1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2019 Spreadtrum Communications Inc.
3 
4 #include <linux/clk.h>
5 #include <linux/delay.h>
6 #include <linux/hwspinlock.h>
7 #include <linux/io.h>
8 #include <linux/module.h>
9 #include <linux/nvmem-provider.h>
10 #include <linux/of_device.h>
11 #include <linux/platform_device.h>
12 
13 #define SPRD_EFUSE_ENABLE		0x20
14 #define SPRD_EFUSE_ERR_FLAG		0x24
15 #define SPRD_EFUSE_ERR_CLR		0x28
16 #define SPRD_EFUSE_MAGIC_NUM		0x2c
17 #define SPRD_EFUSE_FW_CFG		0x50
18 #define SPRD_EFUSE_PW_SWT		0x54
19 #define SPRD_EFUSE_MEM(val)		(0x1000 + ((val) << 2))
20 
21 #define SPRD_EFUSE_VDD_EN		BIT(0)
22 #define SPRD_EFUSE_AUTO_CHECK_EN	BIT(1)
23 #define SPRD_EFUSE_DOUBLE_EN		BIT(2)
24 #define SPRD_EFUSE_MARGIN_RD_EN		BIT(3)
25 #define SPRD_EFUSE_LOCK_WR_EN		BIT(4)
26 
27 #define SPRD_EFUSE_ERR_CLR_MASK		GENMASK(13, 0)
28 
29 #define SPRD_EFUSE_ENK1_ON		BIT(0)
30 #define SPRD_EFUSE_ENK2_ON		BIT(1)
31 #define SPRD_EFUSE_PROG_EN		BIT(2)
32 
33 #define SPRD_EFUSE_MAGIC_NUMBER		0x8810
34 
35 /* Block width (bytes) definitions */
36 #define SPRD_EFUSE_BLOCK_WIDTH		4
37 
38 /*
39  * The Spreadtrum AP efuse contains 2 parts: normal efuse and secure efuse,
40  * and we can only access the normal efuse in kernel. So define the normal
41  * block offset index and normal block numbers.
42  */
43 #define SPRD_EFUSE_NORMAL_BLOCK_NUMS	24
44 #define SPRD_EFUSE_NORMAL_BLOCK_OFFSET	72
45 
46 /* Timeout (ms) for the trylock of hardware spinlocks */
47 #define SPRD_EFUSE_HWLOCK_TIMEOUT	5000
48 
49 /*
50  * Since different Spreadtrum SoC chip can have different normal block numbers
51  * and offset. And some SoC can support block double feature, which means
52  * when reading or writing data to efuse memory, the controller can save double
53  * data in case one data become incorrect after a long period.
54  *
55  * Thus we should save them in the device data structure.
56  */
57 struct sprd_efuse_variant_data {
58 	u32 blk_nums;
59 	u32 blk_offset;
60 	bool blk_double;
61 };
62 
63 struct sprd_efuse {
64 	struct device *dev;
65 	struct clk *clk;
66 	struct hwspinlock *hwlock;
67 	struct mutex mutex;
68 	void __iomem *base;
69 	const struct sprd_efuse_variant_data *data;
70 };
71 
72 static const struct sprd_efuse_variant_data ums312_data = {
73 	.blk_nums = SPRD_EFUSE_NORMAL_BLOCK_NUMS,
74 	.blk_offset = SPRD_EFUSE_NORMAL_BLOCK_OFFSET,
75 	.blk_double = false,
76 };
77 
78 /*
79  * On Spreadtrum platform, we have multi-subsystems will access the unique
80  * efuse controller, so we need one hardware spinlock to synchronize between
81  * the multiple subsystems.
82  */
sprd_efuse_lock(struct sprd_efuse * efuse)83 static int sprd_efuse_lock(struct sprd_efuse *efuse)
84 {
85 	int ret;
86 
87 	mutex_lock(&efuse->mutex);
88 
89 	ret = hwspin_lock_timeout_raw(efuse->hwlock,
90 				      SPRD_EFUSE_HWLOCK_TIMEOUT);
91 	if (ret) {
92 		dev_err(efuse->dev, "timeout get the hwspinlock\n");
93 		mutex_unlock(&efuse->mutex);
94 		return ret;
95 	}
96 
97 	return 0;
98 }
99 
sprd_efuse_unlock(struct sprd_efuse * efuse)100 static void sprd_efuse_unlock(struct sprd_efuse *efuse)
101 {
102 	hwspin_unlock_raw(efuse->hwlock);
103 	mutex_unlock(&efuse->mutex);
104 }
105 
sprd_efuse_set_prog_power(struct sprd_efuse * efuse,bool en)106 static void sprd_efuse_set_prog_power(struct sprd_efuse *efuse, bool en)
107 {
108 	u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT);
109 
110 	if (en)
111 		val &= ~SPRD_EFUSE_ENK2_ON;
112 	else
113 		val &= ~SPRD_EFUSE_ENK1_ON;
114 
115 	writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
116 
117 	/* Open or close efuse power need wait 1000us to make power stable. */
118 	usleep_range(1000, 1200);
119 
120 	if (en)
121 		val |= SPRD_EFUSE_ENK1_ON;
122 	else
123 		val |= SPRD_EFUSE_ENK2_ON;
124 
125 	writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
126 
127 	/* Open or close efuse power need wait 1000us to make power stable. */
128 	usleep_range(1000, 1200);
129 }
130 
sprd_efuse_set_read_power(struct sprd_efuse * efuse,bool en)131 static void sprd_efuse_set_read_power(struct sprd_efuse *efuse, bool en)
132 {
133 	u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
134 
135 	if (en)
136 		val |= SPRD_EFUSE_VDD_EN;
137 	else
138 		val &= ~SPRD_EFUSE_VDD_EN;
139 
140 	writel(val, efuse->base + SPRD_EFUSE_ENABLE);
141 
142 	/* Open or close efuse power need wait 1000us to make power stable. */
143 	usleep_range(1000, 1200);
144 }
145 
sprd_efuse_set_prog_lock(struct sprd_efuse * efuse,bool en)146 static void sprd_efuse_set_prog_lock(struct sprd_efuse *efuse, bool en)
147 {
148 	u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
149 
150 	if (en)
151 		val |= SPRD_EFUSE_LOCK_WR_EN;
152 	else
153 		val &= ~SPRD_EFUSE_LOCK_WR_EN;
154 
155 	writel(val, efuse->base + SPRD_EFUSE_ENABLE);
156 }
157 
sprd_efuse_set_auto_check(struct sprd_efuse * efuse,bool en)158 static void sprd_efuse_set_auto_check(struct sprd_efuse *efuse, bool en)
159 {
160 	u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
161 
162 	if (en)
163 		val |= SPRD_EFUSE_AUTO_CHECK_EN;
164 	else
165 		val &= ~SPRD_EFUSE_AUTO_CHECK_EN;
166 
167 	writel(val, efuse->base + SPRD_EFUSE_ENABLE);
168 }
169 
sprd_efuse_set_data_double(struct sprd_efuse * efuse,bool en)170 static void sprd_efuse_set_data_double(struct sprd_efuse *efuse, bool en)
171 {
172 	u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
173 
174 	if (en)
175 		val |= SPRD_EFUSE_DOUBLE_EN;
176 	else
177 		val &= ~SPRD_EFUSE_DOUBLE_EN;
178 
179 	writel(val, efuse->base + SPRD_EFUSE_ENABLE);
180 }
181 
sprd_efuse_set_prog_en(struct sprd_efuse * efuse,bool en)182 static void sprd_efuse_set_prog_en(struct sprd_efuse *efuse, bool en)
183 {
184 	u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT);
185 
186 	if (en)
187 		val |= SPRD_EFUSE_PROG_EN;
188 	else
189 		val &= ~SPRD_EFUSE_PROG_EN;
190 
191 	writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
192 }
193 
sprd_efuse_raw_prog(struct sprd_efuse * efuse,u32 blk,bool doub,bool lock,u32 * data)194 static int sprd_efuse_raw_prog(struct sprd_efuse *efuse, u32 blk, bool doub,
195 			       bool lock, u32 *data)
196 {
197 	u32 status;
198 	int ret = 0;
199 
200 	/*
201 	 * We need set the correct magic number before writing the efuse to
202 	 * allow programming, and block other programming until we clear the
203 	 * magic number.
204 	 */
205 	writel(SPRD_EFUSE_MAGIC_NUMBER,
206 	       efuse->base + SPRD_EFUSE_MAGIC_NUM);
207 
208 	/*
209 	 * Power on the efuse, enable programme and enable double data
210 	 * if asked.
211 	 */
212 	sprd_efuse_set_prog_power(efuse, true);
213 	sprd_efuse_set_prog_en(efuse, true);
214 	sprd_efuse_set_data_double(efuse, doub);
215 
216 	/*
217 	 * Enable the auto-check function to validate if the programming is
218 	 * successful.
219 	 */
220 	if (lock)
221 		sprd_efuse_set_auto_check(efuse, true);
222 
223 	writel(*data, efuse->base + SPRD_EFUSE_MEM(blk));
224 
225 	/* Disable auto-check and data double after programming */
226 	if (lock)
227 		sprd_efuse_set_auto_check(efuse, false);
228 	sprd_efuse_set_data_double(efuse, false);
229 
230 	/*
231 	 * Check the efuse error status, if the programming is successful,
232 	 * we should lock this efuse block to avoid programming again.
233 	 */
234 	status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG);
235 	if (status) {
236 		dev_err(efuse->dev,
237 			"write error status %d of block %d\n", ret, blk);
238 
239 		writel(SPRD_EFUSE_ERR_CLR_MASK,
240 		       efuse->base + SPRD_EFUSE_ERR_CLR);
241 		ret = -EBUSY;
242 	} else if (lock) {
243 		sprd_efuse_set_prog_lock(efuse, lock);
244 		writel(0, efuse->base + SPRD_EFUSE_MEM(blk));
245 		sprd_efuse_set_prog_lock(efuse, false);
246 	}
247 
248 	sprd_efuse_set_prog_power(efuse, false);
249 	writel(0, efuse->base + SPRD_EFUSE_MAGIC_NUM);
250 
251 	return ret;
252 }
253 
sprd_efuse_raw_read(struct sprd_efuse * efuse,int blk,u32 * val,bool doub)254 static int sprd_efuse_raw_read(struct sprd_efuse *efuse, int blk, u32 *val,
255 			       bool doub)
256 {
257 	u32 status;
258 
259 	/*
260 	 * Need power on the efuse before reading data from efuse, and will
261 	 * power off the efuse after reading process.
262 	 */
263 	sprd_efuse_set_read_power(efuse, true);
264 
265 	/* Enable double data if asked */
266 	sprd_efuse_set_data_double(efuse, doub);
267 
268 	/* Start to read data from efuse block */
269 	*val = readl(efuse->base + SPRD_EFUSE_MEM(blk));
270 
271 	/* Disable double data */
272 	sprd_efuse_set_data_double(efuse, false);
273 
274 	/* Power off the efuse */
275 	sprd_efuse_set_read_power(efuse, false);
276 
277 	/*
278 	 * Check the efuse error status and clear them if there are some
279 	 * errors occurred.
280 	 */
281 	status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG);
282 	if (status) {
283 		dev_err(efuse->dev,
284 			"read error status %d of block %d\n", status, blk);
285 
286 		writel(SPRD_EFUSE_ERR_CLR_MASK,
287 		       efuse->base + SPRD_EFUSE_ERR_CLR);
288 		return -EBUSY;
289 	}
290 
291 	return 0;
292 }
293 
sprd_efuse_read(void * context,u32 offset,void * val,size_t bytes)294 static int sprd_efuse_read(void *context, u32 offset, void *val, size_t bytes)
295 {
296 	struct sprd_efuse *efuse = context;
297 	bool blk_double = efuse->data->blk_double;
298 	u32 index = offset / SPRD_EFUSE_BLOCK_WIDTH + efuse->data->blk_offset;
299 	u32 blk_offset = (offset % SPRD_EFUSE_BLOCK_WIDTH) * BITS_PER_BYTE;
300 	u32 data;
301 	int ret;
302 
303 	ret = sprd_efuse_lock(efuse);
304 	if (ret)
305 		return ret;
306 
307 	ret = clk_prepare_enable(efuse->clk);
308 	if (ret)
309 		goto unlock;
310 
311 	ret = sprd_efuse_raw_read(efuse, index, &data, blk_double);
312 	if (!ret) {
313 		data >>= blk_offset;
314 		memcpy(val, &data, bytes);
315 	}
316 
317 	clk_disable_unprepare(efuse->clk);
318 
319 unlock:
320 	sprd_efuse_unlock(efuse);
321 	return ret;
322 }
323 
sprd_efuse_write(void * context,u32 offset,void * val,size_t bytes)324 static int sprd_efuse_write(void *context, u32 offset, void *val, size_t bytes)
325 {
326 	struct sprd_efuse *efuse = context;
327 	bool blk_double = efuse->data->blk_double;
328 	bool lock;
329 	int ret;
330 
331 	ret = sprd_efuse_lock(efuse);
332 	if (ret)
333 		return ret;
334 
335 	ret = clk_prepare_enable(efuse->clk);
336 	if (ret)
337 		goto unlock;
338 
339 	/*
340 	 * If the writing bytes are equal with the block width, which means the
341 	 * whole block will be programmed. For this case, we should not allow
342 	 * this block to be programmed again by locking this block.
343 	 *
344 	 * If the block was programmed partially, we should allow this block to
345 	 * be programmed again.
346 	 */
347 	if (bytes < SPRD_EFUSE_BLOCK_WIDTH)
348 		lock = false;
349 	else
350 		lock = true;
351 
352 	ret = sprd_efuse_raw_prog(efuse, offset, blk_double, lock, val);
353 
354 	clk_disable_unprepare(efuse->clk);
355 
356 unlock:
357 	sprd_efuse_unlock(efuse);
358 	return ret;
359 }
360 
sprd_efuse_probe(struct platform_device * pdev)361 static int sprd_efuse_probe(struct platform_device *pdev)
362 {
363 	struct device_node *np = pdev->dev.of_node;
364 	struct nvmem_device *nvmem;
365 	struct nvmem_config econfig = { };
366 	struct sprd_efuse *efuse;
367 	const struct sprd_efuse_variant_data *pdata;
368 	int ret;
369 
370 	pdata = of_device_get_match_data(&pdev->dev);
371 	if (!pdata) {
372 		dev_err(&pdev->dev, "No matching driver data found\n");
373 		return -EINVAL;
374 	}
375 
376 	efuse = devm_kzalloc(&pdev->dev, sizeof(*efuse), GFP_KERNEL);
377 	if (!efuse)
378 		return -ENOMEM;
379 
380 	efuse->base = devm_platform_ioremap_resource(pdev, 0);
381 	if (IS_ERR(efuse->base))
382 		return PTR_ERR(efuse->base);
383 
384 	ret = of_hwspin_lock_get_id(np, 0);
385 	if (ret < 0) {
386 		dev_err(&pdev->dev, "failed to get hwlock id\n");
387 		return ret;
388 	}
389 
390 	efuse->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret);
391 	if (!efuse->hwlock) {
392 		dev_err(&pdev->dev, "failed to request hwlock\n");
393 		return -ENXIO;
394 	}
395 
396 	efuse->clk = devm_clk_get(&pdev->dev, "enable");
397 	if (IS_ERR(efuse->clk)) {
398 		dev_err(&pdev->dev, "failed to get enable clock\n");
399 		return PTR_ERR(efuse->clk);
400 	}
401 
402 	mutex_init(&efuse->mutex);
403 	efuse->dev = &pdev->dev;
404 	efuse->data = pdata;
405 
406 	econfig.stride = 1;
407 	econfig.word_size = 1;
408 	econfig.read_only = false;
409 	econfig.name = "sprd-efuse";
410 	econfig.size = efuse->data->blk_nums * SPRD_EFUSE_BLOCK_WIDTH;
411 	econfig.reg_read = sprd_efuse_read;
412 	econfig.reg_write = sprd_efuse_write;
413 	econfig.priv = efuse;
414 	econfig.dev = &pdev->dev;
415 	nvmem = devm_nvmem_register(&pdev->dev, &econfig);
416 	if (IS_ERR(nvmem)) {
417 		dev_err(&pdev->dev, "failed to register nvmem\n");
418 		return PTR_ERR(nvmem);
419 	}
420 
421 	return 0;
422 }
423 
424 static const struct of_device_id sprd_efuse_of_match[] = {
425 	{ .compatible = "sprd,ums312-efuse", .data = &ums312_data },
426 	{ }
427 };
428 
429 static struct platform_driver sprd_efuse_driver = {
430 	.probe = sprd_efuse_probe,
431 	.driver = {
432 		.name = "sprd-efuse",
433 		.of_match_table = sprd_efuse_of_match,
434 	},
435 };
436 
437 module_platform_driver(sprd_efuse_driver);
438 
439 MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
440 MODULE_DESCRIPTION("Spreadtrum AP efuse driver");
441 MODULE_LICENSE("GPL v2");
442