1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for DBRI sound chip found on Sparcs.
4  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5  *
6  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7  *
8  * Based entirely upon drivers/sbus/audio/dbri.c which is:
9  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
10  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11  *
12  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13  * on Sun SPARCStation 10, 20, LX and Voyager models.
14  *
15  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16  *   data time multiplexer with ISDN support (aka T7259)
17  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19  *   Documentation:
20  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21  *     Sparc Technology Business (courtesy of Sun Support)
22  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23  *     available from the Lucent (formerly AT&T microelectronics) home
24  *     page.
25  *   - https://www.freesoft.org/Linux/DBRI/
26  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
28  *   Documentation: from the Crystal Semiconductor home page.
29  *
30  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31  * memory and a serial device (long pipes, no. 0-15) or between two serial
32  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33  * device (short pipes).
34  * A timeslot defines the bit-offset and no. of bits read from a serial device.
35  * The timeslots are linked to 6 circular lists, one for each direction for
36  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37  * (the second one is a monitor/tee pipe, valid only for serial input).
38  *
39  * The mmcodec is connected via the CHI bus and needs the data & some
40  * parameters (volume, output selection) time multiplexed in 8 byte
41  * chunks. It also has a control mode, which serves for audio format setting.
42  *
43  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44  * the same CHI bus, so I thought perhaps it is possible to use the on-board
45  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46  * audio devices. But the SUN HW group decided against it, at least on my
47  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
48  * connected.
49  *
50  * I've tried to stick to the following function naming conventions:
51  * snd_*	ALSA stuff
52  * cs4215_*	CS4215 codec specific stuff
53  * dbri_*	DBRI high-level stuff
54  * other	DBRI low-level stuff
55  */
56 
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
59 #include <linux/irq.h>
60 #include <linux/io.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/gfp.h>
63 
64 #include <sound/core.h>
65 #include <sound/pcm.h>
66 #include <sound/pcm_params.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/initval.h>
70 
71 #include <linux/of.h>
72 #include <linux/of_device.h>
73 #include <linux/atomic.h>
74 #include <linux/module.h>
75 
76 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
77 MODULE_DESCRIPTION("Sun DBRI");
78 MODULE_LICENSE("GPL");
79 
80 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
81 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
82 /* Enable this card */
83 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84 
85 module_param_array(index, int, NULL, 0444);
86 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87 module_param_array(id, charp, NULL, 0444);
88 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89 module_param_array(enable, bool, NULL, 0444);
90 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91 
92 #undef DBRI_DEBUG
93 
94 #define D_INT	(1<<0)
95 #define D_GEN	(1<<1)
96 #define D_CMD	(1<<2)
97 #define D_MM	(1<<3)
98 #define D_USR	(1<<4)
99 #define D_DESC	(1<<5)
100 
101 static int dbri_debug;
102 module_param(dbri_debug, int, 0644);
103 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104 
105 #ifdef DBRI_DEBUG
106 static const char * const cmds[] = {
107 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109 };
110 
111 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112 
113 #else
114 #define dprintk(a, x...) do { } while (0)
115 
116 #endif				/* DBRI_DEBUG */
117 
118 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
119 				    (intr << 27) |	\
120 				    value)
121 
122 /***************************************************************************
123 	CS4215 specific definitions and structures
124 ****************************************************************************/
125 
126 struct cs4215 {
127 	__u8 data[4];		/* Data mode: Time slots 5-8 */
128 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
129 	__u8 onboard;
130 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
131 	volatile __u32 status;
132 	volatile __u32 version;
133 	__u8 precision;		/* In bits, either 8 or 16 */
134 	__u8 channels;		/* 1 or 2 */
135 };
136 
137 /*
138  * Control mode first
139  */
140 
141 /* Time Slot 1, Status register */
142 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
143 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
144 				/* 0: line: 2.8V, speaker 8V */
145 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
146 #define CS4215_RSRVD_1  (1<<5)
147 
148 /* Time Slot 2, Data Format Register */
149 #define CS4215_DFR_LINEAR16	0
150 #define CS4215_DFR_ULAW		1
151 #define CS4215_DFR_ALAW		2
152 #define CS4215_DFR_LINEAR8	3
153 #define CS4215_DFR_STEREO	(1<<2)
154 static struct {
155 	unsigned short freq;
156 	unsigned char xtal;
157 	unsigned char csval;
158 } CS4215_FREQ[] = {
159 	{  8000, (1 << 4), (0 << 3) },
160 	{ 16000, (1 << 4), (1 << 3) },
161 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
162 	{ 32000, (1 << 4), (3 << 3) },
163      /* {    NA, (1 << 4), (4 << 3) }, */
164      /* {    NA, (1 << 4), (5 << 3) }, */
165 	{ 48000, (1 << 4), (6 << 3) },
166 	{  9600, (1 << 4), (7 << 3) },
167 	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
168 	{ 11025, (2 << 4), (1 << 3) },
169 	{ 18900, (2 << 4), (2 << 3) },
170 	{ 22050, (2 << 4), (3 << 3) },
171 	{ 37800, (2 << 4), (4 << 3) },
172 	{ 44100, (2 << 4), (5 << 3) },
173 	{ 33075, (2 << 4), (6 << 3) },
174 	{  6615, (2 << 4), (7 << 3) },
175 	{ 0, 0, 0}
176 };
177 
178 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
179 
180 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
181 
182 /* Time Slot 3, Serial Port Control register */
183 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
184 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
185 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
186 #define CS4215_BSEL_128	(1<<2)
187 #define CS4215_BSEL_256	(2<<2)
188 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
189 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
190 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
191 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
192 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
193 
194 /* Time Slot 4, Test Register */
195 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
197 
198 /* Time Slot 5, Parallel Port Register */
199 /* Read only here and the same as the in data mode */
200 
201 /* Time Slot 6, Reserved  */
202 
203 /* Time Slot 7, Version Register  */
204 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
205 
206 /* Time Slot 8, Reserved  */
207 
208 /*
209  * Data mode
210  */
211 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
212 
213 /* Time Slot 5, Output Setting  */
214 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
215 #define CS4215_LE	(1<<6)	/* Line Out Enable */
216 #define CS4215_HE	(1<<7)	/* Headphone Enable */
217 
218 /* Time Slot 6, Output Setting  */
219 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
220 #define CS4215_SE	(1<<6)	/* Speaker Enable */
221 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
222 
223 /* Time Slot 7, Input Setting */
224 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
225 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
226 #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
227 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
228 #define CS4215_PIO1	(1<<7)
229 
230 /* Time Slot 8, Input Setting */
231 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
232 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
233 
234 /***************************************************************************
235 		DBRI specific definitions and structures
236 ****************************************************************************/
237 
238 /* DBRI main registers */
239 #define REG0	0x00		/* Status and Control */
240 #define REG1	0x04		/* Mode and Interrupt */
241 #define REG2	0x08		/* Parallel IO */
242 #define REG3	0x0c		/* Test */
243 #define REG8	0x20		/* Command Queue Pointer */
244 #define REG9	0x24		/* Interrupt Queue Pointer */
245 
246 #define DBRI_NO_CMDS	64
247 #define DBRI_INT_BLK	64
248 #define DBRI_NO_DESCS	64
249 #define DBRI_NO_PIPES	32
250 #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
251 
252 #define DBRI_REC	0
253 #define DBRI_PLAY	1
254 #define DBRI_NO_STREAMS	2
255 
256 /* One transmit/receive descriptor */
257 /* When ba != 0 descriptor is used */
258 struct dbri_mem {
259 	volatile __u32 word1;
260 	__u32 ba;	/* Transmit/Receive Buffer Address */
261 	__u32 nda;	/* Next Descriptor Address */
262 	volatile __u32 word4;
263 };
264 
265 /* This structure is in a DMA region where it can accessed by both
266  * the CPU and the DBRI
267  */
268 struct dbri_dma {
269 	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
270 	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
271 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
272 };
273 
274 #define dbri_dma_off(member, elem)	\
275 	((u32)(unsigned long)		\
276 	 (&(((struct dbri_dma *)0)->member[elem])))
277 
278 enum in_or_out { PIPEinput, PIPEoutput };
279 
280 struct dbri_pipe {
281 	u32 sdp;		/* SDP command word */
282 	int nextpipe;		/* Next pipe in linked list */
283 	int length;		/* Length of timeslot (bits) */
284 	int first_desc;		/* Index of first descriptor */
285 	int desc;		/* Index of active descriptor */
286 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
287 };
288 
289 /* Per stream (playback or record) information */
290 struct dbri_streaminfo {
291 	struct snd_pcm_substream *substream;
292 	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
293 	int size;		/* Size of DMA buffer             */
294 	size_t offset;		/* offset in user buffer          */
295 	int pipe;		/* Data pipe used                 */
296 	int left_gain;		/* mixer elements                 */
297 	int right_gain;
298 };
299 
300 /* This structure holds the information for both chips (DBRI & CS4215) */
301 struct snd_dbri {
302 	int regs_size, irq;	/* Needed for unload */
303 	struct platform_device *op;	/* OF device info */
304 	spinlock_t lock;
305 
306 	struct dbri_dma *dma;	/* Pointer to our DMA block */
307 	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
308 
309 	void __iomem *regs;	/* dbri HW regs */
310 	int dbri_irqp;		/* intr queue pointer */
311 
312 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
313 	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
314 	spinlock_t cmdlock;	/* Protects cmd queue accesses */
315 	s32 *cmdptr;		/* Pointer to the last queued cmd */
316 
317 	int chi_bpf;
318 
319 	struct cs4215 mm;	/* mmcodec special info */
320 				/* per stream (playback/record) info */
321 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322 };
323 
324 #define DBRI_MAX_VOLUME		63	/* Output volume */
325 #define DBRI_MAX_GAIN		15	/* Input gain */
326 
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P		(1<<15)	/* Program command & queue pointer valid */
329 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
330 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
331 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
332 #define D_X		(1<<7)	/* Sanity Timer Disable */
333 #define D_T		(1<<6)	/* Permit activation of the TE interface */
334 #define D_N		(1<<5)	/* Permit activation of the NT interface */
335 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
336 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
337 #define D_D		(1<<2)	/* Disable Master Mode */
338 #define D_H		(1<<1)	/* Halt for Analysis */
339 #define D_R		(1<<0)	/* Soft Reset */
340 
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END	(1<<8)	/* Byte Order */
343 #define D_BIG_END	(0<<8)	/* Byte Order */
344 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
345 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
346 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
347 #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
348 #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
349 
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
352 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
353 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
354 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
355 #define D_ENPIO		(0xf0)	/* Enable all the pins */
356 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
358 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
359 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
360 
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT		0x0	/* Stop execution */
363 #define D_PAUSE		0x1	/* Flush long pipes */
364 #define D_JUMP		0x2	/* New command queue */
365 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
366 #define D_REX		0x4	/* Report command execution via interrupt */
367 #define D_SDP		0x5	/* Setup Data Pipe */
368 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS		0x7	/* Define Time Slot */
370 #define D_SSP		0x8	/* Set short Data Pipe */
371 #define D_CHI		0x9	/* Set CHI Global Mode */
372 #define D_NT		0xa	/* NT Command */
373 #define D_TE		0xb	/* TE Command */
374 #define D_CDEC		0xc	/* Codec setup */
375 #define D_TEST		0xd	/* No comment */
376 #define D_CDM		0xe	/* CHI Data mode command */
377 
378 /* Special bits for some commands */
379 #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
380 
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
384 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
385 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
386 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
387 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
388 
389 /* Pipe data MODE */
390 #define D_SDP_MEM	(0<<13)	/* To/from memory */
391 #define D_SDP_HDLC	(2<<13)
392 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
393 #define D_SDP_SER	(4<<13)	/* Serial to serial */
394 #define D_SDP_FIXED	(6<<13)	/* Short only */
395 #define D_SDP_MODE(v)	((v)&(7<<13))
396 
397 #define D_SDP_TO_SER	(1<<12)	/* Direction */
398 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
399 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
400 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
401 #define D_SDP_P		(1<<10)	/* Pointer Valid */
402 #define D_SDP_A		(1<<8)	/* Abort */
403 #define D_SDP_C		(1<<7)	/* Clear */
404 
405 /* Define Time Slot */
406 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
409 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
411 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
412 
413 /* Time Slot defines */
414 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
415 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
416 #define D_TS_DI		(1<<13)	/* Data Invert */
417 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
418 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
419 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
420 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
421 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
422 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
423 
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
426 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
427 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
428 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
429 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD	(1<<11)	/* Frame Drive */
431 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
432 
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
435 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
439 #define D_NT_FT		(1<<12)	/* Fixed Timing */
440 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
441 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
442 #define D_NT_ACT	(1<<9)	/* Activate Interface */
443 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
444 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
445 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
446 #define D_NT_FACT	(1<<1)	/* Force Activation */
447 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
448 
449 /* Codec Setup */
450 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
451 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
453 
454 /* Test */
455 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
456 #define D_TEST_SIZE(v)	((v)<<11)	/* */
457 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC	0x6	/* Microprocessor test */
459 #define D_TEST_SER	0x7	/* Serial-Controller test */
460 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
463 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP	0xe	/* ROM Dump */
465 
466 /* CHI Data Mode */
467 #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
472 #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
473 
474 /* The Interrupts */
475 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
476 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL	5	/* End of List */
480 #define D_INTR_CMDI	6	/* Command has bean read */
481 #define D_INTR_XCMP	8	/* Transmission of frame complete */
482 #define D_INTR_SBRI	9	/* BRI status change info */
483 #define D_INTR_FXDT	10	/* Fixed data change */
484 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT	12	/* Dropped by frame slip */
487 #define D_INTR_RBYT	13	/* Repeated by frame slip */
488 #define D_INTR_LINT	14	/* Lost Interrupt */
489 #define D_INTR_UNDR	15	/* DMA underrun */
490 
491 #define D_INTR_TE	32
492 #define D_INTR_NT	34
493 #define D_INTR_CHI	36
494 #define D_INTR_CMD	38
495 
496 #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
497 #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
498 #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
499 #define D_INTR_GETVAL(v)	((v) & 0xffff)
500 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
501 
502 #define D_P_0		0	/* TE receive anchor */
503 #define D_P_1		1	/* TE transmit anchor */
504 #define D_P_2		2	/* NT transmit anchor */
505 #define D_P_3		3	/* NT receive anchor */
506 #define D_P_4		4	/* CHI send data */
507 #define D_P_5		5	/* CHI receive data */
508 #define D_P_6		6	/* */
509 #define D_P_7		7	/* */
510 #define D_P_8		8	/* */
511 #define D_P_9		9	/* */
512 #define D_P_10		10	/* */
513 #define D_P_11		11	/* */
514 #define D_P_12		12	/* */
515 #define D_P_13		13	/* */
516 #define D_P_14		14	/* */
517 #define D_P_15		15	/* */
518 #define D_P_16		16	/* CHI anchor pipe */
519 #define D_P_17		17	/* CHI send */
520 #define D_P_18		18	/* CHI receive */
521 #define D_P_19		19	/* CHI receive */
522 #define D_P_20		20	/* CHI receive */
523 #define D_P_21		21	/* */
524 #define D_P_22		22	/* */
525 #define D_P_23		23	/* */
526 #define D_P_24		24	/* */
527 #define D_P_25		25	/* */
528 #define D_P_26		26	/* */
529 #define D_P_27		27	/* */
530 #define D_P_28		28	/* */
531 #define D_P_29		29	/* */
532 #define D_P_30		30	/* */
533 #define D_P_31		31	/* */
534 
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F	(1 << 31)	/* End of Frame */
537 #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
538 #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
540 #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
541 #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
543 #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
545 #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
547 			/* Maximum buffer size per TD: almost 8KB */
548 #define DBRI_TD_MAXCNT	((1 << 13) - 4)
549 
550 /* Receive descriptor defines */
551 #define DBRI_RD_F	(1 << 31)	/* End of Frame */
552 #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
553 #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
554 #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
555 #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
556 #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
557 #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
558 #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
559 #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
560 #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
561 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
562 
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream)				\
566 		(substream->stream ==				\
567 		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568 
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream)	\
571 		&dbri->stream_info[DBRI_STREAMNO(substream)]
572 
573 /*
574  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575  * So we have to reverse the bits. Note: not all bit lengths are supported
576  */
reverse_bytes(__u32 b,int len)577 static __u32 reverse_bytes(__u32 b, int len)
578 {
579 	switch (len) {
580 	case 32:
581 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582 		fallthrough;
583 	case 16:
584 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
585 		fallthrough;
586 	case 8:
587 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
588 		fallthrough;
589 	case 4:
590 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
591 		fallthrough;
592 	case 2:
593 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
594 	case 1:
595 	case 0:
596 		break;
597 	default:
598 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
599 	}
600 
601 	return b;
602 }
603 
604 /*
605 ****************************************************************************
606 ************** DBRI initialization and command synchronization *************
607 ****************************************************************************
608 
609 Commands are sent to the DBRI by building a list of them in memory,
610 then writing the address of the first list item to DBRI register 8.
611 The list is terminated with a WAIT command, which generates a
612 CPU interrupt to signal completion.
613 
614 Since the DBRI can run in parallel with the CPU, several means of
615 synchronization present themselves. The method implemented here uses
616 the dbri_cmdwait() to wait for execution of batch of sent commands.
617 
618 A circular command buffer is used here. A new command is being added
619 while another can be executed. The scheme works by adding two WAIT commands
620 after each sent batch of commands. When the next batch is prepared it is
621 added after the WAIT commands then the WAITs are replaced with single JUMP
622 command to the new batch. Then the DBRI is forced to reread the last WAIT
623 command (replaced by the JUMP by then). If the DBRI is still executing
624 previous commands the request to reread the WAIT command is ignored.
625 
626 Every time a routine wants to write commands to the DBRI, it must
627 first call dbri_cmdlock() and get pointer to a free space in
628 dbri->dma->cmd buffer. After this, the commands can be written to
629 the buffer, and dbri_cmdsend() is called with the final pointer value
630 to send them to the DBRI.
631 
632 */
633 
634 #define MAXLOOPS 20
635 /*
636  * Wait for the current command string to execute
637  */
dbri_cmdwait(struct snd_dbri * dbri)638 static void dbri_cmdwait(struct snd_dbri *dbri)
639 {
640 	int maxloops = MAXLOOPS;
641 	unsigned long flags;
642 
643 	/* Delay if previous commands are still being processed */
644 	spin_lock_irqsave(&dbri->lock, flags);
645 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
646 		spin_unlock_irqrestore(&dbri->lock, flags);
647 		msleep_interruptible(1);
648 		spin_lock_irqsave(&dbri->lock, flags);
649 	}
650 	spin_unlock_irqrestore(&dbri->lock, flags);
651 
652 	if (maxloops == 0)
653 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
654 	else
655 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
656 			MAXLOOPS - maxloops - 1);
657 }
658 /*
659  * Lock the command queue and return pointer to space for len cmd words
660  * It locks the cmdlock spinlock.
661  */
dbri_cmdlock(struct snd_dbri * dbri,int len)662 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
663 {
664 	u32 dvma_addr = (u32)dbri->dma_dvma;
665 
666 	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
667 	len += 2;
668 	spin_lock(&dbri->cmdlock);
669 	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
670 		return dbri->cmdptr + 2;
671 	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
672 		return dbri->dma->cmd;
673 	else
674 		printk(KERN_ERR "DBRI: no space for commands.");
675 
676 	return NULL;
677 }
678 
679 /*
680  * Send prepared cmd string. It works by writing a JUMP cmd into
681  * the last WAIT cmd and force DBRI to reread the cmd.
682  * The JUMP cmd points to the new cmd string.
683  * It also releases the cmdlock spinlock.
684  *
685  * Lock must be held before calling this.
686  */
dbri_cmdsend(struct snd_dbri * dbri,s32 * cmd,int len)687 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
688 {
689 	u32 dvma_addr = (u32)dbri->dma_dvma;
690 	s32 tmp, addr;
691 	static int wait_id = 0;
692 
693 	wait_id++;
694 	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
695 	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
696 	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
697 
698 	/* Replace the last command with JUMP */
699 	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
700 	*(dbri->cmdptr+1) = addr;
701 	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
702 
703 #ifdef DBRI_DEBUG
704 	if (cmd > dbri->cmdptr) {
705 		s32 *ptr;
706 
707 		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
708 			dprintk(D_CMD, "cmd: %lx:%08x\n",
709 				(unsigned long)ptr, *ptr);
710 	} else {
711 		s32 *ptr = dbri->cmdptr;
712 
713 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
714 		ptr++;
715 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
716 		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
717 			dprintk(D_CMD, "cmd: %lx:%08x\n",
718 				(unsigned long)ptr, *ptr);
719 	}
720 #endif
721 
722 	/* Reread the last command */
723 	tmp = sbus_readl(dbri->regs + REG0);
724 	tmp |= D_P;
725 	sbus_writel(tmp, dbri->regs + REG0);
726 
727 	dbri->cmdptr = cmd;
728 	spin_unlock(&dbri->cmdlock);
729 }
730 
731 /* Lock must be held when calling this */
dbri_reset(struct snd_dbri * dbri)732 static void dbri_reset(struct snd_dbri *dbri)
733 {
734 	int i;
735 	u32 tmp;
736 
737 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
738 		sbus_readl(dbri->regs + REG0),
739 		sbus_readl(dbri->regs + REG2),
740 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
741 
742 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
743 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
744 		udelay(10);
745 
746 	/* A brute approach - DBRI falls back to working burst size by itself
747 	 * On SS20 D_S does not work, so do not try so high. */
748 	tmp = sbus_readl(dbri->regs + REG0);
749 	tmp |= D_G | D_E;
750 	tmp &= ~D_S;
751 	sbus_writel(tmp, dbri->regs + REG0);
752 }
753 
754 /* Lock must not be held before calling this */
dbri_initialize(struct snd_dbri * dbri)755 static void dbri_initialize(struct snd_dbri *dbri)
756 {
757 	u32 dvma_addr = (u32)dbri->dma_dvma;
758 	s32 *cmd;
759 	u32 dma_addr;
760 	unsigned long flags;
761 	int n;
762 
763 	spin_lock_irqsave(&dbri->lock, flags);
764 
765 	dbri_reset(dbri);
766 
767 	/* Initialize pipes */
768 	for (n = 0; n < DBRI_NO_PIPES; n++)
769 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
770 
771 	spin_lock_init(&dbri->cmdlock);
772 	/*
773 	 * Initialize the interrupt ring buffer.
774 	 */
775 	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
776 	dbri->dma->intr[0] = dma_addr;
777 	dbri->dbri_irqp = 1;
778 	/*
779 	 * Set up the interrupt queue
780 	 */
781 	spin_lock(&dbri->cmdlock);
782 	cmd = dbri->cmdptr = dbri->dma->cmd;
783 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
784 	*(cmd++) = dma_addr;
785 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
786 	dbri->cmdptr = cmd;
787 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
788 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
789 	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
790 	sbus_writel(dma_addr, dbri->regs + REG8);
791 	spin_unlock(&dbri->cmdlock);
792 
793 	spin_unlock_irqrestore(&dbri->lock, flags);
794 	dbri_cmdwait(dbri);
795 }
796 
797 /*
798 ****************************************************************************
799 ************************** DBRI data pipe management ***********************
800 ****************************************************************************
801 
802 While DBRI control functions use the command and interrupt buffers, the
803 main data path takes the form of data pipes, which can be short (command
804 and interrupt driven), or long (attached to DMA buffers).  These functions
805 provide a rudimentary means of setting up and managing the DBRI's pipes,
806 but the calling functions have to make sure they respect the pipes' linked
807 list ordering, among other things.  The transmit and receive functions
808 here interface closely with the transmit and receive interrupt code.
809 
810 */
pipe_active(struct snd_dbri * dbri,int pipe)811 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
812 {
813 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
814 }
815 
816 /* reset_pipe(dbri, pipe)
817  *
818  * Called on an in-use pipe to clear anything being transmitted or received
819  * Lock must be held before calling this.
820  */
reset_pipe(struct snd_dbri * dbri,int pipe)821 static void reset_pipe(struct snd_dbri *dbri, int pipe)
822 {
823 	int sdp;
824 	int desc;
825 	s32 *cmd;
826 
827 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
828 		printk(KERN_ERR "DBRI: reset_pipe called with "
829 			"illegal pipe number\n");
830 		return;
831 	}
832 
833 	sdp = dbri->pipes[pipe].sdp;
834 	if (sdp == 0) {
835 		printk(KERN_ERR "DBRI: reset_pipe called "
836 			"on uninitialized pipe\n");
837 		return;
838 	}
839 
840 	cmd = dbri_cmdlock(dbri, 3);
841 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
842 	*(cmd++) = 0;
843 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
844 	dbri_cmdsend(dbri, cmd, 3);
845 
846 	desc = dbri->pipes[pipe].first_desc;
847 	if (desc >= 0)
848 		do {
849 			dbri->dma->desc[desc].ba = 0;
850 			dbri->dma->desc[desc].nda = 0;
851 			desc = dbri->next_desc[desc];
852 		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
853 
854 	dbri->pipes[pipe].desc = -1;
855 	dbri->pipes[pipe].first_desc = -1;
856 }
857 
858 /*
859  * Lock must be held before calling this.
860  */
setup_pipe(struct snd_dbri * dbri,int pipe,int sdp)861 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
862 {
863 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
864 		printk(KERN_ERR "DBRI: setup_pipe called "
865 			"with illegal pipe number\n");
866 		return;
867 	}
868 
869 	if ((sdp & 0xf800) != sdp) {
870 		printk(KERN_ERR "DBRI: setup_pipe called "
871 			"with strange SDP value\n");
872 		/* sdp &= 0xf800; */
873 	}
874 
875 	/* If this is a fixed receive pipe, arrange for an interrupt
876 	 * every time its data changes
877 	 */
878 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
879 		sdp |= D_SDP_CHANGE;
880 
881 	sdp |= D_PIPE(pipe);
882 	dbri->pipes[pipe].sdp = sdp;
883 	dbri->pipes[pipe].desc = -1;
884 	dbri->pipes[pipe].first_desc = -1;
885 
886 	reset_pipe(dbri, pipe);
887 }
888 
889 /*
890  * Lock must be held before calling this.
891  */
link_time_slot(struct snd_dbri * dbri,int pipe,int prevpipe,int nextpipe,int length,int cycle)892 static void link_time_slot(struct snd_dbri *dbri, int pipe,
893 			   int prevpipe, int nextpipe,
894 			   int length, int cycle)
895 {
896 	s32 *cmd;
897 	int val;
898 
899 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
900 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
901 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
902 		printk(KERN_ERR
903 		    "DBRI: link_time_slot called with illegal pipe number\n");
904 		return;
905 	}
906 
907 	if (dbri->pipes[pipe].sdp == 0
908 			|| dbri->pipes[prevpipe].sdp == 0
909 			|| dbri->pipes[nextpipe].sdp == 0) {
910 		printk(KERN_ERR "DBRI: link_time_slot called "
911 			"on uninitialized pipe\n");
912 		return;
913 	}
914 
915 	dbri->pipes[prevpipe].nextpipe = pipe;
916 	dbri->pipes[pipe].nextpipe = nextpipe;
917 	dbri->pipes[pipe].length = length;
918 
919 	cmd = dbri_cmdlock(dbri, 4);
920 
921 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
922 		/* Deal with CHI special case:
923 		 * "If transmission on edges 0 or 1 is desired, then cycle n
924 		 *  (where n = # of bit times per frame...) must be used."
925 		 *                  - DBRI data sheet, page 11
926 		 */
927 		if (prevpipe == 16 && cycle == 0)
928 			cycle = dbri->chi_bpf;
929 
930 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
931 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
932 		*(cmd++) = 0;
933 		*(cmd++) =
934 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
935 	} else {
936 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
937 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
938 		*(cmd++) =
939 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
940 		*(cmd++) = 0;
941 	}
942 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
943 
944 	dbri_cmdsend(dbri, cmd, 4);
945 }
946 
947 #if 0
948 /*
949  * Lock must be held before calling this.
950  */
951 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
952 			     enum in_or_out direction, int prevpipe,
953 			     int nextpipe)
954 {
955 	s32 *cmd;
956 	int val;
957 
958 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
959 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
960 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
961 		printk(KERN_ERR
962 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
963 		return;
964 	}
965 
966 	cmd = dbri_cmdlock(dbri, 4);
967 
968 	if (direction == PIPEinput) {
969 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
970 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
971 		*(cmd++) = D_TS_NEXT(nextpipe);
972 		*(cmd++) = 0;
973 	} else {
974 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
975 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
976 		*(cmd++) = 0;
977 		*(cmd++) = D_TS_NEXT(nextpipe);
978 	}
979 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
980 
981 	dbri_cmdsend(dbri, cmd, 4);
982 }
983 #endif
984 
985 /* xmit_fixed() / recv_fixed()
986  *
987  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
988  * expected to change much, and which we don't need to buffer.
989  * The DBRI only interrupts us when the data changes (receive pipes),
990  * or only changes the data when this function is called (transmit pipes).
991  * Only short pipes (numbers 16-31) can be used in fixed data mode.
992  *
993  * These function operate on a 32-bit field, no matter how large
994  * the actual time slot is.  The interrupt handler takes care of bit
995  * ordering and alignment.  An 8-bit time slot will always end up
996  * in the low-order 8 bits, filled either MSB-first or LSB-first,
997  * depending on the settings passed to setup_pipe().
998  *
999  * Lock must not be held before calling it.
1000  */
xmit_fixed(struct snd_dbri * dbri,int pipe,unsigned int data)1001 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1002 {
1003 	s32 *cmd;
1004 	unsigned long flags;
1005 
1006 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1007 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008 		return;
1009 	}
1010 
1011 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1012 		printk(KERN_ERR "DBRI: xmit_fixed: "
1013 			"Uninitialized pipe %d\n", pipe);
1014 		return;
1015 	}
1016 
1017 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1018 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019 		return;
1020 	}
1021 
1022 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1023 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1024 			pipe);
1025 		return;
1026 	}
1027 
1028 	/* DBRI short pipes always transmit LSB first */
1029 
1030 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1031 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1032 
1033 	cmd = dbri_cmdlock(dbri, 3);
1034 
1035 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1036 	*(cmd++) = data;
1037 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1038 
1039 	spin_lock_irqsave(&dbri->lock, flags);
1040 	dbri_cmdsend(dbri, cmd, 3);
1041 	spin_unlock_irqrestore(&dbri->lock, flags);
1042 	dbri_cmdwait(dbri);
1043 
1044 }
1045 
recv_fixed(struct snd_dbri * dbri,int pipe,volatile __u32 * ptr)1046 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1047 {
1048 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1049 		printk(KERN_ERR "DBRI: recv_fixed called with "
1050 			"illegal pipe number\n");
1051 		return;
1052 	}
1053 
1054 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1055 		printk(KERN_ERR "DBRI: recv_fixed called on "
1056 			"non-fixed pipe %d\n", pipe);
1057 		return;
1058 	}
1059 
1060 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1061 		printk(KERN_ERR "DBRI: recv_fixed called on "
1062 			"transmit pipe %d\n", pipe);
1063 		return;
1064 	}
1065 
1066 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1067 }
1068 
1069 /* setup_descs()
1070  *
1071  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1072  * with a DMA buffer.
1073  *
1074  * Only pipe numbers 0-15 can be used in this mode.
1075  *
1076  * This function takes a stream number pointing to a data buffer,
1077  * and work by building chains of descriptors which identify the
1078  * data buffers.  Buffers too large for a single descriptor will
1079  * be spread across multiple descriptors.
1080  *
1081  * All descriptors create a ring buffer.
1082  *
1083  * Lock must be held before calling this.
1084  */
setup_descs(struct snd_dbri * dbri,int streamno,unsigned int period)1085 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1086 {
1087 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1088 	u32 dvma_addr = (u32)dbri->dma_dvma;
1089 	__u32 dvma_buffer;
1090 	int desc;
1091 	int len;
1092 	int first_desc = -1;
1093 	int last_desc = -1;
1094 
1095 	if (info->pipe < 0 || info->pipe > 15) {
1096 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097 		return -2;
1098 	}
1099 
1100 	if (dbri->pipes[info->pipe].sdp == 0) {
1101 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1102 		       info->pipe);
1103 		return -2;
1104 	}
1105 
1106 	dvma_buffer = info->dvma_buffer;
1107 	len = info->size;
1108 
1109 	if (streamno == DBRI_PLAY) {
1110 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1111 			printk(KERN_ERR "DBRI: setup_descs: "
1112 				"Called on receive pipe %d\n", info->pipe);
1113 			return -2;
1114 		}
1115 	} else {
1116 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1117 			printk(KERN_ERR
1118 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1119 			     info->pipe);
1120 			return -2;
1121 		}
1122 		/* Should be able to queue multiple buffers
1123 		 * to receive on a pipe
1124 		 */
1125 		if (pipe_active(dbri, info->pipe)) {
1126 			printk(KERN_ERR "DBRI: recv_on_pipe: "
1127 				"Called on active pipe %d\n", info->pipe);
1128 			return -2;
1129 		}
1130 
1131 		/* Make sure buffer size is multiple of four */
1132 		len &= ~3;
1133 	}
1134 
1135 	/* Free descriptors if pipe has any */
1136 	desc = dbri->pipes[info->pipe].first_desc;
1137 	if (desc >= 0)
1138 		do {
1139 			dbri->dma->desc[desc].ba = 0;
1140 			dbri->dma->desc[desc].nda = 0;
1141 			desc = dbri->next_desc[desc];
1142 		} while (desc != -1 &&
1143 			 desc != dbri->pipes[info->pipe].first_desc);
1144 
1145 	dbri->pipes[info->pipe].desc = -1;
1146 	dbri->pipes[info->pipe].first_desc = -1;
1147 
1148 	desc = 0;
1149 	while (len > 0) {
1150 		int mylen;
1151 
1152 		for (; desc < DBRI_NO_DESCS; desc++) {
1153 			if (!dbri->dma->desc[desc].ba)
1154 				break;
1155 		}
1156 
1157 		if (desc == DBRI_NO_DESCS) {
1158 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159 			return -1;
1160 		}
1161 
1162 		if (len > DBRI_TD_MAXCNT)
1163 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1164 		else
1165 			mylen = len;
1166 
1167 		if (mylen > period)
1168 			mylen = period;
1169 
1170 		dbri->next_desc[desc] = -1;
1171 		dbri->dma->desc[desc].ba = dvma_buffer;
1172 		dbri->dma->desc[desc].nda = 0;
1173 
1174 		if (streamno == DBRI_PLAY) {
1175 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1176 			dbri->dma->desc[desc].word4 = 0;
1177 			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1178 		} else {
1179 			dbri->dma->desc[desc].word1 = 0;
1180 			dbri->dma->desc[desc].word4 =
1181 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1182 		}
1183 
1184 		if (first_desc == -1)
1185 			first_desc = desc;
1186 		else {
1187 			dbri->next_desc[last_desc] = desc;
1188 			dbri->dma->desc[last_desc].nda =
1189 			    dvma_addr + dbri_dma_off(desc, desc);
1190 		}
1191 
1192 		last_desc = desc;
1193 		dvma_buffer += mylen;
1194 		len -= mylen;
1195 	}
1196 
1197 	if (first_desc == -1 || last_desc == -1) {
1198 		printk(KERN_ERR "DBRI: setup_descs: "
1199 			" Not enough descriptors available\n");
1200 		return -1;
1201 	}
1202 
1203 	dbri->dma->desc[last_desc].nda =
1204 	    dvma_addr + dbri_dma_off(desc, first_desc);
1205 	dbri->next_desc[last_desc] = first_desc;
1206 	dbri->pipes[info->pipe].first_desc = first_desc;
1207 	dbri->pipes[info->pipe].desc = first_desc;
1208 
1209 #ifdef DBRI_DEBUG
1210 	for (desc = first_desc; desc != -1;) {
1211 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1212 			desc,
1213 			dbri->dma->desc[desc].word1,
1214 			dbri->dma->desc[desc].ba,
1215 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1216 			desc = dbri->next_desc[desc];
1217 			if (desc == first_desc)
1218 				break;
1219 	}
1220 #endif
1221 	return 0;
1222 }
1223 
1224 /*
1225 ****************************************************************************
1226 ************************** DBRI - CHI interface ****************************
1227 ****************************************************************************
1228 
1229 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1230 multiplexed serial interface which the DBRI can operate in either master
1231 (give clock/frame sync) or slave (take clock/frame sync) mode.
1232 
1233 */
1234 
1235 enum master_or_slave { CHImaster, CHIslave };
1236 
1237 /*
1238  * Lock must not be held before calling it.
1239  */
reset_chi(struct snd_dbri * dbri,enum master_or_slave master_or_slave,int bits_per_frame)1240 static void reset_chi(struct snd_dbri *dbri,
1241 		      enum master_or_slave master_or_slave,
1242 		      int bits_per_frame)
1243 {
1244 	s32 *cmd;
1245 	int val;
1246 
1247 	/* Set CHI Anchor: Pipe 16 */
1248 
1249 	cmd = dbri_cmdlock(dbri, 4);
1250 	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1251 		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1252 	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1253 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1256 	dbri_cmdsend(dbri, cmd, 4);
1257 
1258 	dbri->pipes[16].sdp = 1;
1259 	dbri->pipes[16].nextpipe = 16;
1260 
1261 	cmd = dbri_cmdlock(dbri, 4);
1262 
1263 	if (master_or_slave == CHIslave) {
1264 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1265 		 *
1266 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1267 		 * IR     = give immediate CHI status interrupt
1268 		 * EN     = give CHI status interrupt upon change
1269 		 */
1270 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1271 	} else {
1272 		/* Setup DBRI for CHI Master - generate clock, FS
1273 		 *
1274 		 * BPF				=  bits per 8 kHz frame
1275 		 * 12.288 MHz / CHICM_divisor	= clock rate
1276 		 * FD = 1 - drive CHIFS on rising edge of CHICK
1277 		 */
1278 		int clockrate = bits_per_frame * 8;
1279 		int divisor = 12288 / clockrate;
1280 
1281 		if (divisor > 255 || divisor * clockrate != 12288)
1282 			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1283 				"in setup_chi\n");
1284 
1285 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286 				    | D_CHI_BPF(bits_per_frame));
1287 	}
1288 
1289 	dbri->chi_bpf = bits_per_frame;
1290 
1291 	/* CHI Data Mode
1292 	 *
1293 	 * RCE   =  0 - receive on falling edge of CHICK
1294 	 * XCE   =  1 - transmit on rising edge of CHICK
1295 	 * XEN   =  1 - enable transmitter
1296 	 * REN   =  1 - enable receiver
1297 	 */
1298 
1299 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1302 
1303 	dbri_cmdsend(dbri, cmd, 4);
1304 }
1305 
1306 /*
1307 ****************************************************************************
1308 *********************** CS4215 audio codec management **********************
1309 ****************************************************************************
1310 
1311 In the standard SPARC audio configuration, the CS4215 codec is attached
1312 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1313 
1314  * Lock must not be held before calling it.
1315 
1316 */
cs4215_setup_pipes(struct snd_dbri * dbri)1317 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1318 {
1319 	unsigned long flags;
1320 
1321 	spin_lock_irqsave(&dbri->lock, flags);
1322 	/*
1323 	 * Data mode:
1324 	 * Pipe  4: Send timeslots 1-4 (audio data)
1325 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1326 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1327 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1328 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1329 	 *          not relevant for us (only for doublechecking).
1330 	 *
1331 	 * Control mode:
1332 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1333 	 * Pipe 18: Receive timeslot 1 (clb).
1334 	 * Pipe 19: Receive timeslot 7 (version).
1335 	 */
1336 
1337 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1338 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1340 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341 
1342 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1343 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1344 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345 	spin_unlock_irqrestore(&dbri->lock, flags);
1346 
1347 	dbri_cmdwait(dbri);
1348 }
1349 
cs4215_init_data(struct cs4215 * mm)1350 static int cs4215_init_data(struct cs4215 *mm)
1351 {
1352 	/*
1353 	 * No action, memory resetting only.
1354 	 *
1355 	 * Data Time Slot 5-8
1356 	 * Speaker,Line and Headphone enable. Gain set to the half.
1357 	 * Input is mike.
1358 	 */
1359 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1360 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1361 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1362 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1363 
1364 	/*
1365 	 * Control Time Slot 1-4
1366 	 * 0: Default I/O voltage scale
1367 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1368 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1369 	 * 3: Tests disabled
1370 	 */
1371 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1372 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1373 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1374 	mm->ctrl[3] = 0;
1375 
1376 	mm->status = 0;
1377 	mm->version = 0xff;
1378 	mm->precision = 8;	/* For ULAW */
1379 	mm->channels = 1;
1380 
1381 	return 0;
1382 }
1383 
cs4215_setdata(struct snd_dbri * dbri,int muted)1384 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1385 {
1386 	if (muted) {
1387 		dbri->mm.data[0] |= 63;
1388 		dbri->mm.data[1] |= 63;
1389 		dbri->mm.data[2] &= ~15;
1390 		dbri->mm.data[3] &= ~15;
1391 	} else {
1392 		/* Start by setting the playback attenuation. */
1393 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1394 		int left_gain = info->left_gain & 0x3f;
1395 		int right_gain = info->right_gain & 0x3f;
1396 
1397 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1398 		dbri->mm.data[1] &= ~0x3f;
1399 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1400 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1401 
1402 		/* Now set the recording gain. */
1403 		info = &dbri->stream_info[DBRI_REC];
1404 		left_gain = info->left_gain & 0xf;
1405 		right_gain = info->right_gain & 0xf;
1406 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1407 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1408 	}
1409 
1410 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411 }
1412 
1413 /*
1414  * Set the CS4215 to data mode.
1415  */
cs4215_open(struct snd_dbri * dbri)1416 static void cs4215_open(struct snd_dbri *dbri)
1417 {
1418 	int data_width;
1419 	u32 tmp;
1420 	unsigned long flags;
1421 
1422 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1423 		dbri->mm.channels, dbri->mm.precision);
1424 
1425 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1426 	 * to make sure this takes.  This avoids clicking noises.
1427 	 */
1428 
1429 	cs4215_setdata(dbri, 1);
1430 	udelay(125);
1431 
1432 	/*
1433 	 * Data mode:
1434 	 * Pipe  4: Send timeslots 1-4 (audio data)
1435 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1436 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1437 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1438 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1439 	 *          not relevant for us (only for doublechecking).
1440 	 *
1441 	 * Just like in control mode, the time slots are all offset by eight
1442 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1443 	 * even if it's the CHI master.  Don't ask me...
1444 	 */
1445 	spin_lock_irqsave(&dbri->lock, flags);
1446 	tmp = sbus_readl(dbri->regs + REG0);
1447 	tmp &= ~(D_C);		/* Disable CHI */
1448 	sbus_writel(tmp, dbri->regs + REG0);
1449 
1450 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1451 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1452 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1453 
1454 	reset_chi(dbri, CHIslave, 128);
1455 
1456 	/* Note: this next doesn't work for 8-bit stereo, because the two
1457 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1458 	 * (See CS4215 datasheet Fig 15)
1459 	 *
1460 	 * DBRI non-contiguous mode would be required to make this work.
1461 	 */
1462 	data_width = dbri->mm.channels * dbri->mm.precision;
1463 
1464 	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1465 	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1466 	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1467 	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1468 
1469 	/* FIXME: enable CHI after _setdata? */
1470 	tmp = sbus_readl(dbri->regs + REG0);
1471 	tmp |= D_C;		/* Enable CHI */
1472 	sbus_writel(tmp, dbri->regs + REG0);
1473 	spin_unlock_irqrestore(&dbri->lock, flags);
1474 
1475 	cs4215_setdata(dbri, 0);
1476 }
1477 
1478 /*
1479  * Send the control information (i.e. audio format)
1480  */
cs4215_setctrl(struct snd_dbri * dbri)1481 static int cs4215_setctrl(struct snd_dbri *dbri)
1482 {
1483 	int i, val;
1484 	u32 tmp;
1485 	unsigned long flags;
1486 
1487 	/* FIXME - let the CPU do something useful during these delays */
1488 
1489 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1490 	 * to make sure this takes.  This avoids clicking noises.
1491 	 */
1492 	cs4215_setdata(dbri, 1);
1493 	udelay(125);
1494 
1495 	/*
1496 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1497 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1498 	 */
1499 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1500 	sbus_writel(val, dbri->regs + REG2);
1501 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1502 	udelay(34);
1503 
1504 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1505 	 * operate as CHI master, supplying clocking and frame synchronization.
1506 	 *
1507 	 * In Data mode, however, the CS4215 must be CHI master to insure
1508 	 * that its data stream is synchronous with its codec.
1509 	 *
1510 	 * The upshot of all this?  We start by putting the DBRI into master
1511 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1512 	 * into Data mode and put the DBRI into slave mode.  Various timing
1513 	 * requirements must be observed along the way.
1514 	 *
1515 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1516 	 * others?), the addressing of the CS4215's time slots is
1517 	 * offset by eight bits, so we add eight to all the "cycle"
1518 	 * values in the Define Time Slot (DTS) commands.  This is
1519 	 * done in hardware by a TI 248 that delays the DBRI->4215
1520 	 * frame sync signal by eight clock cycles.  Anybody know why?
1521 	 */
1522 	spin_lock_irqsave(&dbri->lock, flags);
1523 	tmp = sbus_readl(dbri->regs + REG0);
1524 	tmp &= ~D_C;		/* Disable CHI */
1525 	sbus_writel(tmp, dbri->regs + REG0);
1526 
1527 	reset_chi(dbri, CHImaster, 128);
1528 
1529 	/*
1530 	 * Control mode:
1531 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1532 	 * Pipe 18: Receive timeslot 1 (clb).
1533 	 * Pipe 19: Receive timeslot 7 (version).
1534 	 */
1535 
1536 	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1537 	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1538 	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1539 	spin_unlock_irqrestore(&dbri->lock, flags);
1540 
1541 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1542 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1543 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1544 
1545 	spin_lock_irqsave(&dbri->lock, flags);
1546 	tmp = sbus_readl(dbri->regs + REG0);
1547 	tmp |= D_C;		/* Enable CHI */
1548 	sbus_writel(tmp, dbri->regs + REG0);
1549 	spin_unlock_irqrestore(&dbri->lock, flags);
1550 
1551 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1552 		msleep_interruptible(1);
1553 
1554 	if (i == 0) {
1555 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1556 			dbri->mm.status);
1557 		return -1;
1558 	}
1559 
1560 	/* Disable changes to our copy of the version number, as we are about
1561 	 * to leave control mode.
1562 	 */
1563 	recv_fixed(dbri, 19, NULL);
1564 
1565 	/* Terminate CS4215 control mode - data sheet says
1566 	 * "Set CLB=1 and send two more frames of valid control info"
1567 	 */
1568 	dbri->mm.ctrl[0] |= CS4215_CLB;
1569 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1570 
1571 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1572 	udelay(250);
1573 
1574 	cs4215_setdata(dbri, 0);
1575 
1576 	return 0;
1577 }
1578 
1579 /*
1580  * Setup the codec with the sampling rate, audio format and number of
1581  * channels.
1582  * As part of the process we resend the settings for the data
1583  * timeslots as well.
1584  */
cs4215_prepare(struct snd_dbri * dbri,unsigned int rate,snd_pcm_format_t format,unsigned int channels)1585 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1586 			  snd_pcm_format_t format, unsigned int channels)
1587 {
1588 	int freq_idx;
1589 	int ret = 0;
1590 
1591 	/* Lookup index for this rate */
1592 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1593 		if (CS4215_FREQ[freq_idx].freq == rate)
1594 			break;
1595 	}
1596 	if (CS4215_FREQ[freq_idx].freq != rate) {
1597 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1598 		return -1;
1599 	}
1600 
1601 	switch (format) {
1602 	case SNDRV_PCM_FORMAT_MU_LAW:
1603 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1604 		dbri->mm.precision = 8;
1605 		break;
1606 	case SNDRV_PCM_FORMAT_A_LAW:
1607 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1608 		dbri->mm.precision = 8;
1609 		break;
1610 	case SNDRV_PCM_FORMAT_U8:
1611 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1612 		dbri->mm.precision = 8;
1613 		break;
1614 	case SNDRV_PCM_FORMAT_S16_BE:
1615 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1616 		dbri->mm.precision = 16;
1617 		break;
1618 	default:
1619 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620 		return -1;
1621 	}
1622 
1623 	/* Add rate parameters */
1624 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1625 	dbri->mm.ctrl[2] = CS4215_XCLK |
1626 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1627 
1628 	dbri->mm.channels = channels;
1629 	if (channels == 2)
1630 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1631 
1632 	ret = cs4215_setctrl(dbri);
1633 	if (ret == 0)
1634 		cs4215_open(dbri);	/* set codec to data mode */
1635 
1636 	return ret;
1637 }
1638 
1639 /*
1640  *
1641  */
cs4215_init(struct snd_dbri * dbri)1642 static int cs4215_init(struct snd_dbri *dbri)
1643 {
1644 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1645 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1646 
1647 	/* Look for the cs4215 chips */
1648 	if (reg2 & D_PIO2) {
1649 		dprintk(D_MM, "Onboard CS4215 detected\n");
1650 		dbri->mm.onboard = 1;
1651 	}
1652 	if (reg2 & D_PIO0) {
1653 		dprintk(D_MM, "Speakerbox detected\n");
1654 		dbri->mm.onboard = 0;
1655 
1656 		if (reg2 & D_PIO2) {
1657 			printk(KERN_INFO "DBRI: Using speakerbox / "
1658 			       "ignoring onboard mmcodec.\n");
1659 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660 		}
1661 	}
1662 
1663 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1664 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665 		return -EIO;
1666 	}
1667 
1668 	cs4215_setup_pipes(dbri);
1669 	cs4215_init_data(&dbri->mm);
1670 
1671 	/* Enable capture of the status & version timeslots. */
1672 	recv_fixed(dbri, 18, &dbri->mm.status);
1673 	recv_fixed(dbri, 19, &dbri->mm.version);
1674 
1675 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1676 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1677 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678 			dbri->mm.offset);
1679 		return -EIO;
1680 	}
1681 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1682 
1683 	return 0;
1684 }
1685 
1686 /*
1687 ****************************************************************************
1688 *************************** DBRI interrupt handler *************************
1689 ****************************************************************************
1690 
1691 The DBRI communicates with the CPU mainly via a circular interrupt
1692 buffer.  When an interrupt is signaled, the CPU walks through the
1693 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1694 Complicated interrupts are handled by dedicated functions (which
1695 appear first in this file).  Any pending interrupts can be serviced by
1696 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1697 interrupts are disabled.
1698 
1699 */
1700 
1701 /* xmit_descs()
1702  *
1703  * Starts transmitting the current TD's for recording/playing.
1704  * For playback, ALSA has filled the DMA memory with new data (we hope).
1705  */
xmit_descs(struct snd_dbri * dbri)1706 static void xmit_descs(struct snd_dbri *dbri)
1707 {
1708 	struct dbri_streaminfo *info;
1709 	u32 dvma_addr;
1710 	s32 *cmd;
1711 	unsigned long flags;
1712 	int first_td;
1713 
1714 	if (dbri == NULL)
1715 		return;		/* Disabled */
1716 
1717 	dvma_addr = (u32)dbri->dma_dvma;
1718 	info = &dbri->stream_info[DBRI_REC];
1719 	spin_lock_irqsave(&dbri->lock, flags);
1720 
1721 	if (info->pipe >= 0) {
1722 		first_td = dbri->pipes[info->pipe].first_desc;
1723 
1724 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1725 
1726 		/* Stream could be closed by the time we run. */
1727 		if (first_td >= 0) {
1728 			cmd = dbri_cmdlock(dbri, 2);
1729 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1730 					    dbri->pipes[info->pipe].sdp
1731 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1732 			*(cmd++) = dvma_addr +
1733 				   dbri_dma_off(desc, first_td);
1734 			dbri_cmdsend(dbri, cmd, 2);
1735 
1736 			/* Reset our admin of the pipe. */
1737 			dbri->pipes[info->pipe].desc = first_td;
1738 		}
1739 	}
1740 
1741 	info = &dbri->stream_info[DBRI_PLAY];
1742 
1743 	if (info->pipe >= 0) {
1744 		first_td = dbri->pipes[info->pipe].first_desc;
1745 
1746 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1747 
1748 		/* Stream could be closed by the time we run. */
1749 		if (first_td >= 0) {
1750 			cmd = dbri_cmdlock(dbri, 2);
1751 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1752 					    dbri->pipes[info->pipe].sdp
1753 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1754 			*(cmd++) = dvma_addr +
1755 				   dbri_dma_off(desc, first_td);
1756 			dbri_cmdsend(dbri, cmd, 2);
1757 
1758 			/* Reset our admin of the pipe. */
1759 			dbri->pipes[info->pipe].desc = first_td;
1760 		}
1761 	}
1762 
1763 	spin_unlock_irqrestore(&dbri->lock, flags);
1764 }
1765 
1766 /* transmission_complete_intr()
1767  *
1768  * Called by main interrupt handler when DBRI signals transmission complete
1769  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1770  *
1771  * Walks through the pipe's list of transmit buffer descriptors and marks
1772  * them as available. Stops when the first descriptor is found without
1773  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1774  *
1775  * The DMA buffers are not released. They form a ring buffer and
1776  * they are filled by ALSA while others are transmitted by DMA.
1777  *
1778  */
1779 
transmission_complete_intr(struct snd_dbri * dbri,int pipe)1780 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1781 {
1782 	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1783 	int td = dbri->pipes[pipe].desc;
1784 	int status;
1785 
1786 	while (td >= 0) {
1787 		if (td >= DBRI_NO_DESCS) {
1788 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789 			return;
1790 		}
1791 
1792 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793 		if (!(status & DBRI_TD_TBC))
1794 			break;
1795 
1796 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797 
1798 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1799 		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1800 
1801 		td = dbri->next_desc[td];
1802 		dbri->pipes[pipe].desc = td;
1803 	}
1804 
1805 	/* Notify ALSA */
1806 	spin_unlock(&dbri->lock);
1807 	snd_pcm_period_elapsed(info->substream);
1808 	spin_lock(&dbri->lock);
1809 }
1810 
reception_complete_intr(struct snd_dbri * dbri,int pipe)1811 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1812 {
1813 	struct dbri_streaminfo *info;
1814 	int rd = dbri->pipes[pipe].desc;
1815 	s32 status;
1816 
1817 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1818 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819 		return;
1820 	}
1821 
1822 	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1823 	status = dbri->dma->desc[rd].word1;
1824 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1825 
1826 	info = &dbri->stream_info[DBRI_REC];
1827 	info->offset += DBRI_RD_CNT(status);
1828 
1829 	/* FIXME: Check status */
1830 
1831 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1832 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1833 
1834 	/* Notify ALSA */
1835 	spin_unlock(&dbri->lock);
1836 	snd_pcm_period_elapsed(info->substream);
1837 	spin_lock(&dbri->lock);
1838 }
1839 
dbri_process_one_interrupt(struct snd_dbri * dbri,int x)1840 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1841 {
1842 	int val = D_INTR_GETVAL(x);
1843 	int channel = D_INTR_GETCHAN(x);
1844 	int command = D_INTR_GETCMD(x);
1845 	int code = D_INTR_GETCODE(x);
1846 #ifdef DBRI_DEBUG
1847 	int rval = D_INTR_GETRVAL(x);
1848 #endif
1849 
1850 	if (channel == D_INTR_CMD) {
1851 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1852 			cmds[command], val);
1853 	} else {
1854 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1855 			channel, code, rval);
1856 	}
1857 
1858 	switch (code) {
1859 	case D_INTR_CMDI:
1860 		if (command != D_WAIT)
1861 			printk(KERN_ERR "DBRI: Command read interrupt\n");
1862 		break;
1863 	case D_INTR_BRDY:
1864 		reception_complete_intr(dbri, channel);
1865 		break;
1866 	case D_INTR_XCMP:
1867 	case D_INTR_MINT:
1868 		transmission_complete_intr(dbri, channel);
1869 		break;
1870 	case D_INTR_UNDR:
1871 		/* UNDR - Transmission underrun
1872 		 * resend SDP command with clear pipe bit (C) set
1873 		 */
1874 		{
1875 	/* FIXME: do something useful in case of underrun */
1876 			printk(KERN_ERR "DBRI: Underrun error\n");
1877 #if 0
1878 			s32 *cmd;
1879 			int pipe = channel;
1880 			int td = dbri->pipes[pipe].desc;
1881 
1882 			dbri->dma->desc[td].word4 = 0;
1883 			cmd = dbri_cmdlock(dbri, NoGetLock);
1884 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1885 					    dbri->pipes[pipe].sdp
1886 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1887 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1888 			dbri_cmdsend(dbri, cmd);
1889 #endif
1890 		}
1891 		break;
1892 	case D_INTR_FXDT:
1893 		/* FXDT - Fixed data change */
1894 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1895 			val = reverse_bytes(val, dbri->pipes[channel].length);
1896 
1897 		if (dbri->pipes[channel].recv_fixed_ptr)
1898 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1899 		break;
1900 	default:
1901 		if (channel != D_INTR_CMD)
1902 			printk(KERN_WARNING
1903 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904 	}
1905 }
1906 
1907 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1908  * buffer until it finds a zero word (indicating nothing more to do
1909  * right now).  Non-zero words require processing and are handed off
1910  * to dbri_process_one_interrupt AFTER advancing the pointer.
1911  */
dbri_process_interrupt_buffer(struct snd_dbri * dbri)1912 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913 {
1914 	s32 x;
1915 
1916 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1917 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1918 		dbri->dbri_irqp++;
1919 		if (dbri->dbri_irqp == DBRI_INT_BLK)
1920 			dbri->dbri_irqp = 1;
1921 
1922 		dbri_process_one_interrupt(dbri, x);
1923 	}
1924 }
1925 
snd_dbri_interrupt(int irq,void * dev_id)1926 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1927 {
1928 	struct snd_dbri *dbri = dev_id;
1929 	static int errcnt = 0;
1930 	int x;
1931 
1932 	if (dbri == NULL)
1933 		return IRQ_NONE;
1934 	spin_lock(&dbri->lock);
1935 
1936 	/*
1937 	 * Read it, so the interrupt goes away.
1938 	 */
1939 	x = sbus_readl(dbri->regs + REG1);
1940 
1941 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1942 		u32 tmp;
1943 
1944 		if (x & D_MRR)
1945 			printk(KERN_ERR
1946 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947 			       x);
1948 		if (x & D_MLE)
1949 			printk(KERN_ERR
1950 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951 			       x);
1952 		if (x & D_LBG)
1953 			printk(KERN_ERR
1954 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1955 		if (x & D_MBE)
1956 			printk(KERN_ERR
1957 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1958 
1959 		/* Some of these SBus errors cause the chip's SBus circuitry
1960 		 * to be disabled, so just re-enable and try to keep going.
1961 		 *
1962 		 * The only one I've seen is MRR, which will be triggered
1963 		 * if you let a transmit pipe underrun, then try to CDP it.
1964 		 *
1965 		 * If these things persist, we reset the chip.
1966 		 */
1967 		if ((++errcnt) % 10 == 0) {
1968 			dprintk(D_INT, "Interrupt errors exceeded.\n");
1969 			dbri_reset(dbri);
1970 		} else {
1971 			tmp = sbus_readl(dbri->regs + REG0);
1972 			tmp &= ~(D_D);
1973 			sbus_writel(tmp, dbri->regs + REG0);
1974 		}
1975 	}
1976 
1977 	dbri_process_interrupt_buffer(dbri);
1978 
1979 	spin_unlock(&dbri->lock);
1980 
1981 	return IRQ_HANDLED;
1982 }
1983 
1984 /****************************************************************************
1985 		PCM Interface
1986 ****************************************************************************/
1987 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1988 	.info		= SNDRV_PCM_INFO_MMAP |
1989 			  SNDRV_PCM_INFO_INTERLEAVED |
1990 			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1991 			  SNDRV_PCM_INFO_MMAP_VALID |
1992 			  SNDRV_PCM_INFO_BATCH,
1993 	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1994 			  SNDRV_PCM_FMTBIT_A_LAW |
1995 			  SNDRV_PCM_FMTBIT_U8 |
1996 			  SNDRV_PCM_FMTBIT_S16_BE,
1997 	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1998 	.rate_min		= 5512,
1999 	.rate_max		= 48000,
2000 	.channels_min		= 1,
2001 	.channels_max		= 2,
2002 	.buffer_bytes_max	= 64 * 1024,
2003 	.period_bytes_min	= 1,
2004 	.period_bytes_max	= DBRI_TD_MAXCNT,
2005 	.periods_min		= 1,
2006 	.periods_max		= 1024,
2007 };
2008 
snd_hw_rule_format(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)2009 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2010 			      struct snd_pcm_hw_rule *rule)
2011 {
2012 	struct snd_interval *c = hw_param_interval(params,
2013 				SNDRV_PCM_HW_PARAM_CHANNELS);
2014 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2015 	struct snd_mask fmt;
2016 
2017 	snd_mask_any(&fmt);
2018 	if (c->min > 1) {
2019 		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2020 		return snd_mask_refine(f, &fmt);
2021 	}
2022 	return 0;
2023 }
2024 
snd_hw_rule_channels(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)2025 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2026 				struct snd_pcm_hw_rule *rule)
2027 {
2028 	struct snd_interval *c = hw_param_interval(params,
2029 				SNDRV_PCM_HW_PARAM_CHANNELS);
2030 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2031 	struct snd_interval ch;
2032 
2033 	snd_interval_any(&ch);
2034 	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035 		ch.min = 1;
2036 		ch.max = 1;
2037 		ch.integer = 1;
2038 		return snd_interval_refine(c, &ch);
2039 	}
2040 	return 0;
2041 }
2042 
snd_dbri_open(struct snd_pcm_substream * substream)2043 static int snd_dbri_open(struct snd_pcm_substream *substream)
2044 {
2045 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2046 	struct snd_pcm_runtime *runtime = substream->runtime;
2047 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2048 	unsigned long flags;
2049 
2050 	dprintk(D_USR, "open audio output.\n");
2051 	runtime->hw = snd_dbri_pcm_hw;
2052 
2053 	spin_lock_irqsave(&dbri->lock, flags);
2054 	info->substream = substream;
2055 	info->offset = 0;
2056 	info->dvma_buffer = 0;
2057 	info->pipe = -1;
2058 	spin_unlock_irqrestore(&dbri->lock, flags);
2059 
2060 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2061 			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2062 			    -1);
2063 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2064 			    snd_hw_rule_channels, NULL,
2065 			    SNDRV_PCM_HW_PARAM_CHANNELS,
2066 			    -1);
2067 
2068 	cs4215_open(dbri);
2069 
2070 	return 0;
2071 }
2072 
snd_dbri_close(struct snd_pcm_substream * substream)2073 static int snd_dbri_close(struct snd_pcm_substream *substream)
2074 {
2075 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077 
2078 	dprintk(D_USR, "close audio output.\n");
2079 	info->substream = NULL;
2080 	info->offset = 0;
2081 
2082 	return 0;
2083 }
2084 
snd_dbri_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)2085 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2086 			      struct snd_pcm_hw_params *hw_params)
2087 {
2088 	struct snd_pcm_runtime *runtime = substream->runtime;
2089 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2090 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091 	int direction;
2092 	int ret;
2093 
2094 	/* set sampling rate, audio format and number of channels */
2095 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2096 			     params_format(hw_params),
2097 			     params_channels(hw_params));
2098 	if (ret != 0)
2099 		return ret;
2100 
2101 	/* hw_params can get called multiple times. Only map the DMA once.
2102 	 */
2103 	if (info->dvma_buffer == 0) {
2104 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105 			direction = DMA_TO_DEVICE;
2106 		else
2107 			direction = DMA_FROM_DEVICE;
2108 
2109 		info->dvma_buffer =
2110 			dma_map_single(&dbri->op->dev,
2111 				       runtime->dma_area,
2112 				       params_buffer_bytes(hw_params),
2113 				       direction);
2114 	}
2115 
2116 	direction = params_buffer_bytes(hw_params);
2117 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2118 		direction, info->dvma_buffer);
2119 	return 0;
2120 }
2121 
snd_dbri_hw_free(struct snd_pcm_substream * substream)2122 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2123 {
2124 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2125 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2126 	int direction;
2127 
2128 	dprintk(D_USR, "hw_free.\n");
2129 
2130 	/* hw_free can get called multiple times. Only unmap the DMA once.
2131 	 */
2132 	if (info->dvma_buffer) {
2133 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2134 			direction = DMA_TO_DEVICE;
2135 		else
2136 			direction = DMA_FROM_DEVICE;
2137 
2138 		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2139 				 substream->runtime->buffer_size, direction);
2140 		info->dvma_buffer = 0;
2141 	}
2142 	if (info->pipe != -1) {
2143 		reset_pipe(dbri, info->pipe);
2144 		info->pipe = -1;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
snd_dbri_prepare(struct snd_pcm_substream * substream)2150 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2151 {
2152 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154 	int ret;
2155 
2156 	info->size = snd_pcm_lib_buffer_bytes(substream);
2157 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2158 		info->pipe = 4;	/* Send pipe */
2159 	else
2160 		info->pipe = 6;	/* Receive pipe */
2161 
2162 	spin_lock_irq(&dbri->lock);
2163 	info->offset = 0;
2164 
2165 	/* Setup the all the transmit/receive descriptors to cover the
2166 	 * whole DMA buffer.
2167 	 */
2168 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2169 			  snd_pcm_lib_period_bytes(substream));
2170 
2171 	spin_unlock_irq(&dbri->lock);
2172 
2173 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2174 	return ret;
2175 }
2176 
snd_dbri_trigger(struct snd_pcm_substream * substream,int cmd)2177 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2178 {
2179 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2180 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2181 	int ret = 0;
2182 
2183 	switch (cmd) {
2184 	case SNDRV_PCM_TRIGGER_START:
2185 		dprintk(D_USR, "start audio, period is %d bytes\n",
2186 			(int)snd_pcm_lib_period_bytes(substream));
2187 		/* Re-submit the TDs. */
2188 		xmit_descs(dbri);
2189 		break;
2190 	case SNDRV_PCM_TRIGGER_STOP:
2191 		dprintk(D_USR, "stop audio.\n");
2192 		reset_pipe(dbri, info->pipe);
2193 		break;
2194 	default:
2195 		ret = -EINVAL;
2196 	}
2197 
2198 	return ret;
2199 }
2200 
snd_dbri_pointer(struct snd_pcm_substream * substream)2201 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2202 {
2203 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2204 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2205 	snd_pcm_uframes_t ret;
2206 
2207 	ret = bytes_to_frames(substream->runtime, info->offset)
2208 		% substream->runtime->buffer_size;
2209 	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2210 		ret, substream->runtime->buffer_size);
2211 	return ret;
2212 }
2213 
2214 static const struct snd_pcm_ops snd_dbri_ops = {
2215 	.open = snd_dbri_open,
2216 	.close = snd_dbri_close,
2217 	.hw_params = snd_dbri_hw_params,
2218 	.hw_free = snd_dbri_hw_free,
2219 	.prepare = snd_dbri_prepare,
2220 	.trigger = snd_dbri_trigger,
2221 	.pointer = snd_dbri_pointer,
2222 };
2223 
snd_dbri_pcm(struct snd_card * card)2224 static int snd_dbri_pcm(struct snd_card *card)
2225 {
2226 	struct snd_pcm *pcm;
2227 	int err;
2228 
2229 	if ((err = snd_pcm_new(card,
2230 			       /* ID */		    "sun_dbri",
2231 			       /* device */	    0,
2232 			       /* playback count */ 1,
2233 			       /* capture count */  1, &pcm)) < 0)
2234 		return err;
2235 
2236 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2237 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2238 
2239 	pcm->private_data = card->private_data;
2240 	pcm->info_flags = 0;
2241 	strcpy(pcm->name, card->shortname);
2242 
2243 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2244 				       NULL, 64 * 1024, 64 * 1024);
2245 	return 0;
2246 }
2247 
2248 /*****************************************************************************
2249 			Mixer interface
2250 *****************************************************************************/
2251 
snd_cs4215_info_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2252 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2253 				  struct snd_ctl_elem_info *uinfo)
2254 {
2255 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2256 	uinfo->count = 2;
2257 	uinfo->value.integer.min = 0;
2258 	if (kcontrol->private_value == DBRI_PLAY)
2259 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2260 	else
2261 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2262 	return 0;
2263 }
2264 
snd_cs4215_get_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2265 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2266 				 struct snd_ctl_elem_value *ucontrol)
2267 {
2268 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2269 	struct dbri_streaminfo *info;
2270 
2271 	if (snd_BUG_ON(!dbri))
2272 		return -EINVAL;
2273 	info = &dbri->stream_info[kcontrol->private_value];
2274 
2275 	ucontrol->value.integer.value[0] = info->left_gain;
2276 	ucontrol->value.integer.value[1] = info->right_gain;
2277 	return 0;
2278 }
2279 
snd_cs4215_put_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2280 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2281 				 struct snd_ctl_elem_value *ucontrol)
2282 {
2283 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2284 	struct dbri_streaminfo *info =
2285 				&dbri->stream_info[kcontrol->private_value];
2286 	unsigned int vol[2];
2287 	int changed = 0;
2288 
2289 	vol[0] = ucontrol->value.integer.value[0];
2290 	vol[1] = ucontrol->value.integer.value[1];
2291 	if (kcontrol->private_value == DBRI_PLAY) {
2292 		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2293 			return -EINVAL;
2294 	} else {
2295 		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2296 			return -EINVAL;
2297 	}
2298 
2299 	if (info->left_gain != vol[0]) {
2300 		info->left_gain = vol[0];
2301 		changed = 1;
2302 	}
2303 	if (info->right_gain != vol[1]) {
2304 		info->right_gain = vol[1];
2305 		changed = 1;
2306 	}
2307 	if (changed) {
2308 		/* First mute outputs, and wait 1/8000 sec (125 us)
2309 		 * to make sure this takes.  This avoids clicking noises.
2310 		 */
2311 		cs4215_setdata(dbri, 1);
2312 		udelay(125);
2313 		cs4215_setdata(dbri, 0);
2314 	}
2315 	return changed;
2316 }
2317 
snd_cs4215_info_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2318 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2319 				  struct snd_ctl_elem_info *uinfo)
2320 {
2321 	int mask = (kcontrol->private_value >> 16) & 0xff;
2322 
2323 	uinfo->type = (mask == 1) ?
2324 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2325 	uinfo->count = 1;
2326 	uinfo->value.integer.min = 0;
2327 	uinfo->value.integer.max = mask;
2328 	return 0;
2329 }
2330 
snd_cs4215_get_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2331 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2332 				 struct snd_ctl_elem_value *ucontrol)
2333 {
2334 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2335 	int elem = kcontrol->private_value & 0xff;
2336 	int shift = (kcontrol->private_value >> 8) & 0xff;
2337 	int mask = (kcontrol->private_value >> 16) & 0xff;
2338 	int invert = (kcontrol->private_value >> 24) & 1;
2339 
2340 	if (snd_BUG_ON(!dbri))
2341 		return -EINVAL;
2342 
2343 	if (elem < 4)
2344 		ucontrol->value.integer.value[0] =
2345 		    (dbri->mm.data[elem] >> shift) & mask;
2346 	else
2347 		ucontrol->value.integer.value[0] =
2348 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2349 
2350 	if (invert == 1)
2351 		ucontrol->value.integer.value[0] =
2352 		    mask - ucontrol->value.integer.value[0];
2353 	return 0;
2354 }
2355 
snd_cs4215_put_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2356 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2357 				 struct snd_ctl_elem_value *ucontrol)
2358 {
2359 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2360 	int elem = kcontrol->private_value & 0xff;
2361 	int shift = (kcontrol->private_value >> 8) & 0xff;
2362 	int mask = (kcontrol->private_value >> 16) & 0xff;
2363 	int invert = (kcontrol->private_value >> 24) & 1;
2364 	int changed = 0;
2365 	unsigned short val;
2366 
2367 	if (snd_BUG_ON(!dbri))
2368 		return -EINVAL;
2369 
2370 	val = (ucontrol->value.integer.value[0] & mask);
2371 	if (invert == 1)
2372 		val = mask - val;
2373 	val <<= shift;
2374 
2375 	if (elem < 4) {
2376 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2377 				       ~(mask << shift)) | val;
2378 		changed = (val != dbri->mm.data[elem]);
2379 	} else {
2380 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2381 					   ~(mask << shift)) | val;
2382 		changed = (val != dbri->mm.ctrl[elem - 4]);
2383 	}
2384 
2385 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2386 		"mixer-value=%ld, mm-value=0x%x\n",
2387 		mask, changed, ucontrol->value.integer.value[0],
2388 		dbri->mm.data[elem & 3]);
2389 
2390 	if (changed) {
2391 		/* First mute outputs, and wait 1/8000 sec (125 us)
2392 		 * to make sure this takes.  This avoids clicking noises.
2393 		 */
2394 		cs4215_setdata(dbri, 1);
2395 		udelay(125);
2396 		cs4215_setdata(dbri, 0);
2397 	}
2398 	return changed;
2399 }
2400 
2401 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2402    timeslots. Shift is the bit offset in the timeslot, mask defines the
2403    number of bits. invert is a boolean for use with attenuation.
2404  */
2405 #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2406 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2407   .info = snd_cs4215_info_single,				\
2408   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2409   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2410 			((invert) << 24) },
2411 
2412 static const struct snd_kcontrol_new dbri_controls[] = {
2413 	{
2414 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2415 	 .name  = "Playback Volume",
2416 	 .info  = snd_cs4215_info_volume,
2417 	 .get   = snd_cs4215_get_volume,
2418 	 .put   = snd_cs4215_put_volume,
2419 	 .private_value = DBRI_PLAY,
2420 	 },
2421 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2422 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2423 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2424 	{
2425 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2426 	 .name  = "Capture Volume",
2427 	 .info  = snd_cs4215_info_volume,
2428 	 .get   = snd_cs4215_get_volume,
2429 	 .put   = snd_cs4215_put_volume,
2430 	 .private_value = DBRI_REC,
2431 	 },
2432 	/* FIXME: mic/line switch */
2433 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2434 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2435 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2436 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2437 };
2438 
snd_dbri_mixer(struct snd_card * card)2439 static int snd_dbri_mixer(struct snd_card *card)
2440 {
2441 	int idx, err;
2442 	struct snd_dbri *dbri;
2443 
2444 	if (snd_BUG_ON(!card || !card->private_data))
2445 		return -EINVAL;
2446 	dbri = card->private_data;
2447 
2448 	strcpy(card->mixername, card->shortname);
2449 
2450 	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2451 		err = snd_ctl_add(card,
2452 				snd_ctl_new1(&dbri_controls[idx], dbri));
2453 		if (err < 0)
2454 			return err;
2455 	}
2456 
2457 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2458 		dbri->stream_info[idx].left_gain = 0;
2459 		dbri->stream_info[idx].right_gain = 0;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 /****************************************************************************
2466 			/proc interface
2467 ****************************************************************************/
dbri_regs_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)2468 static void dbri_regs_read(struct snd_info_entry *entry,
2469 			   struct snd_info_buffer *buffer)
2470 {
2471 	struct snd_dbri *dbri = entry->private_data;
2472 
2473 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2474 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2475 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2476 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2477 }
2478 
2479 #ifdef DBRI_DEBUG
dbri_debug_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)2480 static void dbri_debug_read(struct snd_info_entry *entry,
2481 			    struct snd_info_buffer *buffer)
2482 {
2483 	struct snd_dbri *dbri = entry->private_data;
2484 	int pipe;
2485 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2486 
2487 	for (pipe = 0; pipe < 32; pipe++) {
2488 		if (pipe_active(dbri, pipe)) {
2489 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2490 			snd_iprintf(buffer,
2491 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2492 				    "len=%d next %d\n",
2493 				    pipe,
2494 				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2495 								 "input",
2496 				    pptr->sdp, pptr->desc,
2497 				    pptr->length, pptr->nextpipe);
2498 		}
2499 	}
2500 }
2501 #endif
2502 
snd_dbri_proc(struct snd_card * card)2503 static void snd_dbri_proc(struct snd_card *card)
2504 {
2505 	struct snd_dbri *dbri = card->private_data;
2506 
2507 	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2508 #ifdef DBRI_DEBUG
2509 	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2510 #endif
2511 }
2512 
2513 /*
2514 ****************************************************************************
2515 **************************** Initialization ********************************
2516 ****************************************************************************
2517 */
2518 static void snd_dbri_free(struct snd_dbri *dbri);
2519 
snd_dbri_create(struct snd_card * card,struct platform_device * op,int irq,int dev)2520 static int snd_dbri_create(struct snd_card *card,
2521 			   struct platform_device *op,
2522 			   int irq, int dev)
2523 {
2524 	struct snd_dbri *dbri = card->private_data;
2525 	int err;
2526 
2527 	spin_lock_init(&dbri->lock);
2528 	dbri->op = op;
2529 	dbri->irq = irq;
2530 
2531 	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2532 				       &dbri->dma_dvma, GFP_KERNEL);
2533 	if (!dbri->dma)
2534 		return -ENOMEM;
2535 
2536 	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2537 		dbri->dma, dbri->dma_dvma);
2538 
2539 	/* Map the registers into memory. */
2540 	dbri->regs_size = resource_size(&op->resource[0]);
2541 	dbri->regs = of_ioremap(&op->resource[0], 0,
2542 				dbri->regs_size, "DBRI Registers");
2543 	if (!dbri->regs) {
2544 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2545 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2546 				  (void *)dbri->dma, dbri->dma_dvma);
2547 		return -EIO;
2548 	}
2549 
2550 	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2551 			  "DBRI audio", dbri);
2552 	if (err) {
2553 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2554 		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2555 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2556 				  (void *)dbri->dma, dbri->dma_dvma);
2557 		return err;
2558 	}
2559 
2560 	/* Do low level initialization of the DBRI and CS4215 chips */
2561 	dbri_initialize(dbri);
2562 	err = cs4215_init(dbri);
2563 	if (err) {
2564 		snd_dbri_free(dbri);
2565 		return err;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
snd_dbri_free(struct snd_dbri * dbri)2571 static void snd_dbri_free(struct snd_dbri *dbri)
2572 {
2573 	dprintk(D_GEN, "snd_dbri_free\n");
2574 	dbri_reset(dbri);
2575 
2576 	if (dbri->irq)
2577 		free_irq(dbri->irq, dbri);
2578 
2579 	if (dbri->regs)
2580 		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2581 
2582 	if (dbri->dma)
2583 		dma_free_coherent(&dbri->op->dev,
2584 				  sizeof(struct dbri_dma),
2585 				  (void *)dbri->dma, dbri->dma_dvma);
2586 }
2587 
dbri_probe(struct platform_device * op)2588 static int dbri_probe(struct platform_device *op)
2589 {
2590 	struct snd_dbri *dbri;
2591 	struct resource *rp;
2592 	struct snd_card *card;
2593 	static int dev = 0;
2594 	int irq;
2595 	int err;
2596 
2597 	if (dev >= SNDRV_CARDS)
2598 		return -ENODEV;
2599 	if (!enable[dev]) {
2600 		dev++;
2601 		return -ENOENT;
2602 	}
2603 
2604 	irq = op->archdata.irqs[0];
2605 	if (irq <= 0) {
2606 		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2607 		return -ENODEV;
2608 	}
2609 
2610 	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2611 			   sizeof(struct snd_dbri), &card);
2612 	if (err < 0)
2613 		return err;
2614 
2615 	strcpy(card->driver, "DBRI");
2616 	strcpy(card->shortname, "Sun DBRI");
2617 	rp = &op->resource[0];
2618 	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2619 		card->shortname,
2620 		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2621 
2622 	err = snd_dbri_create(card, op, irq, dev);
2623 	if (err < 0) {
2624 		snd_card_free(card);
2625 		return err;
2626 	}
2627 
2628 	dbri = card->private_data;
2629 	err = snd_dbri_pcm(card);
2630 	if (err < 0)
2631 		goto _err;
2632 
2633 	err = snd_dbri_mixer(card);
2634 	if (err < 0)
2635 		goto _err;
2636 
2637 	/* /proc file handling */
2638 	snd_dbri_proc(card);
2639 	dev_set_drvdata(&op->dev, card);
2640 
2641 	err = snd_card_register(card);
2642 	if (err < 0)
2643 		goto _err;
2644 
2645 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2646 	       dev, dbri->regs,
2647 	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2648 	dev++;
2649 
2650 	return 0;
2651 
2652 _err:
2653 	snd_dbri_free(dbri);
2654 	snd_card_free(card);
2655 	return err;
2656 }
2657 
dbri_remove(struct platform_device * op)2658 static int dbri_remove(struct platform_device *op)
2659 {
2660 	struct snd_card *card = dev_get_drvdata(&op->dev);
2661 
2662 	snd_dbri_free(card->private_data);
2663 	snd_card_free(card);
2664 
2665 	return 0;
2666 }
2667 
2668 static const struct of_device_id dbri_match[] = {
2669 	{
2670 		.name = "SUNW,DBRIe",
2671 	},
2672 	{
2673 		.name = "SUNW,DBRIf",
2674 	},
2675 	{},
2676 };
2677 
2678 MODULE_DEVICE_TABLE(of, dbri_match);
2679 
2680 static struct platform_driver dbri_sbus_driver = {
2681 	.driver = {
2682 		.name = "dbri",
2683 		.of_match_table = dbri_match,
2684 	},
2685 	.probe		= dbri_probe,
2686 	.remove		= dbri_remove,
2687 };
2688 
2689 module_platform_driver(dbri_sbus_driver);
2690