1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
gfs2_update_reply_times(struct gfs2_glock * gl)75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
gfs2_update_request_times(struct gfs2_glock * gl)102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
gdlm_ast(void * arg)119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	gfs2_update_reply_times(gl);
125 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
126 
127 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
128 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
129 
130 	switch (gl->gl_lksb.sb_status) {
131 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 		if (gl->gl_ops->go_free)
133 			gl->gl_ops->go_free(gl);
134 		gfs2_glock_free(gl);
135 		return;
136 	case -DLM_ECANCEL: /* Cancel while getting lock */
137 		ret |= LM_OUT_CANCELED;
138 		goto out;
139 	case -EAGAIN: /* Try lock fails */
140 	case -EDEADLK: /* Deadlock detected */
141 		goto out;
142 	case -ETIMEDOUT: /* Canceled due to timeout */
143 		ret |= LM_OUT_ERROR;
144 		goto out;
145 	case 0: /* Success */
146 		break;
147 	default: /* Something unexpected */
148 		BUG();
149 	}
150 
151 	ret = gl->gl_req;
152 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
153 		if (gl->gl_req == LM_ST_SHARED)
154 			ret = LM_ST_DEFERRED;
155 		else if (gl->gl_req == LM_ST_DEFERRED)
156 			ret = LM_ST_SHARED;
157 		else
158 			BUG();
159 	}
160 
161 	set_bit(GLF_INITIAL, &gl->gl_flags);
162 	gfs2_glock_complete(gl, ret);
163 	return;
164 out:
165 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
166 		gl->gl_lksb.sb_lkid = 0;
167 	gfs2_glock_complete(gl, ret);
168 }
169 
gdlm_bast(void * arg,int mode)170 static void gdlm_bast(void *arg, int mode)
171 {
172 	struct gfs2_glock *gl = arg;
173 
174 	switch (mode) {
175 	case DLM_LOCK_EX:
176 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
177 		break;
178 	case DLM_LOCK_CW:
179 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
180 		break;
181 	case DLM_LOCK_PR:
182 		gfs2_glock_cb(gl, LM_ST_SHARED);
183 		break;
184 	default:
185 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
186 		BUG();
187 	}
188 }
189 
190 /* convert gfs lock-state to dlm lock-mode */
191 
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
193 {
194 	switch (lmstate) {
195 	case LM_ST_UNLOCKED:
196 		return DLM_LOCK_NL;
197 	case LM_ST_EXCLUSIVE:
198 		return DLM_LOCK_EX;
199 	case LM_ST_DEFERRED:
200 		return DLM_LOCK_CW;
201 	case LM_ST_SHARED:
202 		return DLM_LOCK_PR;
203 	}
204 	fs_err(sdp, "unknown LM state %d\n", lmstate);
205 	BUG();
206 	return -1;
207 }
208 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 		      const int req)
211 {
212 	u32 lkf = 0;
213 
214 	if (gl->gl_lksb.sb_lvbptr)
215 		lkf |= DLM_LKF_VALBLK;
216 
217 	if (gfs_flags & LM_FLAG_TRY)
218 		lkf |= DLM_LKF_NOQUEUE;
219 
220 	if (gfs_flags & LM_FLAG_TRY_1CB) {
221 		lkf |= DLM_LKF_NOQUEUE;
222 		lkf |= DLM_LKF_NOQUEUEBAST;
223 	}
224 
225 	if (gfs_flags & LM_FLAG_PRIORITY) {
226 		lkf |= DLM_LKF_NOORDER;
227 		lkf |= DLM_LKF_HEADQUE;
228 	}
229 
230 	if (gfs_flags & LM_FLAG_ANY) {
231 		if (req == DLM_LOCK_PR)
232 			lkf |= DLM_LKF_ALTCW;
233 		else if (req == DLM_LOCK_CW)
234 			lkf |= DLM_LKF_ALTPR;
235 		else
236 			BUG();
237 	}
238 
239 	if (gl->gl_lksb.sb_lkid != 0) {
240 		lkf |= DLM_LKF_CONVERT;
241 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
242 			lkf |= DLM_LKF_QUECVT;
243 	}
244 
245 	return lkf;
246 }
247 
gfs2_reverse_hex(char * c,u64 value)248 static void gfs2_reverse_hex(char *c, u64 value)
249 {
250 	*c = '0';
251 	while (value) {
252 		*c-- = hex_asc[value & 0x0f];
253 		value >>= 4;
254 	}
255 }
256 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
258 		     unsigned int flags)
259 {
260 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
261 	int req;
262 	u32 lkf;
263 	char strname[GDLM_STRNAME_BYTES] = "";
264 
265 	req = make_mode(gl->gl_name.ln_sbd, req_state);
266 	lkf = make_flags(gl, flags, req);
267 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
268 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
269 	if (gl->gl_lksb.sb_lkid) {
270 		gfs2_update_request_times(gl);
271 	} else {
272 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
273 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
274 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
275 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
276 		gl->gl_dstamp = ktime_get_real();
277 	}
278 	/*
279 	 * Submit the actual lock request.
280 	 */
281 
282 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
283 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
284 }
285 
gdlm_put_lock(struct gfs2_glock * gl)286 static void gdlm_put_lock(struct gfs2_glock *gl)
287 {
288 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
289 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
290 	int error;
291 
292 	if (gl->gl_lksb.sb_lkid == 0) {
293 		gfs2_glock_free(gl);
294 		return;
295 	}
296 
297 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
298 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
299 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
300 	gfs2_update_request_times(gl);
301 
302 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
303 
304 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
305 	    !gl->gl_lksb.sb_lvbptr) {
306 		gfs2_glock_free(gl);
307 		return;
308 	}
309 
310 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
311 			   NULL, gl);
312 	if (error) {
313 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
314 		       gl->gl_name.ln_type,
315 		       (unsigned long long)gl->gl_name.ln_number, error);
316 		return;
317 	}
318 }
319 
gdlm_cancel(struct gfs2_glock * gl)320 static void gdlm_cancel(struct gfs2_glock *gl)
321 {
322 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
323 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
324 }
325 
326 /*
327  * dlm/gfs2 recovery coordination using dlm_recover callbacks
328  *
329  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
330  *  1. dlm_controld sees lockspace members change
331  *  2. dlm_controld blocks dlm-kernel locking activity
332  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
333  *  4. dlm_controld starts and finishes its own user level recovery
334  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
335  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
336  *  7. dlm_recoverd does its own lock recovery
337  *  8. dlm_recoverd unblocks dlm-kernel locking activity
338  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
339  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
340  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
341  * 12. gfs2_recover dequeues and recovers journals of failed nodes
342  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
343  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
344  * 15. gfs2_control unblocks normal locking when all journals are recovered
345  *
346  * - failures during recovery
347  *
348  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
349  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
350  * recovering for a prior failure.  gfs2_control needs a way to detect
351  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
352  * the recover_block and recover_start values.
353  *
354  * recover_done() provides a new lockspace generation number each time it
355  * is called (step 9).  This generation number is saved as recover_start.
356  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
357  * recover_block = recover_start.  So, while recover_block is equal to
358  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
359  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
360  *
361  * - more specific gfs2 steps in sequence above
362  *
363  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
364  *  6. recover_slot records any failed jids (maybe none)
365  *  9. recover_done sets recover_start = new generation number
366  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
367  * 12. gfs2_recover does journal recoveries for failed jids identified above
368  * 14. gfs2_control clears control_lock lvb bits for recovered jids
369  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
370  *     again) then do nothing, otherwise if recover_start > recover_block
371  *     then clear BLOCK_LOCKS.
372  *
373  * - parallel recovery steps across all nodes
374  *
375  * All nodes attempt to update the control_lock lvb with the new generation
376  * number and jid bits, but only the first to get the control_lock EX will
377  * do so; others will see that it's already done (lvb already contains new
378  * generation number.)
379  *
380  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
381  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
382  * . One node gets control_lock first and writes the lvb, others see it's done
383  * . All nodes attempt to recover jids for which they see control_lock bits set
384  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
385  * . All nodes will eventually see all lvb bits clear and unblock locks
386  *
387  * - is there a problem with clearing an lvb bit that should be set
388  *   and missing a journal recovery?
389  *
390  * 1. jid fails
391  * 2. lvb bit set for step 1
392  * 3. jid recovered for step 1
393  * 4. jid taken again (new mount)
394  * 5. jid fails (for step 4)
395  * 6. lvb bit set for step 5 (will already be set)
396  * 7. lvb bit cleared for step 3
397  *
398  * This is not a problem because the failure in step 5 does not
399  * require recovery, because the mount in step 4 could not have
400  * progressed far enough to unblock locks and access the fs.  The
401  * control_mount() function waits for all recoveries to be complete
402  * for the latest lockspace generation before ever unblocking locks
403  * and returning.  The mount in step 4 waits until the recovery in
404  * step 1 is done.
405  *
406  * - special case of first mounter: first node to mount the fs
407  *
408  * The first node to mount a gfs2 fs needs to check all the journals
409  * and recover any that need recovery before other nodes are allowed
410  * to mount the fs.  (Others may begin mounting, but they must wait
411  * for the first mounter to be done before taking locks on the fs
412  * or accessing the fs.)  This has two parts:
413  *
414  * 1. The mounted_lock tells a node it's the first to mount the fs.
415  * Each node holds the mounted_lock in PR while it's mounted.
416  * Each node tries to acquire the mounted_lock in EX when it mounts.
417  * If a node is granted the mounted_lock EX it means there are no
418  * other mounted nodes (no PR locks exist), and it is the first mounter.
419  * The mounted_lock is demoted to PR when first recovery is done, so
420  * others will fail to get an EX lock, but will get a PR lock.
421  *
422  * 2. The control_lock blocks others in control_mount() while the first
423  * mounter is doing first mount recovery of all journals.
424  * A mounting node needs to acquire control_lock in EX mode before
425  * it can proceed.  The first mounter holds control_lock in EX while doing
426  * the first mount recovery, blocking mounts from other nodes, then demotes
427  * control_lock to NL when it's done (others_may_mount/first_done),
428  * allowing other nodes to continue mounting.
429  *
430  * first mounter:
431  * control_lock EX/NOQUEUE success
432  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
433  * set first=1
434  * do first mounter recovery
435  * mounted_lock EX->PR
436  * control_lock EX->NL, write lvb generation
437  *
438  * other mounter:
439  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
440  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
441  * mounted_lock PR/NOQUEUE success
442  * read lvb generation
443  * control_lock EX->NL
444  * set first=0
445  *
446  * - mount during recovery
447  *
448  * If a node mounts while others are doing recovery (not first mounter),
449  * the mounting node will get its initial recover_done() callback without
450  * having seen any previous failures/callbacks.
451  *
452  * It must wait for all recoveries preceding its mount to be finished
453  * before it unblocks locks.  It does this by repeating the "other mounter"
454  * steps above until the lvb generation number is >= its mount generation
455  * number (from initial recover_done) and all lvb bits are clear.
456  *
457  * - control_lock lvb format
458  *
459  * 4 bytes generation number: the latest dlm lockspace generation number
460  * from recover_done callback.  Indicates the jid bitmap has been updated
461  * to reflect all slot failures through that generation.
462  * 4 bytes unused.
463  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
464  * that jid N needs recovery.
465  */
466 
467 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
468 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)469 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
470 			     char *lvb_bits)
471 {
472 	__le32 gen;
473 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
474 	memcpy(&gen, lvb_bits, sizeof(__le32));
475 	*lvb_gen = le32_to_cpu(gen);
476 }
477 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)478 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
479 			      char *lvb_bits)
480 {
481 	__le32 gen;
482 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
483 	gen = cpu_to_le32(lvb_gen);
484 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
485 }
486 
all_jid_bits_clear(char * lvb)487 static int all_jid_bits_clear(char *lvb)
488 {
489 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
490 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
491 }
492 
sync_wait_cb(void * arg)493 static void sync_wait_cb(void *arg)
494 {
495 	struct lm_lockstruct *ls = arg;
496 	complete(&ls->ls_sync_wait);
497 }
498 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)499 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
500 {
501 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
502 	int error;
503 
504 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
505 	if (error) {
506 		fs_err(sdp, "%s lkid %x error %d\n",
507 		       name, lksb->sb_lkid, error);
508 		return error;
509 	}
510 
511 	wait_for_completion(&ls->ls_sync_wait);
512 
513 	if (lksb->sb_status != -DLM_EUNLOCK) {
514 		fs_err(sdp, "%s lkid %x status %d\n",
515 		       name, lksb->sb_lkid, lksb->sb_status);
516 		return -1;
517 	}
518 	return 0;
519 }
520 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)521 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
522 		     unsigned int num, struct dlm_lksb *lksb, char *name)
523 {
524 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
525 	char strname[GDLM_STRNAME_BYTES];
526 	int error, status;
527 
528 	memset(strname, 0, GDLM_STRNAME_BYTES);
529 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
530 
531 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
532 			 strname, GDLM_STRNAME_BYTES - 1,
533 			 0, sync_wait_cb, ls, NULL);
534 	if (error) {
535 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
536 		       name, lksb->sb_lkid, flags, mode, error);
537 		return error;
538 	}
539 
540 	wait_for_completion(&ls->ls_sync_wait);
541 
542 	status = lksb->sb_status;
543 
544 	if (status && status != -EAGAIN) {
545 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
546 		       name, lksb->sb_lkid, flags, mode, status);
547 	}
548 
549 	return status;
550 }
551 
mounted_unlock(struct gfs2_sbd * sdp)552 static int mounted_unlock(struct gfs2_sbd *sdp)
553 {
554 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
555 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
556 }
557 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)558 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
559 {
560 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
561 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
562 			 &ls->ls_mounted_lksb, "mounted_lock");
563 }
564 
control_unlock(struct gfs2_sbd * sdp)565 static int control_unlock(struct gfs2_sbd *sdp)
566 {
567 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
568 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
569 }
570 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)571 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
572 {
573 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
574 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
575 			 &ls->ls_control_lksb, "control_lock");
576 }
577 
578 /**
579  * remote_withdraw - react to a node withdrawing from the file system
580  * @sdp: The superblock
581  */
remote_withdraw(struct gfs2_sbd * sdp)582 static void remote_withdraw(struct gfs2_sbd *sdp)
583 {
584 	struct gfs2_jdesc *jd;
585 	int ret = 0, count = 0;
586 
587 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
588 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
589 			continue;
590 		ret = gfs2_recover_journal(jd, true);
591 		if (ret)
592 			break;
593 		count++;
594 	}
595 
596 	/* Now drop the additional reference we acquired */
597 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
598 }
599 
gfs2_control_func(struct work_struct * work)600 static void gfs2_control_func(struct work_struct *work)
601 {
602 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
603 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
604 	uint32_t block_gen, start_gen, lvb_gen, flags;
605 	int recover_set = 0;
606 	int write_lvb = 0;
607 	int recover_size;
608 	int i, error;
609 
610 	/* First check for other nodes that may have done a withdraw. */
611 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
612 		remote_withdraw(sdp);
613 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
614 		return;
615 	}
616 
617 	spin_lock(&ls->ls_recover_spin);
618 	/*
619 	 * No MOUNT_DONE means we're still mounting; control_mount()
620 	 * will set this flag, after which this thread will take over
621 	 * all further clearing of BLOCK_LOCKS.
622 	 *
623 	 * FIRST_MOUNT means this node is doing first mounter recovery,
624 	 * for which recovery control is handled by
625 	 * control_mount()/control_first_done(), not this thread.
626 	 */
627 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
628 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
629 		spin_unlock(&ls->ls_recover_spin);
630 		return;
631 	}
632 	block_gen = ls->ls_recover_block;
633 	start_gen = ls->ls_recover_start;
634 	spin_unlock(&ls->ls_recover_spin);
635 
636 	/*
637 	 * Equal block_gen and start_gen implies we are between
638 	 * recover_prep and recover_done callbacks, which means
639 	 * dlm recovery is in progress and dlm locking is blocked.
640 	 * There's no point trying to do any work until recover_done.
641 	 */
642 
643 	if (block_gen == start_gen)
644 		return;
645 
646 	/*
647 	 * Propagate recover_submit[] and recover_result[] to lvb:
648 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
649 	 * gfs2_recover adds to recover_result[] journal recovery results
650 	 *
651 	 * set lvb bit for jids in recover_submit[] if the lvb has not
652 	 * yet been updated for the generation of the failure
653 	 *
654 	 * clear lvb bit for jids in recover_result[] if the result of
655 	 * the journal recovery is SUCCESS
656 	 */
657 
658 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
659 	if (error) {
660 		fs_err(sdp, "control lock EX error %d\n", error);
661 		return;
662 	}
663 
664 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
665 
666 	spin_lock(&ls->ls_recover_spin);
667 	if (block_gen != ls->ls_recover_block ||
668 	    start_gen != ls->ls_recover_start) {
669 		fs_info(sdp, "recover generation %u block1 %u %u\n",
670 			start_gen, block_gen, ls->ls_recover_block);
671 		spin_unlock(&ls->ls_recover_spin);
672 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
673 		return;
674 	}
675 
676 	recover_size = ls->ls_recover_size;
677 
678 	if (lvb_gen <= start_gen) {
679 		/*
680 		 * Clear lvb bits for jids we've successfully recovered.
681 		 * Because all nodes attempt to recover failed journals,
682 		 * a journal can be recovered multiple times successfully
683 		 * in succession.  Only the first will really do recovery,
684 		 * the others find it clean, but still report a successful
685 		 * recovery.  So, another node may have already recovered
686 		 * the jid and cleared the lvb bit for it.
687 		 */
688 		for (i = 0; i < recover_size; i++) {
689 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
690 				continue;
691 
692 			ls->ls_recover_result[i] = 0;
693 
694 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
695 				continue;
696 
697 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
698 			write_lvb = 1;
699 		}
700 	}
701 
702 	if (lvb_gen == start_gen) {
703 		/*
704 		 * Failed slots before start_gen are already set in lvb.
705 		 */
706 		for (i = 0; i < recover_size; i++) {
707 			if (!ls->ls_recover_submit[i])
708 				continue;
709 			if (ls->ls_recover_submit[i] < lvb_gen)
710 				ls->ls_recover_submit[i] = 0;
711 		}
712 	} else if (lvb_gen < start_gen) {
713 		/*
714 		 * Failed slots before start_gen are not yet set in lvb.
715 		 */
716 		for (i = 0; i < recover_size; i++) {
717 			if (!ls->ls_recover_submit[i])
718 				continue;
719 			if (ls->ls_recover_submit[i] < start_gen) {
720 				ls->ls_recover_submit[i] = 0;
721 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
722 			}
723 		}
724 		/* even if there are no bits to set, we need to write the
725 		   latest generation to the lvb */
726 		write_lvb = 1;
727 	} else {
728 		/*
729 		 * we should be getting a recover_done() for lvb_gen soon
730 		 */
731 	}
732 	spin_unlock(&ls->ls_recover_spin);
733 
734 	if (write_lvb) {
735 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
736 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
737 	} else {
738 		flags = DLM_LKF_CONVERT;
739 	}
740 
741 	error = control_lock(sdp, DLM_LOCK_NL, flags);
742 	if (error) {
743 		fs_err(sdp, "control lock NL error %d\n", error);
744 		return;
745 	}
746 
747 	/*
748 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
749 	 * and clear a jid bit in the lvb if the recovery is a success.
750 	 * Eventually all journals will be recovered, all jid bits will
751 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
752 	 */
753 
754 	for (i = 0; i < recover_size; i++) {
755 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
756 			fs_info(sdp, "recover generation %u jid %d\n",
757 				start_gen, i);
758 			gfs2_recover_set(sdp, i);
759 			recover_set++;
760 		}
761 	}
762 	if (recover_set)
763 		return;
764 
765 	/*
766 	 * No more jid bits set in lvb, all recovery is done, unblock locks
767 	 * (unless a new recover_prep callback has occured blocking locks
768 	 * again while working above)
769 	 */
770 
771 	spin_lock(&ls->ls_recover_spin);
772 	if (ls->ls_recover_block == block_gen &&
773 	    ls->ls_recover_start == start_gen) {
774 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
775 		spin_unlock(&ls->ls_recover_spin);
776 		fs_info(sdp, "recover generation %u done\n", start_gen);
777 		gfs2_glock_thaw(sdp);
778 	} else {
779 		fs_info(sdp, "recover generation %u block2 %u %u\n",
780 			start_gen, block_gen, ls->ls_recover_block);
781 		spin_unlock(&ls->ls_recover_spin);
782 	}
783 }
784 
control_mount(struct gfs2_sbd * sdp)785 static int control_mount(struct gfs2_sbd *sdp)
786 {
787 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
788 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
789 	int mounted_mode;
790 	int retries = 0;
791 	int error;
792 
793 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
794 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
795 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
796 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
797 	init_completion(&ls->ls_sync_wait);
798 
799 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
800 
801 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
802 	if (error) {
803 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
804 		return error;
805 	}
806 
807 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
808 	if (error) {
809 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
810 		control_unlock(sdp);
811 		return error;
812 	}
813 	mounted_mode = DLM_LOCK_NL;
814 
815 restart:
816 	if (retries++ && signal_pending(current)) {
817 		error = -EINTR;
818 		goto fail;
819 	}
820 
821 	/*
822 	 * We always start with both locks in NL. control_lock is
823 	 * demoted to NL below so we don't need to do it here.
824 	 */
825 
826 	if (mounted_mode != DLM_LOCK_NL) {
827 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
828 		if (error)
829 			goto fail;
830 		mounted_mode = DLM_LOCK_NL;
831 	}
832 
833 	/*
834 	 * Other nodes need to do some work in dlm recovery and gfs2_control
835 	 * before the recover_done and control_lock will be ready for us below.
836 	 * A delay here is not required but often avoids having to retry.
837 	 */
838 
839 	msleep_interruptible(500);
840 
841 	/*
842 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
843 	 * control_lock lvb keeps track of any pending journal recoveries.
844 	 * mounted_lock indicates if any other nodes have the fs mounted.
845 	 */
846 
847 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
848 	if (error == -EAGAIN) {
849 		goto restart;
850 	} else if (error) {
851 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
852 		goto fail;
853 	}
854 
855 	/**
856 	 * If we're a spectator, we don't want to take the lock in EX because
857 	 * we cannot do the first-mount responsibility it implies: recovery.
858 	 */
859 	if (sdp->sd_args.ar_spectator)
860 		goto locks_done;
861 
862 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
863 	if (!error) {
864 		mounted_mode = DLM_LOCK_EX;
865 		goto locks_done;
866 	} else if (error != -EAGAIN) {
867 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
868 		goto fail;
869 	}
870 
871 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
872 	if (!error) {
873 		mounted_mode = DLM_LOCK_PR;
874 		goto locks_done;
875 	} else {
876 		/* not even -EAGAIN should happen here */
877 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
878 		goto fail;
879 	}
880 
881 locks_done:
882 	/*
883 	 * If we got both locks above in EX, then we're the first mounter.
884 	 * If not, then we need to wait for the control_lock lvb to be
885 	 * updated by other mounted nodes to reflect our mount generation.
886 	 *
887 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
888 	 * but in cases where all existing nodes leave/fail before mounting
889 	 * nodes finish control_mount, then all nodes will be mounting and
890 	 * lvb_gen will be non-zero.
891 	 */
892 
893 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
894 
895 	if (lvb_gen == 0xFFFFFFFF) {
896 		/* special value to force mount attempts to fail */
897 		fs_err(sdp, "control_mount control_lock disabled\n");
898 		error = -EINVAL;
899 		goto fail;
900 	}
901 
902 	if (mounted_mode == DLM_LOCK_EX) {
903 		/* first mounter, keep both EX while doing first recovery */
904 		spin_lock(&ls->ls_recover_spin);
905 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
906 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
907 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
908 		spin_unlock(&ls->ls_recover_spin);
909 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
910 		return 0;
911 	}
912 
913 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
914 	if (error)
915 		goto fail;
916 
917 	/*
918 	 * We are not first mounter, now we need to wait for the control_lock
919 	 * lvb generation to be >= the generation from our first recover_done
920 	 * and all lvb bits to be clear (no pending journal recoveries.)
921 	 */
922 
923 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
924 		/* journals need recovery, wait until all are clear */
925 		fs_info(sdp, "control_mount wait for journal recovery\n");
926 		goto restart;
927 	}
928 
929 	spin_lock(&ls->ls_recover_spin);
930 	block_gen = ls->ls_recover_block;
931 	start_gen = ls->ls_recover_start;
932 	mount_gen = ls->ls_recover_mount;
933 
934 	if (lvb_gen < mount_gen) {
935 		/* wait for mounted nodes to update control_lock lvb to our
936 		   generation, which might include new recovery bits set */
937 		if (sdp->sd_args.ar_spectator) {
938 			fs_info(sdp, "Recovery is required. Waiting for a "
939 				"non-spectator to mount.\n");
940 			msleep_interruptible(1000);
941 		} else {
942 			fs_info(sdp, "control_mount wait1 block %u start %u "
943 				"mount %u lvb %u flags %lx\n", block_gen,
944 				start_gen, mount_gen, lvb_gen,
945 				ls->ls_recover_flags);
946 		}
947 		spin_unlock(&ls->ls_recover_spin);
948 		goto restart;
949 	}
950 
951 	if (lvb_gen != start_gen) {
952 		/* wait for mounted nodes to update control_lock lvb to the
953 		   latest recovery generation */
954 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
955 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
956 			lvb_gen, ls->ls_recover_flags);
957 		spin_unlock(&ls->ls_recover_spin);
958 		goto restart;
959 	}
960 
961 	if (block_gen == start_gen) {
962 		/* dlm recovery in progress, wait for it to finish */
963 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
964 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
965 			lvb_gen, ls->ls_recover_flags);
966 		spin_unlock(&ls->ls_recover_spin);
967 		goto restart;
968 	}
969 
970 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
971 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
972 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
973 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
974 	spin_unlock(&ls->ls_recover_spin);
975 	return 0;
976 
977 fail:
978 	mounted_unlock(sdp);
979 	control_unlock(sdp);
980 	return error;
981 }
982 
control_first_done(struct gfs2_sbd * sdp)983 static int control_first_done(struct gfs2_sbd *sdp)
984 {
985 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
986 	uint32_t start_gen, block_gen;
987 	int error;
988 
989 restart:
990 	spin_lock(&ls->ls_recover_spin);
991 	start_gen = ls->ls_recover_start;
992 	block_gen = ls->ls_recover_block;
993 
994 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
995 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
996 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
997 		/* sanity check, should not happen */
998 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
999 		       start_gen, block_gen, ls->ls_recover_flags);
1000 		spin_unlock(&ls->ls_recover_spin);
1001 		control_unlock(sdp);
1002 		return -1;
1003 	}
1004 
1005 	if (start_gen == block_gen) {
1006 		/*
1007 		 * Wait for the end of a dlm recovery cycle to switch from
1008 		 * first mounter recovery.  We can ignore any recover_slot
1009 		 * callbacks between the recover_prep and next recover_done
1010 		 * because we are still the first mounter and any failed nodes
1011 		 * have not fully mounted, so they don't need recovery.
1012 		 */
1013 		spin_unlock(&ls->ls_recover_spin);
1014 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1015 
1016 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1017 			    TASK_UNINTERRUPTIBLE);
1018 		goto restart;
1019 	}
1020 
1021 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1022 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1023 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1024 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1025 	spin_unlock(&ls->ls_recover_spin);
1026 
1027 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1028 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1029 
1030 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1031 	if (error)
1032 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1033 
1034 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1035 	if (error)
1036 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1037 
1038 	return error;
1039 }
1040 
1041 /*
1042  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1043  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1044  * gfs2 jids start at 0, so jid = slot - 1)
1045  */
1046 
1047 #define RECOVER_SIZE_INC 16
1048 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1049 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1050 			    int num_slots)
1051 {
1052 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1053 	uint32_t *submit = NULL;
1054 	uint32_t *result = NULL;
1055 	uint32_t old_size, new_size;
1056 	int i, max_jid;
1057 
1058 	if (!ls->ls_lvb_bits) {
1059 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1060 		if (!ls->ls_lvb_bits)
1061 			return -ENOMEM;
1062 	}
1063 
1064 	max_jid = 0;
1065 	for (i = 0; i < num_slots; i++) {
1066 		if (max_jid < slots[i].slot - 1)
1067 			max_jid = slots[i].slot - 1;
1068 	}
1069 
1070 	old_size = ls->ls_recover_size;
1071 	new_size = old_size;
1072 	while (new_size < max_jid + 1)
1073 		new_size += RECOVER_SIZE_INC;
1074 	if (new_size == old_size)
1075 		return 0;
1076 
1077 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1078 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1079 	if (!submit || !result) {
1080 		kfree(submit);
1081 		kfree(result);
1082 		return -ENOMEM;
1083 	}
1084 
1085 	spin_lock(&ls->ls_recover_spin);
1086 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1087 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1088 	kfree(ls->ls_recover_submit);
1089 	kfree(ls->ls_recover_result);
1090 	ls->ls_recover_submit = submit;
1091 	ls->ls_recover_result = result;
1092 	ls->ls_recover_size = new_size;
1093 	spin_unlock(&ls->ls_recover_spin);
1094 	return 0;
1095 }
1096 
free_recover_size(struct lm_lockstruct * ls)1097 static void free_recover_size(struct lm_lockstruct *ls)
1098 {
1099 	kfree(ls->ls_lvb_bits);
1100 	kfree(ls->ls_recover_submit);
1101 	kfree(ls->ls_recover_result);
1102 	ls->ls_recover_submit = NULL;
1103 	ls->ls_recover_result = NULL;
1104 	ls->ls_recover_size = 0;
1105 	ls->ls_lvb_bits = NULL;
1106 }
1107 
1108 /* dlm calls before it does lock recovery */
1109 
gdlm_recover_prep(void * arg)1110 static void gdlm_recover_prep(void *arg)
1111 {
1112 	struct gfs2_sbd *sdp = arg;
1113 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1114 
1115 	if (gfs2_withdrawn(sdp)) {
1116 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1117 		return;
1118 	}
1119 	spin_lock(&ls->ls_recover_spin);
1120 	ls->ls_recover_block = ls->ls_recover_start;
1121 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1122 
1123 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1124 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1125 		spin_unlock(&ls->ls_recover_spin);
1126 		return;
1127 	}
1128 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1129 	spin_unlock(&ls->ls_recover_spin);
1130 }
1131 
1132 /* dlm calls after recover_prep has been completed on all lockspace members;
1133    identifies slot/jid of failed member */
1134 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1135 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1136 {
1137 	struct gfs2_sbd *sdp = arg;
1138 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1139 	int jid = slot->slot - 1;
1140 
1141 	if (gfs2_withdrawn(sdp)) {
1142 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1143 		       jid);
1144 		return;
1145 	}
1146 	spin_lock(&ls->ls_recover_spin);
1147 	if (ls->ls_recover_size < jid + 1) {
1148 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1149 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1150 		spin_unlock(&ls->ls_recover_spin);
1151 		return;
1152 	}
1153 
1154 	if (ls->ls_recover_submit[jid]) {
1155 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1156 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1157 	}
1158 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1159 	spin_unlock(&ls->ls_recover_spin);
1160 }
1161 
1162 /* dlm calls after recover_slot and after it completes lock recovery */
1163 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1164 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1165 			      int our_slot, uint32_t generation)
1166 {
1167 	struct gfs2_sbd *sdp = arg;
1168 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1169 
1170 	if (gfs2_withdrawn(sdp)) {
1171 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1172 		return;
1173 	}
1174 	/* ensure the ls jid arrays are large enough */
1175 	set_recover_size(sdp, slots, num_slots);
1176 
1177 	spin_lock(&ls->ls_recover_spin);
1178 	ls->ls_recover_start = generation;
1179 
1180 	if (!ls->ls_recover_mount) {
1181 		ls->ls_recover_mount = generation;
1182 		ls->ls_jid = our_slot - 1;
1183 	}
1184 
1185 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1186 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1187 
1188 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1189 	smp_mb__after_atomic();
1190 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1191 	spin_unlock(&ls->ls_recover_spin);
1192 }
1193 
1194 /* gfs2_recover thread has a journal recovery result */
1195 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1196 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1197 				 unsigned int result)
1198 {
1199 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1200 
1201 	if (gfs2_withdrawn(sdp)) {
1202 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1203 		       jid);
1204 		return;
1205 	}
1206 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1207 		return;
1208 
1209 	/* don't care about the recovery of own journal during mount */
1210 	if (jid == ls->ls_jid)
1211 		return;
1212 
1213 	spin_lock(&ls->ls_recover_spin);
1214 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1215 		spin_unlock(&ls->ls_recover_spin);
1216 		return;
1217 	}
1218 	if (ls->ls_recover_size < jid + 1) {
1219 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1220 		       jid, ls->ls_recover_size);
1221 		spin_unlock(&ls->ls_recover_spin);
1222 		return;
1223 	}
1224 
1225 	fs_info(sdp, "recover jid %d result %s\n", jid,
1226 		result == LM_RD_GAVEUP ? "busy" : "success");
1227 
1228 	ls->ls_recover_result[jid] = result;
1229 
1230 	/* GAVEUP means another node is recovering the journal; delay our
1231 	   next attempt to recover it, to give the other node a chance to
1232 	   finish before trying again */
1233 
1234 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1235 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1236 				   result == LM_RD_GAVEUP ? HZ : 0);
1237 	spin_unlock(&ls->ls_recover_spin);
1238 }
1239 
1240 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1241 	.recover_prep = gdlm_recover_prep,
1242 	.recover_slot = gdlm_recover_slot,
1243 	.recover_done = gdlm_recover_done,
1244 };
1245 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1246 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1247 {
1248 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1249 	char cluster[GFS2_LOCKNAME_LEN];
1250 	const char *fsname;
1251 	uint32_t flags;
1252 	int error, ops_result;
1253 
1254 	/*
1255 	 * initialize everything
1256 	 */
1257 
1258 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1259 	spin_lock_init(&ls->ls_recover_spin);
1260 	ls->ls_recover_flags = 0;
1261 	ls->ls_recover_mount = 0;
1262 	ls->ls_recover_start = 0;
1263 	ls->ls_recover_block = 0;
1264 	ls->ls_recover_size = 0;
1265 	ls->ls_recover_submit = NULL;
1266 	ls->ls_recover_result = NULL;
1267 	ls->ls_lvb_bits = NULL;
1268 
1269 	error = set_recover_size(sdp, NULL, 0);
1270 	if (error)
1271 		goto fail;
1272 
1273 	/*
1274 	 * prepare dlm_new_lockspace args
1275 	 */
1276 
1277 	fsname = strchr(table, ':');
1278 	if (!fsname) {
1279 		fs_info(sdp, "no fsname found\n");
1280 		error = -EINVAL;
1281 		goto fail_free;
1282 	}
1283 	memset(cluster, 0, sizeof(cluster));
1284 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1285 	fsname++;
1286 
1287 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1288 
1289 	/*
1290 	 * create/join lockspace
1291 	 */
1292 
1293 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1294 				  &gdlm_lockspace_ops, sdp, &ops_result,
1295 				  &ls->ls_dlm);
1296 	if (error) {
1297 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1298 		goto fail_free;
1299 	}
1300 
1301 	if (ops_result < 0) {
1302 		/*
1303 		 * dlm does not support ops callbacks,
1304 		 * old dlm_controld/gfs_controld are used, try without ops.
1305 		 */
1306 		fs_info(sdp, "dlm lockspace ops not used\n");
1307 		free_recover_size(ls);
1308 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1309 		return 0;
1310 	}
1311 
1312 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1313 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1314 		error = -EINVAL;
1315 		goto fail_release;
1316 	}
1317 
1318 	/*
1319 	 * control_mount() uses control_lock to determine first mounter,
1320 	 * and for later mounts, waits for any recoveries to be cleared.
1321 	 */
1322 
1323 	error = control_mount(sdp);
1324 	if (error) {
1325 		fs_err(sdp, "mount control error %d\n", error);
1326 		goto fail_release;
1327 	}
1328 
1329 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1330 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1331 	smp_mb__after_atomic();
1332 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1333 	return 0;
1334 
1335 fail_release:
1336 	dlm_release_lockspace(ls->ls_dlm, 2);
1337 fail_free:
1338 	free_recover_size(ls);
1339 fail:
1340 	return error;
1341 }
1342 
gdlm_first_done(struct gfs2_sbd * sdp)1343 static void gdlm_first_done(struct gfs2_sbd *sdp)
1344 {
1345 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1346 	int error;
1347 
1348 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1349 		return;
1350 
1351 	error = control_first_done(sdp);
1352 	if (error)
1353 		fs_err(sdp, "mount first_done error %d\n", error);
1354 }
1355 
gdlm_unmount(struct gfs2_sbd * sdp)1356 static void gdlm_unmount(struct gfs2_sbd *sdp)
1357 {
1358 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1359 
1360 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1361 		goto release;
1362 
1363 	/* wait for gfs2_control_wq to be done with this mount */
1364 
1365 	spin_lock(&ls->ls_recover_spin);
1366 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1367 	spin_unlock(&ls->ls_recover_spin);
1368 	flush_delayed_work(&sdp->sd_control_work);
1369 
1370 	/* mounted_lock and control_lock will be purged in dlm recovery */
1371 release:
1372 	if (ls->ls_dlm) {
1373 		dlm_release_lockspace(ls->ls_dlm, 2);
1374 		ls->ls_dlm = NULL;
1375 	}
1376 
1377 	free_recover_size(ls);
1378 }
1379 
1380 static const match_table_t dlm_tokens = {
1381 	{ Opt_jid, "jid=%d"},
1382 	{ Opt_id, "id=%d"},
1383 	{ Opt_first, "first=%d"},
1384 	{ Opt_nodir, "nodir=%d"},
1385 	{ Opt_err, NULL },
1386 };
1387 
1388 const struct lm_lockops gfs2_dlm_ops = {
1389 	.lm_proto_name = "lock_dlm",
1390 	.lm_mount = gdlm_mount,
1391 	.lm_first_done = gdlm_first_done,
1392 	.lm_recovery_result = gdlm_recovery_result,
1393 	.lm_unmount = gdlm_unmount,
1394 	.lm_put_lock = gdlm_put_lock,
1395 	.lm_lock = gdlm_lock,
1396 	.lm_cancel = gdlm_cancel,
1397 	.lm_tokens = &dlm_tokens,
1398 };
1399 
1400