1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe admin command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/rculist.h>
9 #include <linux/part_stat.h>
10
11 #include <generated/utsrelease.h>
12 #include <asm/unaligned.h>
13 #include "nvmet.h"
14
nvmet_get_log_page_len(struct nvme_command * cmd)15 u32 nvmet_get_log_page_len(struct nvme_command *cmd)
16 {
17 u32 len = le16_to_cpu(cmd->get_log_page.numdu);
18
19 len <<= 16;
20 len += le16_to_cpu(cmd->get_log_page.numdl);
21 /* NUMD is a 0's based value */
22 len += 1;
23 len *= sizeof(u32);
24
25 return len;
26 }
27
nvmet_feat_data_len(struct nvmet_req * req,u32 cdw10)28 static u32 nvmet_feat_data_len(struct nvmet_req *req, u32 cdw10)
29 {
30 switch (cdw10 & 0xff) {
31 case NVME_FEAT_HOST_ID:
32 return sizeof(req->sq->ctrl->hostid);
33 default:
34 return 0;
35 }
36 }
37
nvmet_get_log_page_offset(struct nvme_command * cmd)38 u64 nvmet_get_log_page_offset(struct nvme_command *cmd)
39 {
40 return le64_to_cpu(cmd->get_log_page.lpo);
41 }
42
nvmet_execute_get_log_page_noop(struct nvmet_req * req)43 static void nvmet_execute_get_log_page_noop(struct nvmet_req *req)
44 {
45 nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->transfer_len));
46 }
47
nvmet_execute_get_log_page_error(struct nvmet_req * req)48 static void nvmet_execute_get_log_page_error(struct nvmet_req *req)
49 {
50 struct nvmet_ctrl *ctrl = req->sq->ctrl;
51 unsigned long flags;
52 off_t offset = 0;
53 u64 slot;
54 u64 i;
55
56 spin_lock_irqsave(&ctrl->error_lock, flags);
57 slot = ctrl->err_counter % NVMET_ERROR_LOG_SLOTS;
58
59 for (i = 0; i < NVMET_ERROR_LOG_SLOTS; i++) {
60 if (nvmet_copy_to_sgl(req, offset, &ctrl->slots[slot],
61 sizeof(struct nvme_error_slot)))
62 break;
63
64 if (slot == 0)
65 slot = NVMET_ERROR_LOG_SLOTS - 1;
66 else
67 slot--;
68 offset += sizeof(struct nvme_error_slot);
69 }
70 spin_unlock_irqrestore(&ctrl->error_lock, flags);
71 nvmet_req_complete(req, 0);
72 }
73
nvmet_get_smart_log_nsid(struct nvmet_req * req,struct nvme_smart_log * slog)74 static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req,
75 struct nvme_smart_log *slog)
76 {
77 u64 host_reads, host_writes, data_units_read, data_units_written;
78 u16 status;
79
80 status = nvmet_req_find_ns(req);
81 if (status)
82 return status;
83
84 /* we don't have the right data for file backed ns */
85 if (!req->ns->bdev)
86 return NVME_SC_SUCCESS;
87
88 host_reads = part_stat_read(req->ns->bdev, ios[READ]);
89 data_units_read =
90 DIV_ROUND_UP(part_stat_read(req->ns->bdev, sectors[READ]), 1000);
91 host_writes = part_stat_read(req->ns->bdev, ios[WRITE]);
92 data_units_written =
93 DIV_ROUND_UP(part_stat_read(req->ns->bdev, sectors[WRITE]), 1000);
94
95 put_unaligned_le64(host_reads, &slog->host_reads[0]);
96 put_unaligned_le64(data_units_read, &slog->data_units_read[0]);
97 put_unaligned_le64(host_writes, &slog->host_writes[0]);
98 put_unaligned_le64(data_units_written, &slog->data_units_written[0]);
99
100 return NVME_SC_SUCCESS;
101 }
102
nvmet_get_smart_log_all(struct nvmet_req * req,struct nvme_smart_log * slog)103 static u16 nvmet_get_smart_log_all(struct nvmet_req *req,
104 struct nvme_smart_log *slog)
105 {
106 u64 host_reads = 0, host_writes = 0;
107 u64 data_units_read = 0, data_units_written = 0;
108 struct nvmet_ns *ns;
109 struct nvmet_ctrl *ctrl;
110 unsigned long idx;
111
112 ctrl = req->sq->ctrl;
113 xa_for_each(&ctrl->subsys->namespaces, idx, ns) {
114 /* we don't have the right data for file backed ns */
115 if (!ns->bdev)
116 continue;
117 host_reads += part_stat_read(ns->bdev, ios[READ]);
118 data_units_read += DIV_ROUND_UP(
119 part_stat_read(ns->bdev, sectors[READ]), 1000);
120 host_writes += part_stat_read(ns->bdev, ios[WRITE]);
121 data_units_written += DIV_ROUND_UP(
122 part_stat_read(ns->bdev, sectors[WRITE]), 1000);
123 }
124
125 put_unaligned_le64(host_reads, &slog->host_reads[0]);
126 put_unaligned_le64(data_units_read, &slog->data_units_read[0]);
127 put_unaligned_le64(host_writes, &slog->host_writes[0]);
128 put_unaligned_le64(data_units_written, &slog->data_units_written[0]);
129
130 return NVME_SC_SUCCESS;
131 }
132
nvmet_execute_get_log_page_smart(struct nvmet_req * req)133 static void nvmet_execute_get_log_page_smart(struct nvmet_req *req)
134 {
135 struct nvme_smart_log *log;
136 u16 status = NVME_SC_INTERNAL;
137 unsigned long flags;
138
139 if (req->transfer_len != sizeof(*log))
140 goto out;
141
142 log = kzalloc(sizeof(*log), GFP_KERNEL);
143 if (!log)
144 goto out;
145
146 if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL))
147 status = nvmet_get_smart_log_all(req, log);
148 else
149 status = nvmet_get_smart_log_nsid(req, log);
150 if (status)
151 goto out_free_log;
152
153 spin_lock_irqsave(&req->sq->ctrl->error_lock, flags);
154 put_unaligned_le64(req->sq->ctrl->err_counter,
155 &log->num_err_log_entries);
156 spin_unlock_irqrestore(&req->sq->ctrl->error_lock, flags);
157
158 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log));
159 out_free_log:
160 kfree(log);
161 out:
162 nvmet_req_complete(req, status);
163 }
164
nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req * req)165 static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req)
166 {
167 u16 status = NVME_SC_INTERNAL;
168 struct nvme_effects_log *log;
169
170 log = kzalloc(sizeof(*log), GFP_KERNEL);
171 if (!log)
172 goto out;
173
174 log->acs[nvme_admin_get_log_page] = cpu_to_le32(1 << 0);
175 log->acs[nvme_admin_identify] = cpu_to_le32(1 << 0);
176 log->acs[nvme_admin_abort_cmd] = cpu_to_le32(1 << 0);
177 log->acs[nvme_admin_set_features] = cpu_to_le32(1 << 0);
178 log->acs[nvme_admin_get_features] = cpu_to_le32(1 << 0);
179 log->acs[nvme_admin_async_event] = cpu_to_le32(1 << 0);
180 log->acs[nvme_admin_keep_alive] = cpu_to_le32(1 << 0);
181
182 log->iocs[nvme_cmd_read] = cpu_to_le32(1 << 0);
183 log->iocs[nvme_cmd_write] = cpu_to_le32(1 << 0);
184 log->iocs[nvme_cmd_flush] = cpu_to_le32(1 << 0);
185 log->iocs[nvme_cmd_dsm] = cpu_to_le32(1 << 0);
186 log->iocs[nvme_cmd_write_zeroes] = cpu_to_le32(1 << 0);
187
188 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log));
189
190 kfree(log);
191 out:
192 nvmet_req_complete(req, status);
193 }
194
nvmet_execute_get_log_changed_ns(struct nvmet_req * req)195 static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req)
196 {
197 struct nvmet_ctrl *ctrl = req->sq->ctrl;
198 u16 status = NVME_SC_INTERNAL;
199 size_t len;
200
201 if (req->transfer_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32))
202 goto out;
203
204 mutex_lock(&ctrl->lock);
205 if (ctrl->nr_changed_ns == U32_MAX)
206 len = sizeof(__le32);
207 else
208 len = ctrl->nr_changed_ns * sizeof(__le32);
209 status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len);
210 if (!status)
211 status = nvmet_zero_sgl(req, len, req->transfer_len - len);
212 ctrl->nr_changed_ns = 0;
213 nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR);
214 mutex_unlock(&ctrl->lock);
215 out:
216 nvmet_req_complete(req, status);
217 }
218
nvmet_format_ana_group(struct nvmet_req * req,u32 grpid,struct nvme_ana_group_desc * desc)219 static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid,
220 struct nvme_ana_group_desc *desc)
221 {
222 struct nvmet_ctrl *ctrl = req->sq->ctrl;
223 struct nvmet_ns *ns;
224 unsigned long idx;
225 u32 count = 0;
226
227 if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) {
228 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
229 if (ns->anagrpid == grpid)
230 desc->nsids[count++] = cpu_to_le32(ns->nsid);
231 }
232
233 desc->grpid = cpu_to_le32(grpid);
234 desc->nnsids = cpu_to_le32(count);
235 desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt);
236 desc->state = req->port->ana_state[grpid];
237 memset(desc->rsvd17, 0, sizeof(desc->rsvd17));
238 return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32);
239 }
240
nvmet_execute_get_log_page_ana(struct nvmet_req * req)241 static void nvmet_execute_get_log_page_ana(struct nvmet_req *req)
242 {
243 struct nvme_ana_rsp_hdr hdr = { 0, };
244 struct nvme_ana_group_desc *desc;
245 size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */
246 size_t len;
247 u32 grpid;
248 u16 ngrps = 0;
249 u16 status;
250
251 status = NVME_SC_INTERNAL;
252 desc = kmalloc(sizeof(struct nvme_ana_group_desc) +
253 NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL);
254 if (!desc)
255 goto out;
256
257 down_read(&nvmet_ana_sem);
258 for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) {
259 if (!nvmet_ana_group_enabled[grpid])
260 continue;
261 len = nvmet_format_ana_group(req, grpid, desc);
262 status = nvmet_copy_to_sgl(req, offset, desc, len);
263 if (status)
264 break;
265 offset += len;
266 ngrps++;
267 }
268 for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) {
269 if (nvmet_ana_group_enabled[grpid])
270 ngrps++;
271 }
272
273 hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt);
274 hdr.ngrps = cpu_to_le16(ngrps);
275 nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE);
276 up_read(&nvmet_ana_sem);
277
278 kfree(desc);
279
280 /* copy the header last once we know the number of groups */
281 status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr));
282 out:
283 nvmet_req_complete(req, status);
284 }
285
nvmet_execute_get_log_page(struct nvmet_req * req)286 static void nvmet_execute_get_log_page(struct nvmet_req *req)
287 {
288 if (!nvmet_check_transfer_len(req, nvmet_get_log_page_len(req->cmd)))
289 return;
290
291 switch (req->cmd->get_log_page.lid) {
292 case NVME_LOG_ERROR:
293 return nvmet_execute_get_log_page_error(req);
294 case NVME_LOG_SMART:
295 return nvmet_execute_get_log_page_smart(req);
296 case NVME_LOG_FW_SLOT:
297 /*
298 * We only support a single firmware slot which always is
299 * active, so we can zero out the whole firmware slot log and
300 * still claim to fully implement this mandatory log page.
301 */
302 return nvmet_execute_get_log_page_noop(req);
303 case NVME_LOG_CHANGED_NS:
304 return nvmet_execute_get_log_changed_ns(req);
305 case NVME_LOG_CMD_EFFECTS:
306 return nvmet_execute_get_log_cmd_effects_ns(req);
307 case NVME_LOG_ANA:
308 return nvmet_execute_get_log_page_ana(req);
309 }
310 pr_debug("unhandled lid %d on qid %d\n",
311 req->cmd->get_log_page.lid, req->sq->qid);
312 req->error_loc = offsetof(struct nvme_get_log_page_command, lid);
313 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR);
314 }
315
nvmet_set_model_number(struct nvmet_subsys * subsys)316 static u16 nvmet_set_model_number(struct nvmet_subsys *subsys)
317 {
318 u16 status = 0;
319
320 mutex_lock(&subsys->lock);
321 if (!subsys->model_number) {
322 subsys->model_number =
323 kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
324 if (!subsys->model_number)
325 status = NVME_SC_INTERNAL;
326 }
327 mutex_unlock(&subsys->lock);
328
329 return status;
330 }
331
nvmet_execute_identify_ctrl(struct nvmet_req * req)332 static void nvmet_execute_identify_ctrl(struct nvmet_req *req)
333 {
334 struct nvmet_ctrl *ctrl = req->sq->ctrl;
335 struct nvmet_subsys *subsys = ctrl->subsys;
336 struct nvme_id_ctrl *id;
337 u32 cmd_capsule_size;
338 u16 status = 0;
339
340 /*
341 * If there is no model number yet, set it now. It will then remain
342 * stable for the life time of the subsystem.
343 */
344 if (!subsys->model_number) {
345 status = nvmet_set_model_number(subsys);
346 if (status)
347 goto out;
348 }
349
350 id = kzalloc(sizeof(*id), GFP_KERNEL);
351 if (!id) {
352 status = NVME_SC_INTERNAL;
353 goto out;
354 }
355
356 /* XXX: figure out how to assign real vendors IDs. */
357 id->vid = 0;
358 id->ssvid = 0;
359
360 memset(id->sn, ' ', sizeof(id->sn));
361 bin2hex(id->sn, &ctrl->subsys->serial,
362 min(sizeof(ctrl->subsys->serial), sizeof(id->sn) / 2));
363 memcpy_and_pad(id->mn, sizeof(id->mn), subsys->model_number,
364 strlen(subsys->model_number), ' ');
365 memcpy_and_pad(id->fr, sizeof(id->fr),
366 UTS_RELEASE, strlen(UTS_RELEASE), ' ');
367
368 id->rab = 6;
369
370 /*
371 * XXX: figure out how we can assign a IEEE OUI, but until then
372 * the safest is to leave it as zeroes.
373 */
374
375 /* we support multiple ports, multiples hosts and ANA: */
376 id->cmic = (1 << 0) | (1 << 1) | (1 << 3);
377
378 /* Limit MDTS according to transport capability */
379 if (ctrl->ops->get_mdts)
380 id->mdts = ctrl->ops->get_mdts(ctrl);
381 else
382 id->mdts = 0;
383
384 id->cntlid = cpu_to_le16(ctrl->cntlid);
385 id->ver = cpu_to_le32(ctrl->subsys->ver);
386
387 /* XXX: figure out what to do about RTD3R/RTD3 */
388 id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL);
389 id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT |
390 NVME_CTRL_ATTR_TBKAS);
391
392 id->oacs = 0;
393
394 /*
395 * We don't really have a practical limit on the number of abort
396 * comands. But we don't do anything useful for abort either, so
397 * no point in allowing more abort commands than the spec requires.
398 */
399 id->acl = 3;
400
401 id->aerl = NVMET_ASYNC_EVENTS - 1;
402
403 /* first slot is read-only, only one slot supported */
404 id->frmw = (1 << 0) | (1 << 1);
405 id->lpa = (1 << 0) | (1 << 1) | (1 << 2);
406 id->elpe = NVMET_ERROR_LOG_SLOTS - 1;
407 id->npss = 0;
408
409 /* We support keep-alive timeout in granularity of seconds */
410 id->kas = cpu_to_le16(NVMET_KAS);
411
412 id->sqes = (0x6 << 4) | 0x6;
413 id->cqes = (0x4 << 4) | 0x4;
414
415 /* no enforcement soft-limit for maxcmd - pick arbitrary high value */
416 id->maxcmd = cpu_to_le16(NVMET_MAX_CMD);
417
418 id->nn = cpu_to_le32(ctrl->subsys->max_nsid);
419 id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES);
420 id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM |
421 NVME_CTRL_ONCS_WRITE_ZEROES);
422
423 /* XXX: don't report vwc if the underlying device is write through */
424 id->vwc = NVME_CTRL_VWC_PRESENT;
425
426 /*
427 * We can't support atomic writes bigger than a LBA without support
428 * from the backend device.
429 */
430 id->awun = 0;
431 id->awupf = 0;
432
433 id->sgls = cpu_to_le32(1 << 0); /* we always support SGLs */
434 if (ctrl->ops->flags & NVMF_KEYED_SGLS)
435 id->sgls |= cpu_to_le32(1 << 2);
436 if (req->port->inline_data_size)
437 id->sgls |= cpu_to_le32(1 << 20);
438
439 strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn));
440
441 /*
442 * Max command capsule size is sqe + in-capsule data size.
443 * Disable in-capsule data for Metadata capable controllers.
444 */
445 cmd_capsule_size = sizeof(struct nvme_command);
446 if (!ctrl->pi_support)
447 cmd_capsule_size += req->port->inline_data_size;
448 id->ioccsz = cpu_to_le32(cmd_capsule_size / 16);
449
450 /* Max response capsule size is cqe */
451 id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16);
452
453 id->msdbd = ctrl->ops->msdbd;
454
455 id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4);
456 id->anatt = 10; /* random value */
457 id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS);
458 id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS);
459
460 /*
461 * Meh, we don't really support any power state. Fake up the same
462 * values that qemu does.
463 */
464 id->psd[0].max_power = cpu_to_le16(0x9c4);
465 id->psd[0].entry_lat = cpu_to_le32(0x10);
466 id->psd[0].exit_lat = cpu_to_le32(0x4);
467
468 id->nwpc = 1 << 0; /* write protect and no write protect */
469
470 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id));
471
472 kfree(id);
473 out:
474 nvmet_req_complete(req, status);
475 }
476
nvmet_execute_identify_ns(struct nvmet_req * req)477 static void nvmet_execute_identify_ns(struct nvmet_req *req)
478 {
479 struct nvme_id_ns *id;
480 u16 status;
481
482 if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) {
483 req->error_loc = offsetof(struct nvme_identify, nsid);
484 status = NVME_SC_INVALID_NS | NVME_SC_DNR;
485 goto out;
486 }
487
488 id = kzalloc(sizeof(*id), GFP_KERNEL);
489 if (!id) {
490 status = NVME_SC_INTERNAL;
491 goto out;
492 }
493
494 /* return an all zeroed buffer if we can't find an active namespace */
495 status = nvmet_req_find_ns(req);
496 if (status) {
497 status = 0;
498 goto done;
499 }
500
501 nvmet_ns_revalidate(req->ns);
502
503 /*
504 * nuse = ncap = nsze isn't always true, but we have no way to find
505 * that out from the underlying device.
506 */
507 id->ncap = id->nsze =
508 cpu_to_le64(req->ns->size >> req->ns->blksize_shift);
509 switch (req->port->ana_state[req->ns->anagrpid]) {
510 case NVME_ANA_INACCESSIBLE:
511 case NVME_ANA_PERSISTENT_LOSS:
512 break;
513 default:
514 id->nuse = id->nsze;
515 break;
516 }
517
518 if (req->ns->bdev)
519 nvmet_bdev_set_limits(req->ns->bdev, id);
520
521 /*
522 * We just provide a single LBA format that matches what the
523 * underlying device reports.
524 */
525 id->nlbaf = 0;
526 id->flbas = 0;
527
528 /*
529 * Our namespace might always be shared. Not just with other
530 * controllers, but also with any other user of the block device.
531 */
532 id->nmic = (1 << 0);
533 id->anagrpid = cpu_to_le32(req->ns->anagrpid);
534
535 memcpy(&id->nguid, &req->ns->nguid, sizeof(id->nguid));
536
537 id->lbaf[0].ds = req->ns->blksize_shift;
538
539 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) {
540 id->dpc = NVME_NS_DPC_PI_FIRST | NVME_NS_DPC_PI_LAST |
541 NVME_NS_DPC_PI_TYPE1 | NVME_NS_DPC_PI_TYPE2 |
542 NVME_NS_DPC_PI_TYPE3;
543 id->mc = NVME_MC_EXTENDED_LBA;
544 id->dps = req->ns->pi_type;
545 id->flbas = NVME_NS_FLBAS_META_EXT;
546 id->lbaf[0].ms = cpu_to_le16(req->ns->metadata_size);
547 }
548
549 if (req->ns->readonly)
550 id->nsattr |= (1 << 0);
551 done:
552 if (!status)
553 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id));
554
555 kfree(id);
556 out:
557 nvmet_req_complete(req, status);
558 }
559
nvmet_execute_identify_nslist(struct nvmet_req * req)560 static void nvmet_execute_identify_nslist(struct nvmet_req *req)
561 {
562 static const int buf_size = NVME_IDENTIFY_DATA_SIZE;
563 struct nvmet_ctrl *ctrl = req->sq->ctrl;
564 struct nvmet_ns *ns;
565 unsigned long idx;
566 u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid);
567 __le32 *list;
568 u16 status = 0;
569 int i = 0;
570
571 list = kzalloc(buf_size, GFP_KERNEL);
572 if (!list) {
573 status = NVME_SC_INTERNAL;
574 goto out;
575 }
576
577 xa_for_each(&ctrl->subsys->namespaces, idx, ns) {
578 if (ns->nsid <= min_nsid)
579 continue;
580 list[i++] = cpu_to_le32(ns->nsid);
581 if (i == buf_size / sizeof(__le32))
582 break;
583 }
584
585 status = nvmet_copy_to_sgl(req, 0, list, buf_size);
586
587 kfree(list);
588 out:
589 nvmet_req_complete(req, status);
590 }
591
nvmet_copy_ns_identifier(struct nvmet_req * req,u8 type,u8 len,void * id,off_t * off)592 static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len,
593 void *id, off_t *off)
594 {
595 struct nvme_ns_id_desc desc = {
596 .nidt = type,
597 .nidl = len,
598 };
599 u16 status;
600
601 status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc));
602 if (status)
603 return status;
604 *off += sizeof(desc);
605
606 status = nvmet_copy_to_sgl(req, *off, id, len);
607 if (status)
608 return status;
609 *off += len;
610
611 return 0;
612 }
613
nvmet_execute_identify_desclist(struct nvmet_req * req)614 static void nvmet_execute_identify_desclist(struct nvmet_req *req)
615 {
616 off_t off = 0;
617 u16 status;
618
619 status = nvmet_req_find_ns(req);
620 if (status)
621 goto out;
622
623 if (memchr_inv(&req->ns->uuid, 0, sizeof(req->ns->uuid))) {
624 status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID,
625 NVME_NIDT_UUID_LEN,
626 &req->ns->uuid, &off);
627 if (status)
628 goto out;
629 }
630 if (memchr_inv(req->ns->nguid, 0, sizeof(req->ns->nguid))) {
631 status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID,
632 NVME_NIDT_NGUID_LEN,
633 &req->ns->nguid, &off);
634 if (status)
635 goto out;
636 }
637
638 if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off,
639 off) != NVME_IDENTIFY_DATA_SIZE - off)
640 status = NVME_SC_INTERNAL | NVME_SC_DNR;
641
642 out:
643 nvmet_req_complete(req, status);
644 }
645
nvmet_execute_identify(struct nvmet_req * req)646 static void nvmet_execute_identify(struct nvmet_req *req)
647 {
648 if (!nvmet_check_transfer_len(req, NVME_IDENTIFY_DATA_SIZE))
649 return;
650
651 switch (req->cmd->identify.cns) {
652 case NVME_ID_CNS_NS:
653 return nvmet_execute_identify_ns(req);
654 case NVME_ID_CNS_CTRL:
655 return nvmet_execute_identify_ctrl(req);
656 case NVME_ID_CNS_NS_ACTIVE_LIST:
657 return nvmet_execute_identify_nslist(req);
658 case NVME_ID_CNS_NS_DESC_LIST:
659 return nvmet_execute_identify_desclist(req);
660 }
661
662 pr_debug("unhandled identify cns %d on qid %d\n",
663 req->cmd->identify.cns, req->sq->qid);
664 req->error_loc = offsetof(struct nvme_identify, cns);
665 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR);
666 }
667
668 /*
669 * A "minimum viable" abort implementation: the command is mandatory in the
670 * spec, but we are not required to do any useful work. We couldn't really
671 * do a useful abort, so don't bother even with waiting for the command
672 * to be exectuted and return immediately telling the command to abort
673 * wasn't found.
674 */
nvmet_execute_abort(struct nvmet_req * req)675 static void nvmet_execute_abort(struct nvmet_req *req)
676 {
677 if (!nvmet_check_transfer_len(req, 0))
678 return;
679 nvmet_set_result(req, 1);
680 nvmet_req_complete(req, 0);
681 }
682
nvmet_write_protect_flush_sync(struct nvmet_req * req)683 static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req)
684 {
685 u16 status;
686
687 if (req->ns->file)
688 status = nvmet_file_flush(req);
689 else
690 status = nvmet_bdev_flush(req);
691
692 if (status)
693 pr_err("write protect flush failed nsid: %u\n", req->ns->nsid);
694 return status;
695 }
696
nvmet_set_feat_write_protect(struct nvmet_req * req)697 static u16 nvmet_set_feat_write_protect(struct nvmet_req *req)
698 {
699 u32 write_protect = le32_to_cpu(req->cmd->common.cdw11);
700 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
701 u16 status;
702
703 status = nvmet_req_find_ns(req);
704 if (status)
705 return status;
706
707 mutex_lock(&subsys->lock);
708 switch (write_protect) {
709 case NVME_NS_WRITE_PROTECT:
710 req->ns->readonly = true;
711 status = nvmet_write_protect_flush_sync(req);
712 if (status)
713 req->ns->readonly = false;
714 break;
715 case NVME_NS_NO_WRITE_PROTECT:
716 req->ns->readonly = false;
717 status = 0;
718 break;
719 default:
720 break;
721 }
722
723 if (!status)
724 nvmet_ns_changed(subsys, req->ns->nsid);
725 mutex_unlock(&subsys->lock);
726 return status;
727 }
728
nvmet_set_feat_kato(struct nvmet_req * req)729 u16 nvmet_set_feat_kato(struct nvmet_req *req)
730 {
731 u32 val32 = le32_to_cpu(req->cmd->common.cdw11);
732
733 nvmet_stop_keep_alive_timer(req->sq->ctrl);
734 req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000);
735 nvmet_start_keep_alive_timer(req->sq->ctrl);
736
737 nvmet_set_result(req, req->sq->ctrl->kato);
738
739 return 0;
740 }
741
nvmet_set_feat_async_event(struct nvmet_req * req,u32 mask)742 u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask)
743 {
744 u32 val32 = le32_to_cpu(req->cmd->common.cdw11);
745
746 if (val32 & ~mask) {
747 req->error_loc = offsetof(struct nvme_common_command, cdw11);
748 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
749 }
750
751 WRITE_ONCE(req->sq->ctrl->aen_enabled, val32);
752 nvmet_set_result(req, val32);
753
754 return 0;
755 }
756
nvmet_execute_set_features(struct nvmet_req * req)757 void nvmet_execute_set_features(struct nvmet_req *req)
758 {
759 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
760 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10);
761 u32 cdw11 = le32_to_cpu(req->cmd->common.cdw11);
762 u16 status = 0;
763 u16 nsqr;
764 u16 ncqr;
765
766 if (!nvmet_check_transfer_len(req, 0))
767 return;
768
769 switch (cdw10 & 0xff) {
770 case NVME_FEAT_NUM_QUEUES:
771 ncqr = (cdw11 >> 16) & 0xffff;
772 nsqr = cdw11 & 0xffff;
773 if (ncqr == 0xffff || nsqr == 0xffff) {
774 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
775 break;
776 }
777 nvmet_set_result(req,
778 (subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16));
779 break;
780 case NVME_FEAT_KATO:
781 status = nvmet_set_feat_kato(req);
782 break;
783 case NVME_FEAT_ASYNC_EVENT:
784 status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL);
785 break;
786 case NVME_FEAT_HOST_ID:
787 status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
788 break;
789 case NVME_FEAT_WRITE_PROTECT:
790 status = nvmet_set_feat_write_protect(req);
791 break;
792 default:
793 req->error_loc = offsetof(struct nvme_common_command, cdw10);
794 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
795 break;
796 }
797
798 nvmet_req_complete(req, status);
799 }
800
nvmet_get_feat_write_protect(struct nvmet_req * req)801 static u16 nvmet_get_feat_write_protect(struct nvmet_req *req)
802 {
803 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
804 u32 result;
805
806 result = nvmet_req_find_ns(req);
807 if (result)
808 return result;
809
810 mutex_lock(&subsys->lock);
811 if (req->ns->readonly == true)
812 result = NVME_NS_WRITE_PROTECT;
813 else
814 result = NVME_NS_NO_WRITE_PROTECT;
815 nvmet_set_result(req, result);
816 mutex_unlock(&subsys->lock);
817
818 return 0;
819 }
820
nvmet_get_feat_kato(struct nvmet_req * req)821 void nvmet_get_feat_kato(struct nvmet_req *req)
822 {
823 nvmet_set_result(req, req->sq->ctrl->kato * 1000);
824 }
825
nvmet_get_feat_async_event(struct nvmet_req * req)826 void nvmet_get_feat_async_event(struct nvmet_req *req)
827 {
828 nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled));
829 }
830
nvmet_execute_get_features(struct nvmet_req * req)831 void nvmet_execute_get_features(struct nvmet_req *req)
832 {
833 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
834 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10);
835 u16 status = 0;
836
837 if (!nvmet_check_transfer_len(req, nvmet_feat_data_len(req, cdw10)))
838 return;
839
840 switch (cdw10 & 0xff) {
841 /*
842 * These features are mandatory in the spec, but we don't
843 * have a useful way to implement them. We'll eventually
844 * need to come up with some fake values for these.
845 */
846 #if 0
847 case NVME_FEAT_ARBITRATION:
848 break;
849 case NVME_FEAT_POWER_MGMT:
850 break;
851 case NVME_FEAT_TEMP_THRESH:
852 break;
853 case NVME_FEAT_ERR_RECOVERY:
854 break;
855 case NVME_FEAT_IRQ_COALESCE:
856 break;
857 case NVME_FEAT_IRQ_CONFIG:
858 break;
859 case NVME_FEAT_WRITE_ATOMIC:
860 break;
861 #endif
862 case NVME_FEAT_ASYNC_EVENT:
863 nvmet_get_feat_async_event(req);
864 break;
865 case NVME_FEAT_VOLATILE_WC:
866 nvmet_set_result(req, 1);
867 break;
868 case NVME_FEAT_NUM_QUEUES:
869 nvmet_set_result(req,
870 (subsys->max_qid-1) | ((subsys->max_qid-1) << 16));
871 break;
872 case NVME_FEAT_KATO:
873 nvmet_get_feat_kato(req);
874 break;
875 case NVME_FEAT_HOST_ID:
876 /* need 128-bit host identifier flag */
877 if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) {
878 req->error_loc =
879 offsetof(struct nvme_common_command, cdw11);
880 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
881 break;
882 }
883
884 status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid,
885 sizeof(req->sq->ctrl->hostid));
886 break;
887 case NVME_FEAT_WRITE_PROTECT:
888 status = nvmet_get_feat_write_protect(req);
889 break;
890 default:
891 req->error_loc =
892 offsetof(struct nvme_common_command, cdw10);
893 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
894 break;
895 }
896
897 nvmet_req_complete(req, status);
898 }
899
nvmet_execute_async_event(struct nvmet_req * req)900 void nvmet_execute_async_event(struct nvmet_req *req)
901 {
902 struct nvmet_ctrl *ctrl = req->sq->ctrl;
903
904 if (!nvmet_check_transfer_len(req, 0))
905 return;
906
907 mutex_lock(&ctrl->lock);
908 if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) {
909 mutex_unlock(&ctrl->lock);
910 nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR);
911 return;
912 }
913 ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req;
914 mutex_unlock(&ctrl->lock);
915
916 schedule_work(&ctrl->async_event_work);
917 }
918
nvmet_execute_keep_alive(struct nvmet_req * req)919 void nvmet_execute_keep_alive(struct nvmet_req *req)
920 {
921 struct nvmet_ctrl *ctrl = req->sq->ctrl;
922 u16 status = 0;
923
924 if (!nvmet_check_transfer_len(req, 0))
925 return;
926
927 if (!ctrl->kato) {
928 status = NVME_SC_KA_TIMEOUT_INVALID;
929 goto out;
930 }
931
932 pr_debug("ctrl %d update keep-alive timer for %d secs\n",
933 ctrl->cntlid, ctrl->kato);
934 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
935 out:
936 nvmet_req_complete(req, status);
937 }
938
nvmet_parse_admin_cmd(struct nvmet_req * req)939 u16 nvmet_parse_admin_cmd(struct nvmet_req *req)
940 {
941 struct nvme_command *cmd = req->cmd;
942 u16 ret;
943
944 if (nvme_is_fabrics(cmd))
945 return nvmet_parse_fabrics_cmd(req);
946 if (nvmet_req_subsys(req)->type == NVME_NQN_DISC)
947 return nvmet_parse_discovery_cmd(req);
948
949 ret = nvmet_check_ctrl_status(req);
950 if (unlikely(ret))
951 return ret;
952
953 if (nvmet_req_passthru_ctrl(req))
954 return nvmet_parse_passthru_admin_cmd(req);
955
956 switch (cmd->common.opcode) {
957 case nvme_admin_get_log_page:
958 req->execute = nvmet_execute_get_log_page;
959 return 0;
960 case nvme_admin_identify:
961 req->execute = nvmet_execute_identify;
962 return 0;
963 case nvme_admin_abort_cmd:
964 req->execute = nvmet_execute_abort;
965 return 0;
966 case nvme_admin_set_features:
967 req->execute = nvmet_execute_set_features;
968 return 0;
969 case nvme_admin_get_features:
970 req->execute = nvmet_execute_get_features;
971 return 0;
972 case nvme_admin_async_event:
973 req->execute = nvmet_execute_async_event;
974 return 0;
975 case nvme_admin_keep_alive:
976 req->execute = nvmet_execute_keep_alive;
977 return 0;
978 default:
979 return nvmet_report_invalid_opcode(req);
980 }
981 }
982