIE);
648 
649 	/* Wait until BSY = 0 */
650 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
651 					      sr, !(sr & STM32F4_SPI_SR_BSY),
652 					      10, 100000) < 0) {
653 		dev_warn(spi->dev, "disabling condition timeout\n");
654 	}
655 
656 	if (spi->cur_usedma && spi->dma_tx)
657 		dmaengine_terminate_all(spi->dma_tx);
658 	if (spi->cur_usedma && spi->dma_rx)
659 		dmaengine_terminate_all(spi->dma_rx);
660 
661 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
662 
663 	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
664 						 STM32F4_SPI_CR2_RXDMAEN);
665 
666 	/* Sequence to clear OVR flag */
667 	readl_relaxed(spi->base + STM32F4_SPI_DR);
668 	readl_relaxed(spi->base + STM32F4_SPI_SR);
669 
670 	spin_unlock_irqrestore(&spi->lock, flags);
671 }
672 
673 /**
674  * stm32h7_spi_disable - Disable SPI controller
675  * @spi: pointer to the spi controller data structure
676  *
677  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
678  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
679  * RX-Fifo.
680  * Normally, if TSIZE has been configured, we should relax the hardware at the
681  * reception of the EOT interrupt. But in case of error, EOT will not be
682  * raised. So the subsystem unprepare_message call allows us to properly
683  * complete the transfer from an hardware point of view.
684  */
stm32h7_spi_disable(struct stm32_spi * spi)685 static void stm32h7_spi_disable(struct stm32_spi *spi)
686 {
687 	unsigned long flags;
688 	u32 cr1, sr;
689 
690 	dev_dbg(spi->dev, "disable controller\n");
691 
692 	spin_lock_irqsave(&spi->lock, flags);
693 
694 	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
695 
696 	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
697 		spin_unlock_irqrestore(&spi->lock, flags);
698 		return;
699 	}
700 
701 	/* Wait on EOT or suspend the flow */
702 	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
703 					      sr, !(sr & STM32H7_SPI_SR_EOT),
704 					      10, 100000) < 0) {
705 		if (cr1 & STM32H7_SPI_CR1_CSTART) {
706 			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
707 				       spi->base + STM32H7_SPI_CR1);
708 			if (readl_relaxed_poll_timeout_atomic(
709 						spi->base + STM32H7_SPI_SR,
710 						sr, !(sr & STM32H7_SPI_SR_SUSP),
711 						10, 100000) < 0)
712 				dev_warn(spi->dev,
713 					 "Suspend request timeout\n");
714 		}
715 	}
716 
717 	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
718 		stm32h7_spi_read_rxfifo(spi, true);
719 
720 	if (spi->cur_usedma && spi->dma_tx)
721 		dmaengine_terminate_all(spi->dma_tx);
722 	if (spi->cur_usedma && spi->dma_rx)
723 		dmaengine_terminate_all(spi->dma_rx);
724 
725 	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
726 
727 	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728 						STM32H7_SPI_CFG1_RXDMAEN);
729 
730 	/* Disable interrupts and clear status flags */
731 	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732 	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
733 
734 	spin_unlock_irqrestore(&spi->lock, flags);
735 }
736 
737 /**
738  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
739  * @master: controller master interface
740  * @spi_dev: pointer to the spi device
741  * @transfer: pointer to spi transfer
742  *
743  * If driver has fifo and the current transfer size is greater than fifo size,
744  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
745  */
stm32_spi_can_dma(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)746 static bool stm32_spi_can_dma(struct spi_master *master,
747 			      struct spi_device *spi_dev,
748 			      struct spi_transfer *transfer)
749 {
750 	unsigned int dma_size;
751 	struct stm32_spi *spi = spi_master_get_devdata(master);
752 
753 	if (spi->cfg->has_fifo)
754 		dma_size = spi->fifo_size;
755 	else
756 		dma_size = SPI_DMA_MIN_BYTES;
757 
758 	dev_dbg(spi->dev, "%s: %s\n", __func__,
759 		(transfer->len > dma_size) ? "true" : "false");
760 
761 	return (transfer->len > dma_size);
762 }
763 
764 /**
765  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766  * @irq: interrupt line
767  * @dev_id: SPI controller master interface
768  */
stm32f4_spi_irq_event(int irq,void * dev_id)769 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770 {
771 	struct spi_master *master = dev_id;
772 	struct stm32_spi *spi = spi_master_get_devdata(master);
773 	u32 sr, mask = 0;
774 	bool end = false;
775 
776 	spin_lock(&spi->lock);
777 
778 	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779 	/*
780 	 * BSY flag is not handled in interrupt but it is normal behavior when
781 	 * this flag is set.
782 	 */
783 	sr &= ~STM32F4_SPI_SR_BSY;
784 
785 	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786 				 spi->cur_comm == SPI_3WIRE_TX)) {
787 		/* OVR flag shouldn't be handled for TX only mode */
788 		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
789 		mask |= STM32F4_SPI_SR_TXE;
790 	}
791 
792 	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793 				spi->cur_comm == SPI_SIMPLEX_RX ||
794 				spi->cur_comm == SPI_3WIRE_RX)) {
795 		/* TXE flag is set and is handled when RXNE flag occurs */
796 		sr &= ~STM32F4_SPI_SR_TXE;
797 		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798 	}
799 
800 	if (!(sr & mask)) {
801 		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
802 		spin_unlock(&spi->lock);
803 		return IRQ_NONE;
804 	}
805 
806 	if (sr & STM32F4_SPI_SR_OVR) {
807 		dev_warn(spi->dev, "Overrun: received value discarded\n");
808 
809 		/* Sequence to clear OVR flag */
810 		readl_relaxed(spi->base + STM32F4_SPI_DR);
811 		readl_relaxed(spi->base + STM32F4_SPI_SR);
812 
813 		/*
814 		 * If overrun is detected, it means that something went wrong,
815 		 * so stop the current transfer. Transfer can wait for next
816 		 * RXNE but DR is already read and end never happens.
817 		 */
818 		end = true;
819 		goto end_irq;
820 	}
821 
822 	if (sr & STM32F4_SPI_SR_TXE) {
823 		if (spi->tx_buf)
824 			stm32f4_spi_write_tx(spi);
825 		if (spi->tx_len == 0)
826 			end = true;
827 	}
828 
829 	if (sr & STM32F4_SPI_SR_RXNE) {
830 		stm32f4_spi_read_rx(spi);
831 		if (spi->rx_len == 0)
832 			end = true;
833 		else if (spi->tx_buf)/* Load data for discontinuous mode */
834 			stm32f4_spi_write_tx(spi);
835 	}
836 
837 end_irq:
838 	if (end) {
839 		/* Immediately disable interrupts to do not generate new one */
840 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841 					STM32F4_SPI_CR2_TXEIE |
842 					STM32F4_SPI_CR2_RXNEIE |
843 					STM32F4_SPI_CR2_ERRIE);
844 		spin_unlock(&spi->lock);
845 		return IRQ_WAKE_THREAD;
846 	}
847 
848 	spin_unlock(&spi->lock);
849 	return IRQ_HANDLED;
850 }
851 
852 /**
853  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854  * @irq: interrupt line
855  * @dev_id: SPI controller master interface
856  */
stm32f4_spi_irq_thread(int irq,void * dev_id)857 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858 {
859 	struct spi_master *master = dev_id;
860 	struct stm32_spi *spi = spi_master_get_devdata(master);
861 
862 	spi_finalize_current_transfer(master);
863 	stm32f4_spi_disable(spi);
864 
865 	return IRQ_HANDLED;
866 }
867 
868 /**
869  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
870  * @irq: interrupt line
871  * @dev_id: SPI controller master interface
872  */
stm32h7_spi_irq_thread(int irq,void * dev_id)873 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
874 {
875 	struct spi_master *master = dev_id;
876 	struct stm32_spi *spi = spi_master_get_devdata(master);
877 	u32 sr, ier, mask;
878 	unsigned long flags;
879 	bool end = false;
880 
881 	spin_lock_irqsave(&spi->lock, flags);
882 
883 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884 	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
885 
886 	mask = ier;
887 	/* EOTIE is triggered on EOT, SUSP and TXC events. */
888 	mask |= STM32H7_SPI_SR_SUSP;
889 	/*
890 	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
891 	 * Full-Duplex, need to poll RXP event to know if there are remaining
892 	 * data, before disabling SPI.
893 	 */
894 	if (spi->rx_buf && !spi->cur_usedma)
895 		mask |= STM32H7_SPI_SR_RXP;
896 
897 	if (!(sr & mask)) {
898 		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
899 			 sr, ier);
900 		spin_unlock_irqrestore(&spi->lock, flags);
901 		return IRQ_NONE;
902 	}
903 
904 	if (sr & STM32H7_SPI_SR_SUSP) {
905 		static DEFINE_RATELIMIT_STATE(rs,
906 					      DEFAULT_RATELIMIT_INTERVAL * 10,
907 					      1);
908 		if (__ratelimit(&rs))
909 			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
910 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
911 			stm32h7_spi_read_rxfifo(spi, false);
912 		/*
913 		 * If communication is suspended while using DMA, it means
914 		 * that something went wrong, so stop the current transfer
915 		 */
916 		if (spi->cur_usedma)
917 			end = true;
918 	}
919 
920 	if (sr & STM32H7_SPI_SR_MODF) {
921 		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
922 		end = true;
923 	}
924 
925 	if (sr & STM32H7_SPI_SR_OVR) {
926 		dev_err(spi->dev, "Overrun: RX data lost\n");
927 		end = true;
928 	}
929 
930 	if (sr & STM32H7_SPI_SR_EOT) {
931 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
932 			stm32h7_spi_read_rxfifo(spi, true);
933 		end = true;
934 	}
935 
936 	if (sr & STM32H7_SPI_SR_TXP)
937 		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
938 			stm32h7_spi_write_txfifo(spi);
939 
940 	if (sr & STM32H7_SPI_SR_RXP)
941 		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
942 			stm32h7_spi_read_rxfifo(spi, false);
943 
944 	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
945 
946 	spin_unlock_irqrestore(&spi->lock, flags);
947 
948 	if (end) {
949 		stm32h7_spi_disable(spi);
950 		spi_finalize_current_transfer(master);
951 	}
952 
953 	return IRQ_HANDLED;
954 }
955 
956 /**
957  * stm32_spi_prepare_msg - set up the controller to transfer a single message
958  * @master: controller master interface
959  * @msg: pointer to spi message
960  */
stm32_spi_prepare_msg(struct spi_master * master,struct spi_message * msg)961 static int stm32_spi_prepare_msg(struct spi_master *master,
962 				 struct spi_message *msg)
963 {
964 	struct stm32_spi *spi = spi_master_get_devdata(master);
965 	struct spi_device *spi_dev = msg->spi;
966 	struct device_node *np = spi_dev->dev.of_node;
967 	unsigned long flags;
968 	u32 clrb = 0, setb = 0;
969 
970 	/* SPI slave device may need time between data frames */
971 	spi->cur_midi = 0;
972 	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
973 		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
974 
975 	if (spi_dev->mode & SPI_CPOL)
976 		setb |= spi->cfg->regs->cpol.mask;
977 	else
978 		clrb |= spi->cfg->regs->cpol.mask;
979 
980 	if (spi_dev->mode & SPI_CPHA)
981 		setb |= spi->cfg->regs->cpha.mask;
982 	else
983 		clrb |= spi->cfg->regs->cpha.mask;
984 
985 	if (spi_dev->mode & SPI_LSB_FIRST)
986 		setb |= spi->cfg->regs->lsb_first.mask;
987 	else
988 		clrb |= spi->cfg->regs->lsb_first.mask;
989 
990 	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
991 		!!(spi_dev->mode & SPI_CPOL),
992 		!!(spi_dev->mode & SPI_CPHA),
993 		!!(spi_dev->mode & SPI_LSB_FIRST),
994 		!!(spi_dev->mode & SPI_CS_HIGH));
995 
996 	/* On STM32H7, messages should not exceed a maximum size setted
997 	 * afterward via the set_number_of_data function. In order to
998 	 * ensure that, split large messages into several messages
999 	 */
1000 	if (spi->cfg->set_number_of_data) {
1001 		int ret;
1002 
1003 		ret = spi_split_transfers_maxsize(master, msg,
1004 						  STM32H7_SPI_TSIZE_MAX,
1005 						  GFP_KERNEL | GFP_DMA);
1006 		if (ret)
1007 			return ret;
1008 	}
1009 
1010 	spin_lock_irqsave(&spi->lock, flags);
1011 
1012 	/* CPOL, CPHA and LSB FIRST bits have common register */
1013 	if (clrb || setb)
1014 		writel_relaxed(
1015 			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1016 			 ~clrb) | setb,
1017 			spi->base + spi->cfg->regs->cpol.reg);
1018 
1019 	spin_unlock_irqrestore(&spi->lock, flags);
1020 
1021 	return 0;
1022 }
1023 
1024 /**
1025  * stm32f4_spi_dma_tx_cb - dma callback
1026  * @data: pointer to the spi controller data structure
1027  *
1028  * DMA callback is called when the transfer is complete for DMA TX channel.
1029  */
stm32f4_spi_dma_tx_cb(void * data)1030 static void stm32f4_spi_dma_tx_cb(void *data)
1031 {
1032 	struct stm32_spi *spi = data;
1033 
1034 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1035 		spi_finalize_current_transfer(spi->master);
1036 		stm32f4_spi_disable(spi);
1037 	}
1038 }
1039 
1040 /**
1041  * stm32f4_spi_dma_rx_cb - dma callback
1042  * @data: pointer to the spi controller data structure
1043  *
1044  * DMA callback is called when the transfer is complete for DMA RX channel.
1045  */
stm32f4_spi_dma_rx_cb(void * data)1046 static void stm32f4_spi_dma_rx_cb(void *data)
1047 {
1048 	struct stm32_spi *spi = data;
1049 
1050 	spi_finalize_current_transfer(spi->master);
1051 	stm32f4_spi_disable(spi);
1052 }
1053 
1054 /**
1055  * stm32h7_spi_dma_cb - dma callback
1056  * @data: pointer to the spi controller data structure
1057  *
1058  * DMA callback is called when the transfer is complete or when an error
1059  * occurs. If the transfer is complete, EOT flag is raised.
1060  */
stm32h7_spi_dma_cb(void * data)1061 static void stm32h7_spi_dma_cb(void *data)
1062 {
1063 	struct stm32_spi *spi = data;
1064 	unsigned long flags;
1065 	u32 sr;
1066 
1067 	spin_lock_irqsave(&spi->lock, flags);
1068 
1069 	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1070 
1071 	spin_unlock_irqrestore(&spi->lock, flags);
1072 
1073 	if (!(sr & STM32H7_SPI_SR_EOT))
1074 		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1075 
1076 	/* Now wait for EOT, or SUSP or OVR in case of error */
1077 }
1078 
1079 /**
1080  * stm32_spi_dma_config - configure dma slave channel depending on current
1081  *			  transfer bits_per_word.
1082  * @spi: pointer to the spi controller data structure
1083  * @dma_conf: pointer to the dma_slave_config structure
1084  * @dir: direction of the dma transfer
1085  */
stm32_spi_dma_config(struct stm32_spi * spi,struct dma_slave_config * dma_conf,enum dma_transfer_direction dir)1086 static void stm32_spi_dma_config(struct stm32_spi *spi,
1087 				 struct dma_slave_config *dma_conf,
1088 				 enum dma_transfer_direction dir)
1089 {
1090 	enum dma_slave_buswidth buswidth;
1091 	u32 maxburst;
1092 
1093 	if (spi->cur_bpw <= 8)
1094 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1095 	else if (spi->cur_bpw <= 16)
1096 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1097 	else
1098 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1099 
1100 	if (spi->cfg->has_fifo) {
1101 		/* Valid for DMA Half or Full Fifo threshold */
1102 		if (spi->cur_fthlv == 2)
1103 			maxburst = 1;
1104 		else
1105 			maxburst = spi->cur_fthlv;
1106 	} else {
1107 		maxburst = 1;
1108 	}
1109 
1110 	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1111 	dma_conf->direction = dir;
1112 	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1113 		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1114 		dma_conf->src_addr_width = buswidth;
1115 		dma_conf->src_maxburst = maxburst;
1116 
1117 		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1118 			buswidth, maxburst);
1119 	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1120 		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1121 		dma_conf->dst_addr_width = buswidth;
1122 		dma_conf->dst_maxburst = maxburst;
1123 
1124 		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1125 			buswidth, maxburst);
1126 	}
1127 }
1128 
1129 /**
1130  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1131  *				  interrupts
1132  * @spi: pointer to the spi controller data structure
1133  *
1134  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1135  * in progress.
1136  */
stm32f4_spi_transfer_one_irq(struct stm32_spi * spi)1137 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1138 {
1139 	unsigned long flags;
1140 	u32 cr2 = 0;
1141 
1142 	/* Enable the interrupts relative to the current communication mode */
1143 	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1144 		cr2 |= STM32F4_SPI_CR2_TXEIE;
1145 	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1146 				spi->cur_comm == SPI_SIMPLEX_RX ||
1147 				spi->cur_comm == SPI_3WIRE_RX) {
1148 		/* In transmit-only mode, the OVR flag is set in the SR register
1149 		 * since the received data are never read. Therefore set OVR
1150 		 * interrupt only when rx buffer is available.
1151 		 */
1152 		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1153 	} else {
1154 		return -EINVAL;
1155 	}
1156 
1157 	spin_lock_irqsave(&spi->lock, flags);
1158 
1159 	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1160 
1161 	stm32_spi_enable(spi);
1162 
1163 	/* starting data transfer when buffer is loaded */
1164 	if (spi->tx_buf)
1165 		stm32f4_spi_write_tx(spi);
1166 
1167 	spin_unlock_irqrestore(&spi->lock, flags);
1168 
1169 	return 1;
1170 }
1171 
1172 /**
1173  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1174  *				  interrupts
1175  * @spi: pointer to the spi controller data structure
1176  *
1177  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1178  * in progress.
1179  */
stm32h7_spi_transfer_one_irq(struct stm32_spi * spi)1180 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1181 {
1182 	unsigned long flags;
1183 	u32 ier = 0;
1184 
1185 	/* Enable the interrupts relative to the current communication mode */
1186 	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1187 		ier |= STM32H7_SPI_IER_DXPIE;
1188 	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1189 		ier |= STM32H7_SPI_IER_TXPIE;
1190 	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1191 		ier |= STM32H7_SPI_IER_RXPIE;
1192 
1193 	/* Enable the interrupts relative to the end of transfer */
1194 	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1195 	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1196 
1197 	spin_lock_irqsave(&spi->lock, flags);
1198 
1199 	stm32_spi_enable(spi);
1200 
1201 	/* Be sure to have data in fifo before starting data transfer */
1202 	if (spi->tx_buf)
1203 		stm32h7_spi_write_txfifo(spi);
1204 
1205 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1206 
1207 	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1208 
1209 	spin_unlock_irqrestore(&spi->lock, flags);
1210 
1211 	return 1;
1212 }
1213 
1214 /**
1215  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1216  *					transfer using DMA
1217  * @spi: pointer to the spi controller data structure
1218  */
stm32f4_spi_transfer_one_dma_start(struct stm32_spi * spi)1219 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1220 {
1221 	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1222 	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1223 	    spi->cur_comm == SPI_FULL_DUPLEX) {
1224 		/*
1225 		 * In transmit-only mode, the OVR flag is set in the SR register
1226 		 * since the received data are never read. Therefore set OVR
1227 		 * interrupt only when rx buffer is available.
1228 		 */
1229 		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1230 	}
1231 
1232 	stm32_spi_enable(spi);
1233 }
1234 
1235 /**
1236  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1237  *					transfer using DMA
1238  * @spi: pointer to the spi controller data structure
1239  */
stm32h7_spi_transfer_one_dma_start(struct stm32_spi * spi)1240 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1241 {
1242 	/* Enable the interrupts relative to the end of transfer */
1243 	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1244 						 STM32H7_SPI_IER_TXTFIE |
1245 						 STM32H7_SPI_IER_OVRIE |
1246 						 STM32H7_SPI_IER_MODFIE);
1247 
1248 	stm32_spi_enable(spi);
1249 
1250 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1251 }
1252 
1253 /**
1254  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1255  * @spi: pointer to the spi controller data structure
1256  * @xfer: pointer to the spi_transfer structure
1257  *
1258  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1259  * in progress.
1260  */
stm32_spi_transfer_one_dma(struct stm32_spi * spi,struct spi_transfer * xfer)1261 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1262 				      struct spi_transfer *xfer)
1263 {
1264 	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1265 	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1266 	unsigned long flags;
1267 
1268 	spin_lock_irqsave(&spi->lock, flags);
1269 
1270 	rx_dma_desc = NULL;
1271 	if (spi->rx_buf && spi->dma_rx) {
1272 		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1273 		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1274 
1275 		/* Enable Rx DMA request */
1276 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1277 				   spi->cfg->regs->dma_rx_en.mask);
1278 
1279 		rx_dma_desc = dmaengine_prep_slave_sg(
1280 					spi->dma_rx, xfer->rx_sg.sgl,
1281 					xfer->rx_sg.nents,
1282 					rx_dma_conf.direction,
1283 					DMA_PREP_INTERRUPT);
1284 	}
1285 
1286 	tx_dma_desc = NULL;
1287 	if (spi->tx_buf && spi->dma_tx) {
1288 		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1289 		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1290 
1291 		tx_dma_desc = dmaengine_prep_slave_sg(
1292 					spi->dma_tx, xfer->tx_sg.sgl,
1293 					xfer->tx_sg.nents,
1294 					tx_dma_conf.direction,
1295 					DMA_PREP_INTERRUPT);
1296 	}
1297 
1298 	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1299 	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1300 		goto dma_desc_error;
1301 
1302 	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1303 		goto dma_desc_error;
1304 
1305 	if (rx_dma_desc) {
1306 		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1307 		rx_dma_desc->callback_param = spi;
1308 
1309 		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1310 			dev_err(spi->dev, "Rx DMA submit failed\n");
1311 			goto dma_desc_error;
1312 		}
1313 		/* Enable Rx DMA channel */
1314 		dma_async_issue_pending(spi->dma_rx);
1315 	}
1316 
1317 	if (tx_dma_desc) {
1318 		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1319 		    spi->cur_comm == SPI_3WIRE_TX) {
1320 			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1321 			tx_dma_desc->callback_param = spi;
1322 		}
1323 
1324 		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1325 			dev_err(spi->dev, "Tx DMA submit failed\n");
1326 			goto dma_submit_error;
1327 		}
1328 		/* Enable Tx DMA channel */
1329 		dma_async_issue_pending(spi->dma_tx);
1330 
1331 		/* Enable Tx DMA request */
1332 		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1333 				   spi->cfg->regs->dma_tx_en.mask);
1334 	}
1335 
1336 	spi->cfg->transfer_one_dma_start(spi);
1337 
1338 	spin_unlock_irqrestore(&spi->lock, flags);
1339 
1340 	return 1;
1341 
1342 dma_submit_error:
1343 	if (spi->dma_rx)
1344 		dmaengine_terminate_all(spi->dma_rx);
1345 
1346 dma_desc_error:
1347 	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1348 			   spi->cfg->regs->dma_rx_en.mask);
1349 
1350 	spin_unlock_irqrestore(&spi->lock, flags);
1351 
1352 	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1353 
1354 	spi->cur_usedma = false;
1355 	return spi->cfg->transfer_one_irq(spi);
1356 }
1357 
1358 /**
1359  * stm32f4_spi_set_bpw - Configure bits per word
1360  * @spi: pointer to the spi controller data structure
1361  */
stm32f4_spi_set_bpw(struct stm32_spi * spi)1362 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1363 {
1364 	if (spi->cur_bpw == 16)
1365 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1366 	else
1367 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1368 }
1369 
1370 /**
1371  * stm32h7_spi_set_bpw - configure bits per word
1372  * @spi: pointer to the spi controller data structure
1373  */
stm32h7_spi_set_bpw(struct stm32_spi * spi)1374 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1375 {
1376 	u32 bpw, fthlv;
1377 	u32 cfg1_clrb = 0, cfg1_setb = 0;
1378 
1379 	bpw = spi->cur_bpw - 1;
1380 
1381 	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1382 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1383 
1384 	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1385 	fthlv = spi->cur_fthlv - 1;
1386 
1387 	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1388 	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1389 
1390 	writel_relaxed(
1391 		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1392 		 ~cfg1_clrb) | cfg1_setb,
1393 		spi->base + STM32H7_SPI_CFG1);
1394 }
1395 
1396 /**
1397  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1398  * @spi: pointer to the spi controller data structure
1399  * @mbrdiv: baud rate divisor value
1400  */
stm32_spi_set_mbr(struct stm32_spi * spi,u32 mbrdiv)1401 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1402 {
1403 	u32 clrb = 0, setb = 0;
1404 
1405 	clrb |= spi->cfg->regs->br.mask;
1406 	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1407 
1408 	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1409 			~clrb) | setb,
1410 		       spi->base + spi->cfg->regs->br.reg);
1411 }
1412 
1413 /**
1414  * stm32_spi_communication_type - return transfer communication type
1415  * @spi_dev: pointer to the spi device
1416  * @transfer: pointer to spi transfer
1417  */
stm32_spi_communication_type(struct spi_device * spi_dev,struct spi_transfer * transfer)1418 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1419 						 struct spi_transfer *transfer)
1420 {
1421 	unsigned int type = SPI_FULL_DUPLEX;
1422 
1423 	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1424 		/*
1425 		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1426 		 * is forbidden and unvalidated by SPI subsystem so depending
1427 		 * on the valid buffer, we can determine the direction of the
1428 		 * transfer.
1429 		 */
1430 		if (!transfer->tx_buf)
1431 			type = SPI_3WIRE_RX;
1432 		else
1433 			type = SPI_3WIRE_TX;
1434 	} else {
1435 		if (!transfer->tx_buf)
1436 			type = SPI_SIMPLEX_RX;
1437 		else if (!transfer->rx_buf)
1438 			type = SPI_SIMPLEX_TX;
1439 	}
1440 
1441 	return type;
1442 }
1443 
1444 /**
1445  * stm32f4_spi_set_mode - configure communication mode
1446  * @spi: pointer to the spi controller data structure
1447  * @comm_type: type of communication to configure
1448  */
stm32f4_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1449 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1450 {
1451 	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1452 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1453 					STM32F4_SPI_CR1_BIDIMODE |
1454 					STM32F4_SPI_CR1_BIDIOE);
1455 	} else if (comm_type == SPI_FULL_DUPLEX ||
1456 				comm_type == SPI_SIMPLEX_RX) {
1457 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1458 					STM32F4_SPI_CR1_BIDIMODE |
1459 					STM32F4_SPI_CR1_BIDIOE);
1460 	} else if (comm_type == SPI_3WIRE_RX) {
1461 		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1462 					STM32F4_SPI_CR1_BIDIMODE);
1463 		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1464 					STM32F4_SPI_CR1_BIDIOE);
1465 	} else {
1466 		return -EINVAL;
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 /**
1473  * stm32h7_spi_set_mode - configure communication mode
1474  * @spi: pointer to the spi controller data structure
1475  * @comm_type: type of communication to configure
1476  */
stm32h7_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1477 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1478 {
1479 	u32 mode;
1480 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1481 
1482 	if (comm_type == SPI_3WIRE_RX) {
1483 		mode = STM32H7_SPI_HALF_DUPLEX;
1484 		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1485 	} else if (comm_type == SPI_3WIRE_TX) {
1486 		mode = STM32H7_SPI_HALF_DUPLEX;
1487 		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1488 	} else if (comm_type == SPI_SIMPLEX_RX) {
1489 		mode = STM32H7_SPI_SIMPLEX_RX;
1490 	} else if (comm_type == SPI_SIMPLEX_TX) {
1491 		mode = STM32H7_SPI_SIMPLEX_TX;
1492 	} else {
1493 		mode = STM32H7_SPI_FULL_DUPLEX;
1494 	}
1495 
1496 	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1497 	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1498 
1499 	writel_relaxed(
1500 		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1501 		 ~cfg2_clrb) | cfg2_setb,
1502 		spi->base + STM32H7_SPI_CFG2);
1503 
1504 	return 0;
1505 }
1506 
1507 /**
1508  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1509  *			       consecutive data frames in master mode
1510  * @spi: pointer to the spi controller data structure
1511  * @len: transfer len
1512  */
stm32h7_spi_data_idleness(struct stm32_spi * spi,u32 len)1513 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1514 {
1515 	u32 cfg2_clrb = 0, cfg2_setb = 0;
1516 
1517 	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1518 	if ((len > 1) && (spi->cur_midi > 0)) {
1519 		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1520 		u32 midi = min_t(u32,
1521 				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1522 				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1523 				 STM32H7_SPI_CFG2_MIDI));
1524 
1525 
1526 		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1527 			sck_period_ns, midi, midi * sck_period_ns);
1528 		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1529 	}
1530 
1531 	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1532 			~cfg2_clrb) | cfg2_setb,
1533 		       spi->base + STM32H7_SPI_CFG2);
1534 }
1535 
1536 /**
1537  * stm32h7_spi_number_of_data - configure number of data at current transfer
1538  * @spi: pointer to the spi controller data structure
1539  * @nb_words: transfer length (in words)
1540  */
stm32h7_spi_number_of_data(struct stm32_spi * spi,u32 nb_words)1541 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1542 {
1543 	if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1544 		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1545 			       spi->base + STM32H7_SPI_CR2);
1546 	} else {
1547 		return -EMSGSIZE;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 /**
1554  * stm32_spi_transfer_one_setup - common setup to transfer a single
1555  *				  spi_transfer either using DMA or
1556  *				  interrupts.
1557  * @spi: pointer to the spi controller data structure
1558  * @spi_dev: pointer to the spi device
1559  * @transfer: pointer to spi transfer
1560  */
stm32_spi_transfer_one_setup(struct stm32_spi * spi,struct spi_device * spi_dev,struct spi_transfer * transfer)1561 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1562 					struct spi_device *spi_dev,
1563 					struct spi_transfer *transfer)
1564 {
1565 	unsigned long flags;
1566 	unsigned int comm_type;
1567 	int nb_words, ret = 0;
1568 	int mbr;
1569 
1570 	spin_lock_irqsave(&spi->lock, flags);
1571 
1572 	spi->cur_xferlen = transfer->len;
1573 
1574 	spi->cur_bpw = transfer->bits_per_word;
1575 	spi->cfg->set_bpw(spi);
1576 
1577 	/* Update spi->cur_speed with real clock speed */
1578 	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1579 				    spi->cfg->baud_rate_div_min,
1580 				    spi->cfg->baud_rate_div_max);
1581 	if (mbr < 0) {
1582 		ret = mbr;
1583 		goto out;
1584 	}
1585 
1586 	transfer->speed_hz = spi->cur_speed;
1587 	stm32_spi_set_mbr(spi, mbr);
1588 
1589 	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1590 	ret = spi->cfg->set_mode(spi, comm_type);
1591 	if (ret < 0)
1592 		goto out;
1593 
1594 	spi->cur_comm = comm_type;
1595 
1596 	if (spi->cfg->set_data_idleness)
1597 		spi->cfg->set_data_idleness(spi, transfer->len);
1598 
1599 	if (spi->cur_bpw <= 8)
1600 		nb_words = transfer->len;
1601 	else if (spi->cur_bpw <= 16)
1602 		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1603 	else
1604 		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1605 
1606 	if (spi->cfg->set_number_of_data) {
1607 		ret = spi->cfg->set_number_of_data(spi, nb_words);
1608 		if (ret < 0)
1609 			goto out;
1610 	}
1611 
1612 	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1613 		spi->cur_comm);
1614 	dev_dbg(spi->dev,
1615 		"data frame of %d-bit, data packet of %d data frames\n",
1616 		spi->cur_bpw, spi->cur_fthlv);
1617 	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1618 	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1619 		spi->cur_xferlen, nb_words);
1620 	dev_dbg(spi->dev, "dma %s\n",
1621 		(spi->cur_usedma) ? "enabled" : "disabled");
1622 
1623 out:
1624 	spin_unlock_irqrestore(&spi->lock, flags);
1625 
1626 	return ret;
1627 }
1628 
1629 /**
1630  * stm32_spi_transfer_one - transfer a single spi_transfer
1631  * @master: controller master interface
1632  * @spi_dev: pointer to the spi device
1633  * @transfer: pointer to spi transfer
1634  *
1635  * It must return 0 if the transfer is finished or 1 if the transfer is still
1636  * in progress.
1637  */
stm32_spi_transfer_one(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)1638 static int stm32_spi_transfer_one(struct spi_master *master,
1639 				  struct spi_device *spi_dev,
1640 				  struct spi_transfer *transfer)
1641 {
1642 	struct stm32_spi *spi = spi_master_get_devdata(master);
1643 	int ret;
1644 
1645 	/* Don't do anything on 0 bytes transfers */
1646 	if (transfer->len == 0)
1647 		return 0;
1648 
1649 	spi->tx_buf = transfer->tx_buf;
1650 	spi->rx_buf = transfer->rx_buf;
1651 	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1652 	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1653 
1654 	spi->cur_usedma = (master->can_dma &&
1655 			   master->can_dma(master, spi_dev, transfer));
1656 
1657 	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1658 	if (ret) {
1659 		dev_err(spi->dev, "SPI transfer setup failed\n");
1660 		return ret;
1661 	}
1662 
1663 	if (spi->cur_usedma)
1664 		return stm32_spi_transfer_one_dma(spi, transfer);
1665 	else
1666 		return spi->cfg->transfer_one_irq(spi);
1667 }
1668 
1669 /**
1670  * stm32_spi_unprepare_msg - relax the hardware
1671  * @master: controller master interface
1672  * @msg: pointer to the spi message
1673  */
stm32_spi_unprepare_msg(struct spi_master * master,struct spi_message * msg)1674 static int stm32_spi_unprepare_msg(struct spi_master *master,
1675 				   struct spi_message *msg)
1676 {
1677 	struct stm32_spi *spi = spi_master_get_devdata(master);
1678 
1679 	spi->cfg->disable(spi);
1680 
1681 	return 0;
1682 }
1683 
1684 /**
1685  * stm32f4_spi_config - Configure SPI controller as SPI master
1686  * @spi: pointer to the spi controller data structure
1687  */
stm32f4_spi_config(struct stm32_spi * spi)1688 static int stm32f4_spi_config(struct stm32_spi *spi)
1689 {
1690 	unsigned long flags;
1691 
1692 	spin_lock_irqsave(&spi->lock, flags);
1693 
1694 	/* Ensure I2SMOD bit is kept cleared */
1695 	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1696 			   STM32F4_SPI_I2SCFGR_I2SMOD);
1697 
1698 	/*
1699 	 * - SS input value high
1700 	 * - transmitter half duplex direction
1701 	 * - Set the master mode (default Motorola mode)
1702 	 * - Consider 1 master/n slaves configuration and
1703 	 *   SS input value is determined by the SSI bit
1704 	 */
1705 	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1706 						 STM32F4_SPI_CR1_BIDIOE |
1707 						 STM32F4_SPI_CR1_MSTR |
1708 						 STM32F4_SPI_CR1_SSM);
1709 
1710 	spin_unlock_irqrestore(&spi->lock, flags);
1711 
1712 	return 0;
1713 }
1714 
1715 /**
1716  * stm32h7_spi_config - Configure SPI controller as SPI master
1717  * @spi: pointer to the spi controller data structure
1718  */
stm32h7_spi_config(struct stm32_spi * spi)1719 static int stm32h7_spi_config(struct stm32_spi *spi)
1720 {
1721 	unsigned long flags;
1722 
1723 	spin_lock_irqsave(&spi->lock, flags);
1724 
1725 	/* Ensure I2SMOD bit is kept cleared */
1726 	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1727 			   STM32H7_SPI_I2SCFGR_I2SMOD);
1728 
1729 	/*
1730 	 * - SS input value high
1731 	 * - transmitter half duplex direction
1732 	 * - automatic communication suspend when RX-Fifo is full
1733 	 */
1734 	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1735 						 STM32H7_SPI_CR1_HDDIR |
1736 						 STM32H7_SPI_CR1_MASRX);
1737 
1738 	/*
1739 	 * - Set the master mode (default Motorola mode)
1740 	 * - Consider 1 master/n slaves configuration and
1741 	 *   SS input value is determined by the SSI bit
1742 	 * - keep control of all associated GPIOs
1743 	 */
1744 	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1745 						  STM32H7_SPI_CFG2_SSM |
1746 						  STM32H7_SPI_CFG2_AFCNTR);
1747 
1748 	spin_unlock_irqrestore(&spi->lock, flags);
1749 
1750 	return 0;
1751 }
1752 
1753 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1754 	.regs = &stm32f4_spi_regspec,
1755 	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1756 	.disable = stm32f4_spi_disable,
1757 	.config = stm32f4_spi_config,
1758 	.set_bpw = stm32f4_spi_set_bpw,
1759 	.set_mode = stm32f4_spi_set_mode,
1760 	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1761 	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1762 	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1763 	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1764 	.irq_handler_event = stm32f4_spi_irq_event,
1765 	.irq_handler_thread = stm32f4_spi_irq_thread,
1766 	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1767 	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1768 	.has_fifo = false,
1769 };
1770 
1771 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1772 	.regs = &stm32h7_spi_regspec,
1773 	.get_fifo_size = stm32h7_spi_get_fifo_size,
1774 	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1775 	.disable = stm32h7_spi_disable,
1776 	.config = stm32h7_spi_config,
1777 	.set_bpw = stm32h7_spi_set_bpw,
1778 	.set_mode = stm32h7_spi_set_mode,
1779 	.set_data_idleness = stm32h7_spi_data_idleness,
1780 	.set_number_of_data = stm32h7_spi_number_of_data,
1781 	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1782 	.dma_rx_cb = stm32h7_spi_dma_cb,
1783 	.dma_tx_cb = stm32h7_spi_dma_cb,
1784 	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1785 	.irq_handler_thread = stm32h7_spi_irq_thread,
1786 	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1787 	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1788 	.has_fifo = true,
1789 };
1790 
1791 static const struct of_device_id stm32_spi_of_match[] = {
1792 	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1793 	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1794 	{},
1795 };
1796 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1797 
stm32_spi_probe(struct platform_device * pdev)1798 static int stm32_spi_probe(struct platform_device *pdev)
1799 {
1800 	struct spi_master *master;
1801 	struct stm32_spi *spi;
1802 	struct resource *res;
1803 	struct reset_control *rst;
1804 	int ret;
1805 
1806 	master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1807 	if (!master) {
1808 		dev_err(&pdev->dev, "spi master allocation failed\n");
1809 		return -ENOMEM;
1810 	}
1811 	platform_set_drvdata(pdev, master);
1812 
1813 	spi = spi_master_get_devdata(master);
1814 	spi->dev = &pdev->dev;
1815 	spi->master = master;
1816 	spin_lock_init(&spi->lock);
1817 
1818 	spi->cfg = (const struct stm32_spi_cfg *)
1819 		of_match_device(pdev->dev.driver->of_match_table,
1820 				&pdev->dev)->data;
1821 
1822 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1823 	spi->base = devm_ioremap_resource(&pdev->dev, res);
1824 	if (IS_ERR(spi->base))
1825 		return PTR_ERR(spi->base);
1826 
1827 	spi->phys_addr = (dma_addr_t)res->start;
1828 
1829 	spi->irq = platform_get_irq(pdev, 0);
1830 	if (spi->irq <= 0)
1831 		return dev_err_probe(&pdev->dev, spi->irq,
1832 				     "failed to get irq\n");
1833 
1834 	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1835 					spi->cfg->irq_handler_event,
1836 					spi->cfg->irq_handler_thread,
1837 					IRQF_ONESHOT, pdev->name, master);
1838 	if (ret) {
1839 		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1840 			ret);
1841 		return ret;
1842 	}
1843 
1844 	spi->clk = devm_clk_get(&pdev->dev, NULL);
1845 	if (IS_ERR(spi->clk)) {
1846 		ret = PTR_ERR(spi->clk);
1847 		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1848 		return ret;
1849 	}
1850 
1851 	ret = clk_prepare_enable(spi->clk);
1852 	if (ret) {
1853 		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1854 		return ret;
1855 	}
1856 	spi->clk_rate = clk_get_rate(spi->clk);
1857 	if (!spi->clk_rate) {
1858 		dev_err(&pdev->dev, "clk rate = 0\n");
1859 		ret = -EINVAL;
1860 		goto err_clk_disable;
1861 	}
1862 
1863 	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1864 	if (rst) {
1865 		if (IS_ERR(rst)) {
1866 			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1867 					    "failed to get reset\n");
1868 			goto err_clk_disable;
1869 		}
1870 
1871 		reset_control_assert(rst);
1872 		udelay(2);
1873 		reset_control_deassert(rst);
1874 	}
1875 
1876 	if (spi->cfg->has_fifo)
1877 		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1878 
1879 	ret = spi->cfg->config(spi);
1880 	if (ret) {
1881 		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1882 			ret);
1883 		goto err_clk_disable;
1884 	}
1885 
1886 	master->dev.of_node = pdev->dev.of_node;
1887 	master->auto_runtime_pm = true;
1888 	master->bus_num = pdev->id;
1889 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1890 			    SPI_3WIRE;
1891 	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1892 	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1893 	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1894 	master->use_gpio_descriptors = true;
1895 	master->prepare_message = stm32_spi_prepare_msg;
1896 	master->transfer_one = stm32_spi_transfer_one;
1897 	master->unprepare_message = stm32_spi_unprepare_msg;
1898 	master->flags = SPI_MASTER_MUST_TX;
1899 
1900 	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1901 	if (IS_ERR(spi->dma_tx)) {
1902 		ret = PTR_ERR(spi->dma_tx);
1903 		spi->dma_tx = NULL;
1904 		if (ret == -EPROBE_DEFER)
1905 			goto err_clk_disable;
1906 
1907 		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1908 	} else {
1909 		master->dma_tx = spi->dma_tx;
1910 	}
1911 
1912 	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1913 	if (IS_ERR(spi->dma_rx)) {
1914 		ret = PTR_ERR(spi->dma_rx);
1915 		spi->dma_rx = NULL;
1916 		if (ret == -EPROBE_DEFER)
1917 			goto err_dma_release;
1918 
1919 		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1920 	} else {
1921 		master->dma_rx = spi->dma_rx;
1922 	}
1923 
1924 	if (spi->dma_tx || spi->dma_rx)
1925 		master->can_dma = stm32_spi_can_dma;
1926 
1927 	pm_runtime_set_active(&pdev->dev);
1928 	pm_runtime_enable(&pdev->dev);
1929 
1930 	ret = spi_register_master(master);
1931 	if (ret) {
1932 		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1933 			ret);
1934 		goto err_pm_disable;
1935 	}
1936 
1937 	dev_info(&pdev->dev, "driver initialized\n");
1938 
1939 	return 0;
1940 
1941 err_pm_disable:
1942 	pm_runtime_disable(&pdev->dev);
1943 err_dma_release:
1944 	if (spi->dma_tx)
1945 		dma_release_channel(spi->dma_tx);
1946 	if (spi->dma_rx)
1947 		dma_release_channel(spi->dma_rx);
1948 err_clk_disable:
1949 	clk_disable_unprepare(spi->clk);
1950 
1951 	return ret;
1952 }
1953 
stm32_spi_remove(struct platform_device * pdev)1954 static int stm32_spi_remove(struct platform_device *pdev)
1955 {
1956 	struct spi_master *master = platform_get_drvdata(pdev);
1957 	struct stm32_spi *spi = spi_master_get_devdata(master);
1958 
1959 	spi_unregister_master(master);
1960 	spi->cfg->disable(spi);
1961 
1962 	if (master->dma_tx)
1963 		dma_release_channel(master->dma_tx);
1964 	if (master->dma_rx)
1965 		dma_release_channel(master->dma_rx);
1966 
1967 	clk_disable_unprepare(spi->clk);
1968 
1969 	pm_runtime_disable(&pdev->dev);
1970 
1971 	pinctrl_pm_select_sleep_state(&pdev->dev);
1972 
1973 	return 0;
1974 }
1975 
stm32_spi_runtime_suspend(struct device * dev)1976 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1977 {
1978 	struct spi_master *master = dev_get_drvdata(dev);
1979 	struct stm32_spi *spi = spi_master_get_devdata(master);
1980 
1981 	clk_disable_unprepare(spi->clk);
1982 
1983 	return pinctrl_pm_select_sleep_state(dev);
1984 }
1985 
stm32_spi_runtime_resume(struct device * dev)1986 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1987 {
1988 	struct spi_master *master = dev_get_drvdata(dev);
1989 	struct stm32_spi *spi = spi_master_get_devdata(master);
1990 	int ret;
1991 
1992 	ret = pinctrl_pm_select_default_state(dev);
1993 	if (ret)
1994 		return ret;
1995 
1996 	return clk_prepare_enable(spi->clk);
1997 }
1998 
stm32_spi_suspend(struct device * dev)1999 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2000 {
2001 	struct spi_master *master = dev_get_drvdata(dev);
2002 	int ret;
2003 
2004 	ret = spi_master_suspend(master);
2005 	if (ret)
2006 		return ret;
2007 
2008 	return pm_runtime_force_suspend(dev);
2009 }
2010 
stm32_spi_resume(struct device * dev)2011 static int __maybe_unused stm32_spi_resume(struct device *dev)
2012 {
2013 	struct spi_master *master = dev_get_drvdata(dev);
2014 	struct stm32_spi *spi = spi_master_get_devdata(master);
2015 	int ret;
2016 
2017 	ret = pm_runtime_force_resume(dev);
2018 	if (ret)
2019 		return ret;
2020 
2021 	ret = spi_master_resume(master);
2022 	if (ret) {
2023 		clk_disable_unprepare(spi->clk);
2024 		return ret;
2025 	}
2026 
2027 	ret = pm_runtime_get_sync(dev);
2028 	if (ret < 0) {
2029 		pm_runtime_put_noidle(dev);
2030 		dev_err(dev, "Unable to power device:%d\n", ret);
2031 		return ret;
2032 	}
2033 
2034 	spi->cfg->config(spi);
2035 
2036 	pm_runtime_mark_last_busy(dev);
2037 	pm_runtime_put_autosuspend(dev);
2038 
2039 	return 0;
2040 }
2041 
2042 static const struct dev_pm_ops stm32_spi_pm_ops = {
2043 	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2044 	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2045 			   stm32_spi_runtime_resume, NULL)
2046 };
2047 
2048 static struct platform_driver stm32_spi_driver = {
2049 	.probe = stm32_spi_probe,
2050 	.remove = stm32_spi_remove,
2051 	.driver = {
2052 		.name = DRIVER_NAME,
2053 		.pm = &stm32_spi_pm_ops,
2054 		.of_match_table = stm32_spi_of_match,
2055 	},
2056 };
2057 
2058 module_platform_driver(stm32_spi_driver);
2059 
2060 MODULE_ALIAS("platform:" DRIVER_NAME);
2061 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2062 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2063 MODULE_LICENSE("GPL v2");
2064