1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  * To Fix:
100  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101  *		and could be made very efficient with the addition of some virtual memory hacks to permit
102  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103  *		Output fragmentation wants updating along with the buffer management to use a single
104  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106  *		fragmentation anyway.
107  */
108 
109 #define pr_fmt(fmt) "IPv4: " fmt
110 
111 #include <linux/module.h>
112 #include <linux/types.h>
113 #include <linux/kernel.h>
114 #include <linux/string.h>
115 #include <linux/errno.h>
116 #include <linux/slab.h>
117 
118 #include <linux/net.h>
119 #include <linux/socket.h>
120 #include <linux/sockios.h>
121 #include <linux/in.h>
122 #include <linux/inet.h>
123 #include <linux/inetdevice.h>
124 #include <linux/netdevice.h>
125 #include <linux/etherdevice.h>
126 #include <linux/indirect_call_wrapper.h>
127 
128 #include <net/snmp.h>
129 #include <net/ip.h>
130 #include <net/protocol.h>
131 #include <net/route.h>
132 #include <linux/skbuff.h>
133 #include <net/sock.h>
134 #include <net/arp.h>
135 #include <net/icmp.h>
136 #include <net/raw.h>
137 #include <net/checksum.h>
138 #include <net/inet_ecn.h>
139 #include <linux/netfilter_ipv4.h>
140 #include <net/xfrm.h>
141 #include <linux/mroute.h>
142 #include <linux/netlink.h>
143 #include <net/dst_metadata.h>
144 
145 /*
146  *	Process Router Attention IP option (RFC 2113)
147  */
ip_call_ra_chain(struct sk_buff * skb)148 bool ip_call_ra_chain(struct sk_buff *skb)
149 {
150 	struct ip_ra_chain *ra;
151 	u8 protocol = ip_hdr(skb)->protocol;
152 	struct sock *last = NULL;
153 	struct net_device *dev = skb->dev;
154 	struct net *net = dev_net(dev);
155 
156 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 		struct sock *sk = ra->sk;
158 
159 		/* If socket is bound to an interface, only report
160 		 * the packet if it came  from that interface.
161 		 */
162 		if (sk && inet_sk(sk)->inet_num == protocol &&
163 		    (!sk->sk_bound_dev_if ||
164 		     sk->sk_bound_dev_if == dev->ifindex)) {
165 			if (ip_is_fragment(ip_hdr(skb))) {
166 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 					return true;
168 			}
169 			if (last) {
170 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 				if (skb2)
172 					raw_rcv(last, skb2);
173 			}
174 			last = sk;
175 		}
176 	}
177 
178 	if (last) {
179 		raw_rcv(last, skb);
180 		return true;
181 	}
182 	return false;
183 }
184 
185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
ip_protocol_deliver_rcu(struct net * net,struct sk_buff * skb,int protocol)187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188 {
189 	const struct net_protocol *ipprot;
190 	int raw, ret;
191 
192 resubmit:
193 	raw = raw_local_deliver(skb, protocol);
194 
195 	ipprot = rcu_dereference(inet_protos[protocol]);
196 	if (ipprot) {
197 		if (!ipprot->no_policy) {
198 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 				kfree_skb(skb);
200 				return;
201 			}
202 			nf_reset_ct(skb);
203 		}
204 		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
205 				      skb);
206 		if (ret < 0) {
207 			protocol = -ret;
208 			goto resubmit;
209 		}
210 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
211 	} else {
212 		if (!raw) {
213 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
214 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
215 				icmp_send(skb, ICMP_DEST_UNREACH,
216 					  ICMP_PROT_UNREACH, 0);
217 			}
218 			kfree_skb(skb);
219 		} else {
220 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
221 			consume_skb(skb);
222 		}
223 	}
224 }
225 
ip_local_deliver_finish(struct net * net,struct sock * sk,struct sk_buff * skb)226 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
227 {
228 	__skb_pull(skb, skb_network_header_len(skb));
229 
230 	rcu_read_lock();
231 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
232 	rcu_read_unlock();
233 
234 	return 0;
235 }
236 
237 /*
238  * 	Deliver IP Packets to the higher protocol layers.
239  */
ip_local_deliver(struct sk_buff * skb)240 int ip_local_deliver(struct sk_buff *skb)
241 {
242 	/*
243 	 *	Reassemble IP fragments.
244 	 */
245 	struct net *net = dev_net(skb->dev);
246 
247 	if (ip_is_fragment(ip_hdr(skb))) {
248 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
249 			return 0;
250 	}
251 
252 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
253 		       net, NULL, skb, skb->dev, NULL,
254 		       ip_local_deliver_finish);
255 }
256 EXPORT_SYMBOL(ip_local_deliver);
257 
ip_rcv_options(struct sk_buff * skb,struct net_device * dev)258 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
259 {
260 	struct ip_options *opt;
261 	const struct iphdr *iph;
262 
263 	/* It looks as overkill, because not all
264 	   IP options require packet mangling.
265 	   But it is the easiest for now, especially taking
266 	   into account that combination of IP options
267 	   and running sniffer is extremely rare condition.
268 					      --ANK (980813)
269 	*/
270 	if (skb_cow(skb, skb_headroom(skb))) {
271 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
272 		goto drop;
273 	}
274 
275 	iph = ip_hdr(skb);
276 	opt = &(IPCB(skb)->opt);
277 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
278 
279 	if (ip_options_compile(dev_net(dev), opt, skb)) {
280 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
281 		goto drop;
282 	}
283 
284 	if (unlikely(opt->srr)) {
285 		struct in_device *in_dev = __in_dev_get_rcu(dev);
286 
287 		if (in_dev) {
288 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
289 				if (IN_DEV_LOG_MARTIANS(in_dev))
290 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
291 							     &iph->saddr,
292 							     &iph->daddr);
293 				goto drop;
294 			}
295 		}
296 
297 		if (ip_options_rcv_srr(skb, dev))
298 			goto drop;
299 	}
300 
301 	return false;
302 drop:
303 	return true;
304 }
305 
ip_can_use_hint(const struct sk_buff * skb,const struct iphdr * iph,const struct sk_buff * hint)306 static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
307 			    const struct sk_buff *hint)
308 {
309 	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
310 	       ip_hdr(hint)->tos == iph->tos;
311 }
312 
313 INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
314 INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
ip_rcv_finish_core(struct net * net,struct sock * sk,struct sk_buff * skb,struct net_device * dev,const struct sk_buff * hint)315 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
316 			      struct sk_buff *skb, struct net_device *dev,
317 			      const struct sk_buff *hint)
318 {
319 	const struct iphdr *iph = ip_hdr(skb);
320 	int (*edemux)(struct sk_buff *skb);
321 	struct rtable *rt;
322 	int err;
323 
324 	if (ip_can_use_hint(skb, iph, hint)) {
325 		err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
326 					dev, hint);
327 		if (unlikely(err))
328 			goto drop_error;
329 	}
330 
331 	if (net->ipv4.sysctl_ip_early_demux &&
332 	    !skb_dst(skb) &&
333 	    !skb->sk &&
334 	    !ip_is_fragment(iph)) {
335 		const struct net_protocol *ipprot;
336 		int protocol = iph->protocol;
337 
338 		ipprot = rcu_dereference(inet_protos[protocol]);
339 		if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
340 			err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
341 					      udp_v4_early_demux, skb);
342 			if (unlikely(err))
343 				goto drop_error;
344 			/* must reload iph, skb->head might have changed */
345 			iph = ip_hdr(skb);
346 		}
347 	}
348 
349 	/*
350 	 *	Initialise the virtual path cache for the packet. It describes
351 	 *	how the packet travels inside Linux networking.
352 	 */
353 	if (!skb_valid_dst(skb)) {
354 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
355 					   iph->tos, dev);
356 		if (unlikely(err))
357 			goto drop_error;
358 	}
359 
360 #ifdef CONFIG_IP_ROUTE_CLASSID
361 	if (unlikely(skb_dst(skb)->tclassid)) {
362 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
363 		u32 idx = skb_dst(skb)->tclassid;
364 		st[idx&0xFF].o_packets++;
365 		st[idx&0xFF].o_bytes += skb->len;
366 		st[(idx>>16)&0xFF].i_packets++;
367 		st[(idx>>16)&0xFF].i_bytes += skb->len;
368 	}
369 #endif
370 
371 	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
372 		goto drop;
373 
374 	rt = skb_rtable(skb);
375 	if (rt->rt_type == RTN_MULTICAST) {
376 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
377 	} else if (rt->rt_type == RTN_BROADCAST) {
378 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
379 	} else if (skb->pkt_type == PACKET_BROADCAST ||
380 		   skb->pkt_type == PACKET_MULTICAST) {
381 		struct in_device *in_dev = __in_dev_get_rcu(dev);
382 
383 		/* RFC 1122 3.3.6:
384 		 *
385 		 *   When a host sends a datagram to a link-layer broadcast
386 		 *   address, the IP destination address MUST be a legal IP
387 		 *   broadcast or IP multicast address.
388 		 *
389 		 *   A host SHOULD silently discard a datagram that is received
390 		 *   via a link-layer broadcast (see Section 2.4) but does not
391 		 *   specify an IP multicast or broadcast destination address.
392 		 *
393 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
394 		 * in a way a form of multicast and the most common use case for
395 		 * this is 802.11 protecting against cross-station spoofing (the
396 		 * so-called "hole-196" attack) so do it for both.
397 		 */
398 		if (in_dev &&
399 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
400 			goto drop;
401 	}
402 
403 	return NET_RX_SUCCESS;
404 
405 drop:
406 	kfree_skb(skb);
407 	return NET_RX_DROP;
408 
409 drop_error:
410 	if (err == -EXDEV)
411 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
412 	goto drop;
413 }
414 
ip_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)415 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
416 {
417 	struct net_device *dev = skb->dev;
418 	int ret;
419 
420 	/* if ingress device is enslaved to an L3 master device pass the
421 	 * skb to its handler for processing
422 	 */
423 	skb = l3mdev_ip_rcv(skb);
424 	if (!skb)
425 		return NET_RX_SUCCESS;
426 
427 	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
428 	if (ret != NET_RX_DROP)
429 		ret = dst_input(skb);
430 	return ret;
431 }
432 
433 /*
434  * 	Main IP Receive routine.
435  */
ip_rcv_core(struct sk_buff * skb,struct net * net)436 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
437 {
438 	const struct iphdr *iph;
439 	u32 len;
440 
441 	/* When the interface is in promisc. mode, drop all the crap
442 	 * that it receives, do not try to analyse it.
443 	 */
444 	if (skb->pkt_type == PACKET_OTHERHOST)
445 		goto drop;
446 
447 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
448 
449 	skb = skb_share_check(skb, GFP_ATOMIC);
450 	if (!skb) {
451 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
452 		goto out;
453 	}
454 
455 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
456 		goto inhdr_error;
457 
458 	iph = ip_hdr(skb);
459 
460 	/*
461 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
462 	 *
463 	 *	Is the datagram acceptable?
464 	 *
465 	 *	1.	Length at least the size of an ip header
466 	 *	2.	Version of 4
467 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
468 	 *	4.	Doesn't have a bogus length
469 	 */
470 
471 	if (iph->ihl < 5 || iph->version != 4)
472 		goto inhdr_error;
473 
474 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
475 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
476 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
477 	__IP_ADD_STATS(net,
478 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
479 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
480 
481 	if (!pskb_may_pull(skb, iph->ihl*4))
482 		goto inhdr_error;
483 
484 	iph = ip_hdr(skb);
485 
486 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
487 		goto csum_error;
488 
489 	len = ntohs(iph->tot_len);
490 	if (skb->len < len) {
491 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
492 		goto drop;
493 	} else if (len < (iph->ihl*4))
494 		goto inhdr_error;
495 
496 	/* Our transport medium may have padded the buffer out. Now we know it
497 	 * is IP we can trim to the true length of the frame.
498 	 * Note this now means skb->len holds ntohs(iph->tot_len).
499 	 */
500 	if (pskb_trim_rcsum(skb, len)) {
501 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
502 		goto drop;
503 	}
504 
505 	iph = ip_hdr(skb);
506 	skb->transport_header = skb->network_header + iph->ihl*4;
507 
508 	/* Remove any debris in the socket control block */
509 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
510 	IPCB(skb)->iif = skb->skb_iif;
511 
512 	/* Must drop socket now because of tproxy. */
513 	if (!skb_sk_is_prefetched(skb))
514 		skb_orphan(skb);
515 
516 	return skb;
517 
518 csum_error:
519 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
520 inhdr_error:
521 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
522 drop:
523 	kfree_skb(skb);
524 out:
525 	return NULL;
526 }
527 
528 /*
529  * IP receive entry point
530  */
ip_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)531 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
532 	   struct net_device *orig_dev)
533 {
534 	struct net *net = dev_net(dev);
535 
536 	skb = ip_rcv_core(skb, net);
537 	if (skb == NULL)
538 		return NET_RX_DROP;
539 
540 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
541 		       net, NULL, skb, dev, NULL,
542 		       ip_rcv_finish);
543 }
544 
ip_sublist_rcv_finish(struct list_head * head)545 static void ip_sublist_rcv_finish(struct list_head *head)
546 {
547 	struct sk_buff *skb, *next;
548 
549 	list_for_each_entry_safe(skb, next, head, list) {
550 		skb_list_del_init(skb);
551 		dst_input(skb);
552 	}
553 }
554 
ip_extract_route_hint(const struct net * net,struct sk_buff * skb,int rt_type)555 static struct sk_buff *ip_extract_route_hint(const struct net *net,
556 					     struct sk_buff *skb, int rt_type)
557 {
558 	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST)
559 		return NULL;
560 
561 	return skb;
562 }
563 
ip_list_rcv_finish(struct net * net,struct sock * sk,struct list_head * head)564 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
565 			       struct list_head *head)
566 {
567 	struct sk_buff *skb, *next, *hint = NULL;
568 	struct dst_entry *curr_dst = NULL;
569 	struct list_head sublist;
570 
571 	INIT_LIST_HEAD(&sublist);
572 	list_for_each_entry_safe(skb, next, head, list) {
573 		struct net_device *dev = skb->dev;
574 		struct dst_entry *dst;
575 
576 		skb_list_del_init(skb);
577 		/* if ingress device is enslaved to an L3 master device pass the
578 		 * skb to its handler for processing
579 		 */
580 		skb = l3mdev_ip_rcv(skb);
581 		if (!skb)
582 			continue;
583 		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
584 			continue;
585 
586 		dst = skb_dst(skb);
587 		if (curr_dst != dst) {
588 			hint = ip_extract_route_hint(net, skb,
589 					       ((struct rtable *)dst)->rt_type);
590 
591 			/* dispatch old sublist */
592 			if (!list_empty(&sublist))
593 				ip_sublist_rcv_finish(&sublist);
594 			/* start new sublist */
595 			INIT_LIST_HEAD(&sublist);
596 			curr_dst = dst;
597 		}
598 		list_add_tail(&skb->list, &sublist);
599 	}
600 	/* dispatch final sublist */
601 	ip_sublist_rcv_finish(&sublist);
602 }
603 
ip_sublist_rcv(struct list_head * head,struct net_device * dev,struct net * net)604 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
605 			   struct net *net)
606 {
607 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
608 		     head, dev, NULL, ip_rcv_finish);
609 	ip_list_rcv_finish(net, NULL, head);
610 }
611 
612 /* Receive a list of IP packets */
ip_list_rcv(struct list_head * head,struct packet_type * pt,struct net_device * orig_dev)613 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
614 		 struct net_device *orig_dev)
615 {
616 	struct net_device *curr_dev = NULL;
617 	struct net *curr_net = NULL;
618 	struct sk_buff *skb, *next;
619 	struct list_head sublist;
620 
621 	INIT_LIST_HEAD(&sublist);
622 	list_for_each_entry_safe(skb, next, head, list) {
623 		struct net_device *dev = skb->dev;
624 		struct net *net = dev_net(dev);
625 
626 		skb_list_del_init(skb);
627 		skb = ip_rcv_core(skb, net);
628 		if (skb == NULL)
629 			continue;
630 
631 		if (curr_dev != dev || curr_net != net) {
632 			/* dispatch old sublist */
633 			if (!list_empty(&sublist))
634 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
635 			/* start new sublist */
636 			INIT_LIST_HEAD(&sublist);
637 			curr_dev = dev;
638 			curr_net = net;
639 		}
640 		list_add_tail(&skb->list, &sublist);
641 	}
642 	/* dispatch final sublist */
643 	if (!list_empty(&sublist))
644 		ip_sublist_rcv(&sublist, curr_dev, curr_net);
645 }
646