1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_NR_STAT,
37 };
38 
39 enum memcg_memory_event {
40 	MEMCG_LOW,
41 	MEMCG_HIGH,
42 	MEMCG_MAX,
43 	MEMCG_OOM,
44 	MEMCG_OOM_KILL,
45 	MEMCG_SWAP_HIGH,
46 	MEMCG_SWAP_MAX,
47 	MEMCG_SWAP_FAIL,
48 	MEMCG_NR_MEMORY_EVENTS,
49 };
50 
51 struct mem_cgroup_reclaim_cookie {
52 	pg_data_t *pgdat;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 
58 #define MEM_CGROUP_ID_SHIFT	16
59 #define MEM_CGROUP_ID_MAX	USHRT_MAX
60 
61 struct mem_cgroup_id {
62 	int id;
63 	refcount_t ref;
64 };
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
68  * it will be incremented by the number of pages. This counter is used
69  * to trigger some periodic events. This is straightforward and better
70  * than using jiffies etc. to handle periodic memcg event.
71  */
72 enum mem_cgroup_events_target {
73 	MEM_CGROUP_TARGET_THRESH,
74 	MEM_CGROUP_TARGET_SOFTLIMIT,
75 	MEM_CGROUP_NTARGETS,
76 };
77 
78 struct memcg_vmstats_percpu {
79 	/* Local (CPU and cgroup) page state & events */
80 	long			state[MEMCG_NR_STAT];
81 	unsigned long		events[NR_VM_EVENT_ITEMS];
82 
83 	/* Delta calculation for lockless upward propagation */
84 	long			state_prev[MEMCG_NR_STAT];
85 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
86 
87 	/* Cgroup1: threshold notifications & softlimit tree updates */
88 	unsigned long		nr_page_events;
89 	unsigned long		targets[MEM_CGROUP_NTARGETS];
90 };
91 
92 struct memcg_vmstats {
93 	/* Aggregated (CPU and subtree) page state & events */
94 	long			state[MEMCG_NR_STAT];
95 	unsigned long		events[NR_VM_EVENT_ITEMS];
96 
97 	/* Pending child counts during tree propagation */
98 	long			state_pending[MEMCG_NR_STAT];
99 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
100 };
101 
102 struct mem_cgroup_reclaim_iter {
103 	struct mem_cgroup *position;
104 	/* scan generation, increased every round-trip */
105 	unsigned int generation;
106 };
107 
108 struct lruvec_stat {
109 	long count[NR_VM_NODE_STAT_ITEMS];
110 };
111 
112 struct batched_lruvec_stat {
113 	s32 count[NR_VM_NODE_STAT_ITEMS];
114 };
115 
116 /*
117  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
118  * shrinkers, which have elements charged to this memcg.
119  */
120 struct shrinker_info {
121 	struct rcu_head rcu;
122 	atomic_long_t *nr_deferred;
123 	unsigned long *map;
124 };
125 
126 /*
127  * per-node information in memory controller.
128  */
129 struct mem_cgroup_per_node {
130 	struct lruvec		lruvec;
131 
132 	/*
133 	 * Legacy local VM stats. This should be struct lruvec_stat and
134 	 * cannot be optimized to struct batched_lruvec_stat. Because
135 	 * the threshold of the lruvec_stat_cpu can be as big as
136 	 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
137 	 * filed has no upper limit.
138 	 */
139 	struct lruvec_stat __percpu *lruvec_stat_local;
140 
141 	/* Subtree VM stats (batched updates) */
142 	struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
143 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
144 
145 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
146 
147 	struct mem_cgroup_reclaim_iter	iter;
148 
149 	struct shrinker_info __rcu	*shrinker_info;
150 
151 	struct rb_node		tree_node;	/* RB tree node */
152 	unsigned long		usage_in_excess;/* Set to the value by which */
153 						/* the soft limit is exceeded*/
154 	bool			on_tree;
155 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
156 						/* use container_of	   */
157 };
158 
159 struct mem_cgroup_threshold {
160 	struct eventfd_ctx *eventfd;
161 	unsigned long threshold;
162 };
163 
164 /* For threshold */
165 struct mem_cgroup_threshold_ary {
166 	/* An array index points to threshold just below or equal to usage. */
167 	int current_threshold;
168 	/* Size of entries[] */
169 	unsigned int size;
170 	/* Array of thresholds */
171 	struct mem_cgroup_threshold entries[];
172 };
173 
174 struct mem_cgroup_thresholds {
175 	/* Primary thresholds array */
176 	struct mem_cgroup_threshold_ary *primary;
177 	/*
178 	 * Spare threshold array.
179 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
180 	 * It must be able to store at least primary->size - 1 entries.
181 	 */
182 	struct mem_cgroup_threshold_ary *spare;
183 };
184 
185 enum memcg_kmem_state {
186 	KMEM_NONE,
187 	KMEM_ALLOCATED,
188 	KMEM_ONLINE,
189 };
190 
191 #if defined(CONFIG_SMP)
192 struct memcg_padding {
193 	char x[0];
194 } ____cacheline_internodealigned_in_smp;
195 #define MEMCG_PADDING(name)      struct memcg_padding name;
196 #else
197 #define MEMCG_PADDING(name)
198 #endif
199 
200 /*
201  * Remember four most recent foreign writebacks with dirty pages in this
202  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
203  * one in a given round, we're likely to catch it later if it keeps
204  * foreign-dirtying, so a fairly low count should be enough.
205  *
206  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
207  */
208 #define MEMCG_CGWB_FRN_CNT	4
209 
210 struct memcg_cgwb_frn {
211 	u64 bdi_id;			/* bdi->id of the foreign inode */
212 	int memcg_id;			/* memcg->css.id of foreign inode */
213 	u64 at;				/* jiffies_64 at the time of dirtying */
214 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
215 };
216 
217 /*
218  * Bucket for arbitrarily byte-sized objects charged to a memory
219  * cgroup. The bucket can be reparented in one piece when the cgroup
220  * is destroyed, without having to round up the individual references
221  * of all live memory objects in the wild.
222  */
223 struct obj_cgroup {
224 	struct percpu_ref refcnt;
225 	struct mem_cgroup *memcg;
226 	atomic_t nr_charged_bytes;
227 	union {
228 		struct list_head list;
229 		struct rcu_head rcu;
230 	};
231 };
232 
233 /*
234  * The memory controller data structure. The memory controller controls both
235  * page cache and RSS per cgroup. We would eventually like to provide
236  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237  * to help the administrator determine what knobs to tune.
238  */
239 struct mem_cgroup {
240 	struct cgroup_subsys_state css;
241 
242 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
243 	struct mem_cgroup_id id;
244 
245 	/* Accounted resources */
246 	struct page_counter memory;		/* Both v1 & v2 */
247 
248 	union {
249 		struct page_counter swap;	/* v2 only */
250 		struct page_counter memsw;	/* v1 only */
251 	};
252 
253 	/* Legacy consumer-oriented counters */
254 	struct page_counter kmem;		/* v1 only */
255 	struct page_counter tcpmem;		/* v1 only */
256 
257 	/* Range enforcement for interrupt charges */
258 	struct work_struct high_work;
259 
260 	unsigned long soft_limit;
261 
262 	/* vmpressure notifications */
263 	struct vmpressure vmpressure;
264 
265 	/*
266 	 * Should the OOM killer kill all belonging tasks, had it kill one?
267 	 */
268 	bool oom_group;
269 
270 	/* protected by memcg_oom_lock */
271 	bool		oom_lock;
272 	int		under_oom;
273 
274 	int	swappiness;
275 	/* OOM-Killer disable */
276 	int		oom_kill_disable;
277 
278 	/* memory.events and memory.events.local */
279 	struct cgroup_file events_file;
280 	struct cgroup_file events_local_file;
281 
282 	/* handle for "memory.swap.events" */
283 	struct cgroup_file swap_events_file;
284 
285 	/* protect arrays of thresholds */
286 	struct mutex thresholds_lock;
287 
288 	/* thresholds for memory usage. RCU-protected */
289 	struct mem_cgroup_thresholds thresholds;
290 
291 	/* thresholds for mem+swap usage. RCU-protected */
292 	struct mem_cgroup_thresholds memsw_thresholds;
293 
294 	/* For oom notifier event fd */
295 	struct list_head oom_notify;
296 
297 	/*
298 	 * Should we move charges of a task when a task is moved into this
299 	 * mem_cgroup ? And what type of charges should we move ?
300 	 */
301 	unsigned long move_charge_at_immigrate;
302 	/* taken only while moving_account > 0 */
303 	spinlock_t		move_lock;
304 	unsigned long		move_lock_flags;
305 
306 	MEMCG_PADDING(_pad1_);
307 
308 	/* memory.stat */
309 	struct memcg_vmstats	vmstats;
310 
311 	/* memory.events */
312 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
313 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
314 
315 	unsigned long		socket_pressure;
316 
317 	/* Legacy tcp memory accounting */
318 	bool			tcpmem_active;
319 	int			tcpmem_pressure;
320 
321 #ifdef CONFIG_MEMCG_KMEM
322 	int kmemcg_id;
323 	enum memcg_kmem_state kmem_state;
324 	struct obj_cgroup __rcu *objcg;
325 	struct list_head objcg_list; /* list of inherited objcgs */
326 #endif
327 
328 	MEMCG_PADDING(_pad2_);
329 
330 	/*
331 	 * set > 0 if pages under this cgroup are moving to other cgroup.
332 	 */
333 	atomic_t		moving_account;
334 	struct task_struct	*move_lock_task;
335 
336 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
337 
338 #ifdef CONFIG_CGROUP_WRITEBACK
339 	struct list_head cgwb_list;
340 	struct wb_domain cgwb_domain;
341 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
342 #endif
343 
344 	/* List of events which userspace want to receive */
345 	struct list_head event_list;
346 	spinlock_t event_list_lock;
347 
348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 	struct deferred_split deferred_split_queue;
350 #endif
351 
352 	struct mem_cgroup_per_node *nodeinfo[0];
353 	/* WARNING: nodeinfo must be the last member here */
354 };
355 
356 /*
357  * size of first charge trial. "32" comes from vmscan.c's magic value.
358  * TODO: maybe necessary to use big numbers in big irons.
359  */
360 #define MEMCG_CHARGE_BATCH 32U
361 
362 extern struct mem_cgroup *root_mem_cgroup;
363 
364 enum page_memcg_data_flags {
365 	/* page->memcg_data is a pointer to an objcgs vector */
366 	MEMCG_DATA_OBJCGS = (1UL << 0),
367 	/* page has been accounted as a non-slab kernel page */
368 	MEMCG_DATA_KMEM = (1UL << 1),
369 	/* the next bit after the last actual flag */
370 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
371 };
372 
373 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
374 
375 static inline bool PageMemcgKmem(struct page *page);
376 
377 /*
378  * After the initialization objcg->memcg is always pointing at
379  * a valid memcg, but can be atomically swapped to the parent memcg.
380  *
381  * The caller must ensure that the returned memcg won't be released:
382  * e.g. acquire the rcu_read_lock or css_set_lock.
383  */
obj_cgroup_memcg(struct obj_cgroup * objcg)384 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
385 {
386 	return READ_ONCE(objcg->memcg);
387 }
388 
389 /*
390  * __page_memcg - get the memory cgroup associated with a non-kmem page
391  * @page: a pointer to the page struct
392  *
393  * Returns a pointer to the memory cgroup associated with the page,
394  * or NULL. This function assumes that the page is known to have a
395  * proper memory cgroup pointer. It's not safe to call this function
396  * against some type of pages, e.g. slab pages or ex-slab pages or
397  * kmem pages.
398  */
__page_memcg(struct page * page)399 static inline struct mem_cgroup *__page_memcg(struct page *page)
400 {
401 	unsigned long memcg_data = page->memcg_data;
402 
403 	VM_BUG_ON_PAGE(PageSlab(page), page);
404 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
405 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
406 
407 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
408 }
409 
410 /*
411  * __page_objcg - get the object cgroup associated with a kmem page
412  * @page: a pointer to the page struct
413  *
414  * Returns a pointer to the object cgroup associated with the page,
415  * or NULL. This function assumes that the page is known to have a
416  * proper object cgroup pointer. It's not safe to call this function
417  * against some type of pages, e.g. slab pages or ex-slab pages or
418  * LRU pages.
419  */
__page_objcg(struct page * page)420 static inline struct obj_cgroup *__page_objcg(struct page *page)
421 {
422 	unsigned long memcg_data = page->memcg_data;
423 
424 	VM_BUG_ON_PAGE(PageSlab(page), page);
425 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
426 	VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
427 
428 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
429 }
430 
431 /*
432  * page_memcg - get the memory cgroup associated with a page
433  * @page: a pointer to the page struct
434  *
435  * Returns a pointer to the memory cgroup associated with the page,
436  * or NULL. This function assumes that the page is known to have a
437  * proper memory cgroup pointer. It's not safe to call this function
438  * against some type of pages, e.g. slab pages or ex-slab pages.
439  *
440  * For a non-kmem page any of the following ensures page and memcg binding
441  * stability:
442  *
443  * - the page lock
444  * - LRU isolation
445  * - lock_page_memcg()
446  * - exclusive reference
447  *
448  * For a kmem page a caller should hold an rcu read lock to protect memcg
449  * associated with a kmem page from being released.
450  */
page_memcg(struct page * page)451 static inline struct mem_cgroup *page_memcg(struct page *page)
452 {
453 	if (PageMemcgKmem(page))
454 		return obj_cgroup_memcg(__page_objcg(page));
455 	else
456 		return __page_memcg(page);
457 }
458 
459 /*
460  * page_memcg_rcu - locklessly get the memory cgroup associated with a page
461  * @page: a pointer to the page struct
462  *
463  * Returns a pointer to the memory cgroup associated with the page,
464  * or NULL. This function assumes that the page is known to have a
465  * proper memory cgroup pointer. It's not safe to call this function
466  * against some type of pages, e.g. slab pages or ex-slab pages.
467  */
page_memcg_rcu(struct page * page)468 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
469 {
470 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
471 
472 	VM_BUG_ON_PAGE(PageSlab(page), page);
473 	WARN_ON_ONCE(!rcu_read_lock_held());
474 
475 	if (memcg_data & MEMCG_DATA_KMEM) {
476 		struct obj_cgroup *objcg;
477 
478 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
479 		return obj_cgroup_memcg(objcg);
480 	}
481 
482 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
483 }
484 
485 /*
486  * page_memcg_check - get the memory cgroup associated with a page
487  * @page: a pointer to the page struct
488  *
489  * Returns a pointer to the memory cgroup associated with the page,
490  * or NULL. This function unlike page_memcg() can take any page
491  * as an argument. It has to be used in cases when it's not known if a page
492  * has an associated memory cgroup pointer or an object cgroups vector or
493  * an object cgroup.
494  *
495  * For a non-kmem page any of the following ensures page and memcg binding
496  * stability:
497  *
498  * - the page lock
499  * - LRU isolation
500  * - lock_page_memcg()
501  * - exclusive reference
502  *
503  * For a kmem page a caller should hold an rcu read lock to protect memcg
504  * associated with a kmem page from being released.
505  */
page_memcg_check(struct page * page)506 static inline struct mem_cgroup *page_memcg_check(struct page *page)
507 {
508 	/*
509 	 * Because page->memcg_data might be changed asynchronously
510 	 * for slab pages, READ_ONCE() should be used here.
511 	 */
512 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
513 
514 	if (memcg_data & MEMCG_DATA_OBJCGS)
515 		return NULL;
516 
517 	if (memcg_data & MEMCG_DATA_KMEM) {
518 		struct obj_cgroup *objcg;
519 
520 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
521 		return obj_cgroup_memcg(objcg);
522 	}
523 
524 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
525 }
526 
527 #ifdef CONFIG_MEMCG_KMEM
528 /*
529  * PageMemcgKmem - check if the page has MemcgKmem flag set
530  * @page: a pointer to the page struct
531  *
532  * Checks if the page has MemcgKmem flag set. The caller must ensure that
533  * the page has an associated memory cgroup. It's not safe to call this function
534  * against some types of pages, e.g. slab pages.
535  */
PageMemcgKmem(struct page * page)536 static inline bool PageMemcgKmem(struct page *page)
537 {
538 	VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
539 	return page->memcg_data & MEMCG_DATA_KMEM;
540 }
541 
542 /*
543  * page_objcgs - get the object cgroups vector associated with a page
544  * @page: a pointer to the page struct
545  *
546  * Returns a pointer to the object cgroups vector associated with the page,
547  * or NULL. This function assumes that the page is known to have an
548  * associated object cgroups vector. It's not safe to call this function
549  * against pages, which might have an associated memory cgroup: e.g.
550  * kernel stack pages.
551  */
page_objcgs(struct page * page)552 static inline struct obj_cgroup **page_objcgs(struct page *page)
553 {
554 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
555 
556 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
557 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
558 
559 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
560 }
561 
562 /*
563  * page_objcgs_check - get the object cgroups vector associated with a page
564  * @page: a pointer to the page struct
565  *
566  * Returns a pointer to the object cgroups vector associated with the page,
567  * or NULL. This function is safe to use if the page can be directly associated
568  * with a memory cgroup.
569  */
page_objcgs_check(struct page * page)570 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
571 {
572 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
573 
574 	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
575 		return NULL;
576 
577 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
578 
579 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
580 }
581 
582 #else
PageMemcgKmem(struct page * page)583 static inline bool PageMemcgKmem(struct page *page)
584 {
585 	return false;
586 }
587 
page_objcgs(struct page * page)588 static inline struct obj_cgroup **page_objcgs(struct page *page)
589 {
590 	return NULL;
591 }
592 
page_objcgs_check(struct page * page)593 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
594 {
595 	return NULL;
596 }
597 #endif
598 
memcg_stat_item_in_bytes(int idx)599 static __always_inline bool memcg_stat_item_in_bytes(int idx)
600 {
601 	if (idx == MEMCG_PERCPU_B)
602 		return true;
603 	return vmstat_item_in_bytes(idx);
604 }
605 
mem_cgroup_is_root(struct mem_cgroup * memcg)606 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
607 {
608 	return (memcg == root_mem_cgroup);
609 }
610 
mem_cgroup_disabled(void)611 static inline bool mem_cgroup_disabled(void)
612 {
613 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
614 }
615 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,bool in_low_reclaim)616 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
617 						  struct mem_cgroup *memcg,
618 						  bool in_low_reclaim)
619 {
620 	if (mem_cgroup_disabled())
621 		return 0;
622 
623 	/*
624 	 * There is no reclaim protection applied to a targeted reclaim.
625 	 * We are special casing this specific case here because
626 	 * mem_cgroup_protected calculation is not robust enough to keep
627 	 * the protection invariant for calculated effective values for
628 	 * parallel reclaimers with different reclaim target. This is
629 	 * especially a problem for tail memcgs (as they have pages on LRU)
630 	 * which would want to have effective values 0 for targeted reclaim
631 	 * but a different value for external reclaim.
632 	 *
633 	 * Example
634 	 * Let's have global and A's reclaim in parallel:
635 	 *  |
636 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
637 	 *  |\
638 	 *  | C (low = 1G, usage = 2.5G)
639 	 *  B (low = 1G, usage = 0.5G)
640 	 *
641 	 * For the global reclaim
642 	 * A.elow = A.low
643 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
644 	 * C.elow = min(C.usage, C.low)
645 	 *
646 	 * With the effective values resetting we have A reclaim
647 	 * A.elow = 0
648 	 * B.elow = B.low
649 	 * C.elow = C.low
650 	 *
651 	 * If the global reclaim races with A's reclaim then
652 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
653 	 * is possible and reclaiming B would be violating the protection.
654 	 *
655 	 */
656 	if (root == memcg)
657 		return 0;
658 
659 	if (in_low_reclaim)
660 		return READ_ONCE(memcg->memory.emin);
661 
662 	return max(READ_ONCE(memcg->memory.emin),
663 		   READ_ONCE(memcg->memory.elow));
664 }
665 
666 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
667 				     struct mem_cgroup *memcg);
668 
mem_cgroup_supports_protection(struct mem_cgroup * memcg)669 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
670 {
671 	/*
672 	 * The root memcg doesn't account charges, and doesn't support
673 	 * protection.
674 	 */
675 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
676 
677 }
678 
mem_cgroup_below_low(struct mem_cgroup * memcg)679 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
680 {
681 	if (!mem_cgroup_supports_protection(memcg))
682 		return false;
683 
684 	return READ_ONCE(memcg->memory.elow) >=
685 		page_counter_read(&memcg->memory);
686 }
687 
mem_cgroup_below_min(struct mem_cgroup * memcg)688 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
689 {
690 	if (!mem_cgroup_supports_protection(memcg))
691 		return false;
692 
693 	return READ_ONCE(memcg->memory.emin) >=
694 		page_counter_read(&memcg->memory);
695 }
696 
697 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
698 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
699 				  gfp_t gfp, swp_entry_t entry);
700 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
701 
702 void mem_cgroup_uncharge(struct page *page);
703 void mem_cgroup_uncharge_list(struct list_head *page_list);
704 
705 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
706 
707 /**
708  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
709  * @memcg: memcg of the wanted lruvec
710  * @pgdat: pglist_data
711  *
712  * Returns the lru list vector holding pages for a given @memcg &
713  * @pgdat combination. This can be the node lruvec, if the memory
714  * controller is disabled.
715  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)716 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
717 					       struct pglist_data *pgdat)
718 {
719 	struct mem_cgroup_per_node *mz;
720 	struct lruvec *lruvec;
721 
722 	if (mem_cgroup_disabled()) {
723 		lruvec = &pgdat->__lruvec;
724 		goto out;
725 	}
726 
727 	if (!memcg)
728 		memcg = root_mem_cgroup;
729 
730 	mz = memcg->nodeinfo[pgdat->node_id];
731 	lruvec = &mz->lruvec;
732 out:
733 	/*
734 	 * Since a node can be onlined after the mem_cgroup was created,
735 	 * we have to be prepared to initialize lruvec->pgdat here;
736 	 * and if offlined then reonlined, we need to reinitialize it.
737 	 */
738 	if (unlikely(lruvec->pgdat != pgdat))
739 		lruvec->pgdat = pgdat;
740 	return lruvec;
741 }
742 
743 /**
744  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
745  * @page: the page
746  * @pgdat: pgdat of the page
747  *
748  * This function relies on page->mem_cgroup being stable.
749  */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)750 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
751 						struct pglist_data *pgdat)
752 {
753 	struct mem_cgroup *memcg = page_memcg(page);
754 
755 	VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
756 	return mem_cgroup_lruvec(memcg, pgdat);
757 }
758 
lruvec_holds_page_lru_lock(struct page * page,struct lruvec * lruvec)759 static inline bool lruvec_holds_page_lru_lock(struct page *page,
760 					      struct lruvec *lruvec)
761 {
762 	pg_data_t *pgdat = page_pgdat(page);
763 	const struct mem_cgroup *memcg;
764 	struct mem_cgroup_per_node *mz;
765 
766 	if (mem_cgroup_disabled())
767 		return lruvec == &pgdat->__lruvec;
768 
769 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
770 	memcg = page_memcg(page) ? : root_mem_cgroup;
771 
772 	return lruvec->pgdat == pgdat && mz->memcg == memcg;
773 }
774 
775 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
776 
777 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
778 
779 struct lruvec *lock_page_lruvec(struct page *page);
780 struct lruvec *lock_page_lruvec_irq(struct page *page);
781 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
782 						unsigned long *flags);
783 
784 #ifdef CONFIG_DEBUG_VM
785 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
786 #else
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)787 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
788 {
789 }
790 #endif
791 
792 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)793 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
794 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
795 }
796 
obj_cgroup_tryget(struct obj_cgroup * objcg)797 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
798 {
799 	return percpu_ref_tryget(&objcg->refcnt);
800 }
801 
obj_cgroup_get(struct obj_cgroup * objcg)802 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
803 {
804 	percpu_ref_get(&objcg->refcnt);
805 }
806 
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)807 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
808 				       unsigned long nr)
809 {
810 	percpu_ref_get_many(&objcg->refcnt, nr);
811 }
812 
obj_cgroup_put(struct obj_cgroup * objcg)813 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
814 {
815 	percpu_ref_put(&objcg->refcnt);
816 }
817 
mem_cgroup_put(struct mem_cgroup * memcg)818 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
819 {
820 	if (memcg)
821 		css_put(&memcg->css);
822 }
823 
824 #define mem_cgroup_from_counter(counter, member)	\
825 	container_of(counter, struct mem_cgroup, member)
826 
827 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
828 				   struct mem_cgroup *,
829 				   struct mem_cgroup_reclaim_cookie *);
830 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
831 int mem_cgroup_scan_tasks(struct mem_cgroup *,
832 			  int (*)(struct task_struct *, void *), void *);
833 
mem_cgroup_id(struct mem_cgroup * memcg)834 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
835 {
836 	if (mem_cgroup_disabled())
837 		return 0;
838 
839 	return memcg->id.id;
840 }
841 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
842 
mem_cgroup_from_seq(struct seq_file * m)843 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
844 {
845 	return mem_cgroup_from_css(seq_css(m));
846 }
847 
lruvec_memcg(struct lruvec * lruvec)848 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
849 {
850 	struct mem_cgroup_per_node *mz;
851 
852 	if (mem_cgroup_disabled())
853 		return NULL;
854 
855 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
856 	return mz->memcg;
857 }
858 
859 /**
860  * parent_mem_cgroup - find the accounting parent of a memcg
861  * @memcg: memcg whose parent to find
862  *
863  * Returns the parent memcg, or NULL if this is the root or the memory
864  * controller is in legacy no-hierarchy mode.
865  */
parent_mem_cgroup(struct mem_cgroup * memcg)866 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
867 {
868 	if (!memcg->memory.parent)
869 		return NULL;
870 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
871 }
872 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)873 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
874 			      struct mem_cgroup *root)
875 {
876 	if (root == memcg)
877 		return true;
878 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
879 }
880 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)881 static inline bool mm_match_cgroup(struct mm_struct *mm,
882 				   struct mem_cgroup *memcg)
883 {
884 	struct mem_cgroup *task_memcg;
885 	bool match = false;
886 
887 	rcu_read_lock();
888 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
889 	if (task_memcg)
890 		match = mem_cgroup_is_descendant(task_memcg, memcg);
891 	rcu_read_unlock();
892 	return match;
893 }
894 
895 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
896 ino_t page_cgroup_ino(struct page *page);
897 
mem_cgroup_online(struct mem_cgroup * memcg)898 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
899 {
900 	if (mem_cgroup_disabled())
901 		return true;
902 	return !!(memcg->css.flags & CSS_ONLINE);
903 }
904 
905 /*
906  * For memory reclaim.
907  */
908 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
909 
910 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
911 		int zid, int nr_pages);
912 
913 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)914 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
915 		enum lru_list lru, int zone_idx)
916 {
917 	struct mem_cgroup_per_node *mz;
918 
919 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
920 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
921 }
922 
923 void mem_cgroup_handle_over_high(void);
924 
925 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
926 
927 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
928 
929 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
930 				struct task_struct *p);
931 
932 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
933 
mem_cgroup_enter_user_fault(void)934 static inline void mem_cgroup_enter_user_fault(void)
935 {
936 	WARN_ON(current->in_user_fault);
937 	current->in_user_fault = 1;
938 }
939 
mem_cgroup_exit_user_fault(void)940 static inline void mem_cgroup_exit_user_fault(void)
941 {
942 	WARN_ON(!current->in_user_fault);
943 	current->in_user_fault = 0;
944 }
945 
task_in_memcg_oom(struct task_struct * p)946 static inline bool task_in_memcg_oom(struct task_struct *p)
947 {
948 	return p->memcg_in_oom;
949 }
950 
951 bool mem_cgroup_oom_synchronize(bool wait);
952 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
953 					    struct mem_cgroup *oom_domain);
954 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
955 
956 #ifdef CONFIG_MEMCG_SWAP
957 extern bool cgroup_memory_noswap;
958 #endif
959 
960 void lock_page_memcg(struct page *page);
961 void unlock_page_memcg(struct page *page);
962 
963 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
964 
965 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)966 static inline void mod_memcg_state(struct mem_cgroup *memcg,
967 				   int idx, int val)
968 {
969 	unsigned long flags;
970 
971 	local_irq_save(flags);
972 	__mod_memcg_state(memcg, idx, val);
973 	local_irq_restore(flags);
974 }
975 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)976 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
977 					      enum node_stat_item idx)
978 {
979 	struct mem_cgroup_per_node *pn;
980 	long x;
981 
982 	if (mem_cgroup_disabled())
983 		return node_page_state(lruvec_pgdat(lruvec), idx);
984 
985 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986 	x = atomic_long_read(&pn->lruvec_stat[idx]);
987 #ifdef CONFIG_SMP
988 	if (x < 0)
989 		x = 0;
990 #endif
991 	return x;
992 }
993 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)994 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
995 						    enum node_stat_item idx)
996 {
997 	struct mem_cgroup_per_node *pn;
998 	long x = 0;
999 	int cpu;
1000 
1001 	if (mem_cgroup_disabled())
1002 		return node_page_state(lruvec_pgdat(lruvec), idx);
1003 
1004 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1005 	for_each_possible_cpu(cpu)
1006 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
1007 #ifdef CONFIG_SMP
1008 	if (x < 0)
1009 		x = 0;
1010 #endif
1011 	return x;
1012 }
1013 
1014 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1015 			      int val);
1016 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1017 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1018 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1019 					 int val)
1020 {
1021 	unsigned long flags;
1022 
1023 	local_irq_save(flags);
1024 	__mod_lruvec_kmem_state(p, idx, val);
1025 	local_irq_restore(flags);
1026 }
1027 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1028 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1029 					  enum node_stat_item idx, int val)
1030 {
1031 	unsigned long flags;
1032 
1033 	local_irq_save(flags);
1034 	__mod_memcg_lruvec_state(lruvec, idx, val);
1035 	local_irq_restore(flags);
1036 }
1037 
1038 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1039 			  unsigned long count);
1040 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1041 static inline void count_memcg_events(struct mem_cgroup *memcg,
1042 				      enum vm_event_item idx,
1043 				      unsigned long count)
1044 {
1045 	unsigned long flags;
1046 
1047 	local_irq_save(flags);
1048 	__count_memcg_events(memcg, idx, count);
1049 	local_irq_restore(flags);
1050 }
1051 
count_memcg_page_event(struct page * page,enum vm_event_item idx)1052 static inline void count_memcg_page_event(struct page *page,
1053 					  enum vm_event_item idx)
1054 {
1055 	struct mem_cgroup *memcg = page_memcg(page);
1056 
1057 	if (memcg)
1058 		count_memcg_events(memcg, idx, 1);
1059 }
1060 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1061 static inline void count_memcg_event_mm(struct mm_struct *mm,
1062 					enum vm_event_item idx)
1063 {
1064 	struct mem_cgroup *memcg;
1065 
1066 	if (mem_cgroup_disabled())
1067 		return;
1068 
1069 	rcu_read_lock();
1070 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1071 	if (likely(memcg))
1072 		count_memcg_events(memcg, idx, 1);
1073 	rcu_read_unlock();
1074 }
1075 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1076 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1077 				      enum memcg_memory_event event)
1078 {
1079 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1080 			  event == MEMCG_SWAP_FAIL;
1081 
1082 	atomic_long_inc(&memcg->memory_events_local[event]);
1083 	if (!swap_event)
1084 		cgroup_file_notify(&memcg->events_local_file);
1085 
1086 	do {
1087 		atomic_long_inc(&memcg->memory_events[event]);
1088 		if (swap_event)
1089 			cgroup_file_notify(&memcg->swap_events_file);
1090 		else
1091 			cgroup_file_notify(&memcg->events_file);
1092 
1093 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1094 			break;
1095 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1096 			break;
1097 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1098 		 !mem_cgroup_is_root(memcg));
1099 }
1100 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1101 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1102 					 enum memcg_memory_event event)
1103 {
1104 	struct mem_cgroup *memcg;
1105 
1106 	if (mem_cgroup_disabled())
1107 		return;
1108 
1109 	rcu_read_lock();
1110 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1111 	if (likely(memcg))
1112 		memcg_memory_event(memcg, event);
1113 	rcu_read_unlock();
1114 }
1115 
1116 void split_page_memcg(struct page *head, unsigned int nr);
1117 
1118 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1119 						gfp_t gfp_mask,
1120 						unsigned long *total_scanned);
1121 
1122 #else /* CONFIG_MEMCG */
1123 
1124 #define MEM_CGROUP_ID_SHIFT	0
1125 #define MEM_CGROUP_ID_MAX	0
1126 
page_memcg(struct page * page)1127 static inline struct mem_cgroup *page_memcg(struct page *page)
1128 {
1129 	return NULL;
1130 }
1131 
page_memcg_rcu(struct page * page)1132 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1133 {
1134 	WARN_ON_ONCE(!rcu_read_lock_held());
1135 	return NULL;
1136 }
1137 
page_memcg_check(struct page * page)1138 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1139 {
1140 	return NULL;
1141 }
1142 
PageMemcgKmem(struct page * page)1143 static inline bool PageMemcgKmem(struct page *page)
1144 {
1145 	return false;
1146 }
1147 
mem_cgroup_is_root(struct mem_cgroup * memcg)1148 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1149 {
1150 	return true;
1151 }
1152 
mem_cgroup_disabled(void)1153 static inline bool mem_cgroup_disabled(void)
1154 {
1155 	return true;
1156 }
1157 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1158 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1159 				      enum memcg_memory_event event)
1160 {
1161 }
1162 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1163 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1164 					 enum memcg_memory_event event)
1165 {
1166 }
1167 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,bool in_low_reclaim)1168 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1169 						  struct mem_cgroup *memcg,
1170 						  bool in_low_reclaim)
1171 {
1172 	return 0;
1173 }
1174 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1175 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1176 						   struct mem_cgroup *memcg)
1177 {
1178 }
1179 
mem_cgroup_below_low(struct mem_cgroup * memcg)1180 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1181 {
1182 	return false;
1183 }
1184 
mem_cgroup_below_min(struct mem_cgroup * memcg)1185 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1186 {
1187 	return false;
1188 }
1189 
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)1190 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1191 				    gfp_t gfp_mask)
1192 {
1193 	return 0;
1194 }
1195 
mem_cgroup_swapin_charge_page(struct page * page,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1196 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1197 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1198 {
1199 	return 0;
1200 }
1201 
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1202 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1203 {
1204 }
1205 
mem_cgroup_uncharge(struct page * page)1206 static inline void mem_cgroup_uncharge(struct page *page)
1207 {
1208 }
1209 
mem_cgroup_uncharge_list(struct list_head * page_list)1210 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1211 {
1212 }
1213 
mem_cgroup_migrate(struct page * old,struct page * new)1214 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1215 {
1216 }
1217 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1218 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1219 					       struct pglist_data *pgdat)
1220 {
1221 	return &pgdat->__lruvec;
1222 }
1223 
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1224 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1225 						    struct pglist_data *pgdat)
1226 {
1227 	return &pgdat->__lruvec;
1228 }
1229 
lruvec_holds_page_lru_lock(struct page * page,struct lruvec * lruvec)1230 static inline bool lruvec_holds_page_lru_lock(struct page *page,
1231 					      struct lruvec *lruvec)
1232 {
1233 	pg_data_t *pgdat = page_pgdat(page);
1234 
1235 	return lruvec == &pgdat->__lruvec;
1236 }
1237 
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)1238 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1239 {
1240 }
1241 
parent_mem_cgroup(struct mem_cgroup * memcg)1242 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1243 {
1244 	return NULL;
1245 }
1246 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1247 static inline bool mm_match_cgroup(struct mm_struct *mm,
1248 		struct mem_cgroup *memcg)
1249 {
1250 	return true;
1251 }
1252 
get_mem_cgroup_from_mm(struct mm_struct * mm)1253 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1254 {
1255 	return NULL;
1256 }
1257 
mem_cgroup_put(struct mem_cgroup * memcg)1258 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1259 {
1260 }
1261 
lock_page_lruvec(struct page * page)1262 static inline struct lruvec *lock_page_lruvec(struct page *page)
1263 {
1264 	struct pglist_data *pgdat = page_pgdat(page);
1265 
1266 	spin_lock(&pgdat->__lruvec.lru_lock);
1267 	return &pgdat->__lruvec;
1268 }
1269 
lock_page_lruvec_irq(struct page * page)1270 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1271 {
1272 	struct pglist_data *pgdat = page_pgdat(page);
1273 
1274 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1275 	return &pgdat->__lruvec;
1276 }
1277 
lock_page_lruvec_irqsave(struct page * page,unsigned long * flagsp)1278 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1279 		unsigned long *flagsp)
1280 {
1281 	struct pglist_data *pgdat = page_pgdat(page);
1282 
1283 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1284 	return &pgdat->__lruvec;
1285 }
1286 
1287 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1288 mem_cgroup_iter(struct mem_cgroup *root,
1289 		struct mem_cgroup *prev,
1290 		struct mem_cgroup_reclaim_cookie *reclaim)
1291 {
1292 	return NULL;
1293 }
1294 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1295 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1296 					 struct mem_cgroup *prev)
1297 {
1298 }
1299 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1300 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1301 		int (*fn)(struct task_struct *, void *), void *arg)
1302 {
1303 	return 0;
1304 }
1305 
mem_cgroup_id(struct mem_cgroup * memcg)1306 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1307 {
1308 	return 0;
1309 }
1310 
mem_cgroup_from_id(unsigned short id)1311 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1312 {
1313 	WARN_ON_ONCE(id);
1314 	/* XXX: This should always return root_mem_cgroup */
1315 	return NULL;
1316 }
1317 
mem_cgroup_from_seq(struct seq_file * m)1318 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1319 {
1320 	return NULL;
1321 }
1322 
lruvec_memcg(struct lruvec * lruvec)1323 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1324 {
1325 	return NULL;
1326 }
1327 
mem_cgroup_online(struct mem_cgroup * memcg)1328 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1329 {
1330 	return true;
1331 }
1332 
1333 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1334 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1335 		enum lru_list lru, int zone_idx)
1336 {
1337 	return 0;
1338 }
1339 
mem_cgroup_get_max(struct mem_cgroup * memcg)1340 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1341 {
1342 	return 0;
1343 }
1344 
mem_cgroup_size(struct mem_cgroup * memcg)1345 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1346 {
1347 	return 0;
1348 }
1349 
1350 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1351 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1352 {
1353 }
1354 
1355 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1356 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1357 {
1358 }
1359 
lock_page_memcg(struct page * page)1360 static inline void lock_page_memcg(struct page *page)
1361 {
1362 }
1363 
unlock_page_memcg(struct page * page)1364 static inline void unlock_page_memcg(struct page *page)
1365 {
1366 }
1367 
mem_cgroup_handle_over_high(void)1368 static inline void mem_cgroup_handle_over_high(void)
1369 {
1370 }
1371 
mem_cgroup_enter_user_fault(void)1372 static inline void mem_cgroup_enter_user_fault(void)
1373 {
1374 }
1375 
mem_cgroup_exit_user_fault(void)1376 static inline void mem_cgroup_exit_user_fault(void)
1377 {
1378 }
1379 
task_in_memcg_oom(struct task_struct * p)1380 static inline bool task_in_memcg_oom(struct task_struct *p)
1381 {
1382 	return false;
1383 }
1384 
mem_cgroup_oom_synchronize(bool wait)1385 static inline bool mem_cgroup_oom_synchronize(bool wait)
1386 {
1387 	return false;
1388 }
1389 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1390 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1391 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1392 {
1393 	return NULL;
1394 }
1395 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1396 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1397 {
1398 }
1399 
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1400 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1401 				     int idx,
1402 				     int nr)
1403 {
1404 }
1405 
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1406 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1407 				   int idx,
1408 				   int nr)
1409 {
1410 }
1411 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1412 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1413 					      enum node_stat_item idx)
1414 {
1415 	return node_page_state(lruvec_pgdat(lruvec), idx);
1416 }
1417 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1418 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1419 						    enum node_stat_item idx)
1420 {
1421 	return node_page_state(lruvec_pgdat(lruvec), idx);
1422 }
1423 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1424 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1425 					    enum node_stat_item idx, int val)
1426 {
1427 }
1428 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1429 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1430 					   int val)
1431 {
1432 	struct page *page = virt_to_head_page(p);
1433 
1434 	__mod_node_page_state(page_pgdat(page), idx, val);
1435 }
1436 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1437 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1438 					 int val)
1439 {
1440 	struct page *page = virt_to_head_page(p);
1441 
1442 	mod_node_page_state(page_pgdat(page), idx, val);
1443 }
1444 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1445 static inline void count_memcg_events(struct mem_cgroup *memcg,
1446 				      enum vm_event_item idx,
1447 				      unsigned long count)
1448 {
1449 }
1450 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1451 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1452 					enum vm_event_item idx,
1453 					unsigned long count)
1454 {
1455 }
1456 
count_memcg_page_event(struct page * page,int idx)1457 static inline void count_memcg_page_event(struct page *page,
1458 					  int idx)
1459 {
1460 }
1461 
1462 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1463 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1464 {
1465 }
1466 
split_page_memcg(struct page * head,unsigned int nr)1467 static inline void split_page_memcg(struct page *head, unsigned int nr)
1468 {
1469 }
1470 
1471 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1472 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1473 					    gfp_t gfp_mask,
1474 					    unsigned long *total_scanned)
1475 {
1476 	return 0;
1477 }
1478 #endif /* CONFIG_MEMCG */
1479 
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1480 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1481 {
1482 	__mod_lruvec_kmem_state(p, idx, 1);
1483 }
1484 
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1485 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1486 {
1487 	__mod_lruvec_kmem_state(p, idx, -1);
1488 }
1489 
parent_lruvec(struct lruvec * lruvec)1490 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1491 {
1492 	struct mem_cgroup *memcg;
1493 
1494 	memcg = lruvec_memcg(lruvec);
1495 	if (!memcg)
1496 		return NULL;
1497 	memcg = parent_mem_cgroup(memcg);
1498 	if (!memcg)
1499 		return NULL;
1500 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1501 }
1502 
unlock_page_lruvec(struct lruvec * lruvec)1503 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1504 {
1505 	spin_unlock(&lruvec->lru_lock);
1506 }
1507 
unlock_page_lruvec_irq(struct lruvec * lruvec)1508 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1509 {
1510 	spin_unlock_irq(&lruvec->lru_lock);
1511 }
1512 
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1513 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1514 		unsigned long flags)
1515 {
1516 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1517 }
1518 
1519 /* Don't lock again iff page's lruvec locked */
relock_page_lruvec_irq(struct page * page,struct lruvec * locked_lruvec)1520 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1521 		struct lruvec *locked_lruvec)
1522 {
1523 	if (locked_lruvec) {
1524 		if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1525 			return locked_lruvec;
1526 
1527 		unlock_page_lruvec_irq(locked_lruvec);
1528 	}
1529 
1530 	return lock_page_lruvec_irq(page);
1531 }
1532 
1533 /* Don't lock again iff page's lruvec locked */
relock_page_lruvec_irqsave(struct page * page,struct lruvec * locked_lruvec,unsigned long * flags)1534 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1535 		struct lruvec *locked_lruvec, unsigned long *flags)
1536 {
1537 	if (locked_lruvec) {
1538 		if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1539 			return locked_lruvec;
1540 
1541 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1542 	}
1543 
1544 	return lock_page_lruvec_irqsave(page, flags);
1545 }
1546 
1547 #ifdef CONFIG_CGROUP_WRITEBACK
1548 
1549 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1550 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1551 			 unsigned long *pheadroom, unsigned long *pdirty,
1552 			 unsigned long *pwriteback);
1553 
1554 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1555 					     struct bdi_writeback *wb);
1556 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1557 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1558 						  struct bdi_writeback *wb)
1559 {
1560 	if (mem_cgroup_disabled())
1561 		return;
1562 
1563 	if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1564 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1565 }
1566 
1567 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1568 
1569 #else	/* CONFIG_CGROUP_WRITEBACK */
1570 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1571 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1572 {
1573 	return NULL;
1574 }
1575 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1576 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1577 				       unsigned long *pfilepages,
1578 				       unsigned long *pheadroom,
1579 				       unsigned long *pdirty,
1580 				       unsigned long *pwriteback)
1581 {
1582 }
1583 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1584 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1585 						  struct bdi_writeback *wb)
1586 {
1587 }
1588 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1589 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1590 {
1591 }
1592 
1593 #endif	/* CONFIG_CGROUP_WRITEBACK */
1594 
1595 struct sock;
1596 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1597 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1598 #ifdef CONFIG_MEMCG
1599 extern struct static_key_false memcg_sockets_enabled_key;
1600 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1601 void mem_cgroup_sk_alloc(struct sock *sk);
1602 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1603 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1604 {
1605 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1606 		return true;
1607 	do {
1608 		if (time_before(jiffies, memcg->socket_pressure))
1609 			return true;
1610 	} while ((memcg = parent_mem_cgroup(memcg)));
1611 	return false;
1612 }
1613 
1614 int alloc_shrinker_info(struct mem_cgroup *memcg);
1615 void free_shrinker_info(struct mem_cgroup *memcg);
1616 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1617 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1618 #else
1619 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1620 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1621 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1622 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1623 {
1624 	return false;
1625 }
1626 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1627 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1628 				    int nid, int shrinker_id)
1629 {
1630 }
1631 #endif
1632 
1633 #ifdef CONFIG_MEMCG_KMEM
1634 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1635 void __memcg_kmem_uncharge_page(struct page *page, int order);
1636 
1637 struct obj_cgroup *get_obj_cgroup_from_current(void);
1638 
1639 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1640 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1641 
1642 extern struct static_key_false memcg_kmem_enabled_key;
1643 
1644 extern int memcg_nr_cache_ids;
1645 void memcg_get_cache_ids(void);
1646 void memcg_put_cache_ids(void);
1647 
1648 /*
1649  * Helper macro to loop through all memcg-specific caches. Callers must still
1650  * check if the cache is valid (it is either valid or NULL).
1651  * the slab_mutex must be held when looping through those caches
1652  */
1653 #define for_each_memcg_cache_index(_idx)	\
1654 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1655 
memcg_kmem_enabled(void)1656 static inline bool memcg_kmem_enabled(void)
1657 {
1658 	return static_branch_likely(&memcg_kmem_enabled_key);
1659 }
1660 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1661 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1662 					 int order)
1663 {
1664 	if (memcg_kmem_enabled())
1665 		return __memcg_kmem_charge_page(page, gfp, order);
1666 	return 0;
1667 }
1668 
memcg_kmem_uncharge_page(struct page * page,int order)1669 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1670 {
1671 	if (memcg_kmem_enabled())
1672 		__memcg_kmem_uncharge_page(page, order);
1673 }
1674 
1675 /*
1676  * A helper for accessing memcg's kmem_id, used for getting
1677  * corresponding LRU lists.
1678  */
memcg_cache_id(struct mem_cgroup * memcg)1679 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1680 {
1681 	return memcg ? memcg->kmemcg_id : -1;
1682 }
1683 
1684 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1685 
1686 #else
1687 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1688 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1689 					 int order)
1690 {
1691 	return 0;
1692 }
1693 
memcg_kmem_uncharge_page(struct page * page,int order)1694 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1695 {
1696 }
1697 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1698 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1699 					   int order)
1700 {
1701 	return 0;
1702 }
1703 
__memcg_kmem_uncharge_page(struct page * page,int order)1704 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1705 {
1706 }
1707 
1708 #define for_each_memcg_cache_index(_idx)	\
1709 	for (; NULL; )
1710 
memcg_kmem_enabled(void)1711 static inline bool memcg_kmem_enabled(void)
1712 {
1713 	return false;
1714 }
1715 
memcg_cache_id(struct mem_cgroup * memcg)1716 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1717 {
1718 	return -1;
1719 }
1720 
memcg_get_cache_ids(void)1721 static inline void memcg_get_cache_ids(void)
1722 {
1723 }
1724 
memcg_put_cache_ids(void)1725 static inline void memcg_put_cache_ids(void)
1726 {
1727 }
1728 
mem_cgroup_from_obj(void * p)1729 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1730 {
1731        return NULL;
1732 }
1733 
1734 #endif /* CONFIG_MEMCG_KMEM */
1735 
1736 #endif /* _LINUX_MEMCONTROL_H */
1737