1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 /**
174  * struct usb_interface - what usb device drivers talk to
175  * @altsetting: array of interface structures, one for each alternate
176  *	setting that may be selected.  Each one includes a set of
177  *	endpoint configurations.  They will be in no particular order.
178  * @cur_altsetting: the current altsetting.
179  * @num_altsetting: number of altsettings defined.
180  * @intf_assoc: interface association descriptor
181  * @minor: the minor number assigned to this interface, if this
182  *	interface is bound to a driver that uses the USB major number.
183  *	If this interface does not use the USB major, this field should
184  *	be unused.  The driver should set this value in the probe()
185  *	function of the driver, after it has been assigned a minor
186  *	number from the USB core by calling usb_register_dev().
187  * @condition: binding state of the interface: not bound, binding
188  *	(in probe()), bound to a driver, or unbinding (in disconnect())
189  * @sysfs_files_created: sysfs attributes exist
190  * @ep_devs_created: endpoint child pseudo-devices exist
191  * @unregistering: flag set when the interface is being unregistered
192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193  *	capability during autosuspend.
194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195  *	has been deferred.
196  * @needs_binding: flag set when the driver should be re-probed or unbound
197  *	following a reset or suspend operation it doesn't support.
198  * @authorized: This allows to (de)authorize individual interfaces instead
199  *	a whole device in contrast to the device authorization.
200  * @dev: driver model's view of this device
201  * @usb_dev: if an interface is bound to the USB major, this will point
202  *	to the sysfs representation for that device.
203  * @reset_ws: Used for scheduling resets from atomic context.
204  * @resetting_device: USB core reset the device, so use alt setting 0 as
205  *	current; needs bandwidth alloc after reset.
206  *
207  * USB device drivers attach to interfaces on a physical device.  Each
208  * interface encapsulates a single high level function, such as feeding
209  * an audio stream to a speaker or reporting a change in a volume control.
210  * Many USB devices only have one interface.  The protocol used to talk to
211  * an interface's endpoints can be defined in a usb "class" specification,
212  * or by a product's vendor.  The (default) control endpoint is part of
213  * every interface, but is never listed among the interface's descriptors.
214  *
215  * The driver that is bound to the interface can use standard driver model
216  * calls such as dev_get_drvdata() on the dev member of this structure.
217  *
218  * Each interface may have alternate settings.  The initial configuration
219  * of a device sets altsetting 0, but the device driver can change
220  * that setting using usb_set_interface().  Alternate settings are often
221  * used to control the use of periodic endpoints, such as by having
222  * different endpoints use different amounts of reserved USB bandwidth.
223  * All standards-conformant USB devices that use isochronous endpoints
224  * will use them in non-default settings.
225  *
226  * The USB specification says that alternate setting numbers must run from
227  * 0 to one less than the total number of alternate settings.  But some
228  * devices manage to mess this up, and the structures aren't necessarily
229  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
230  * look up an alternate setting in the altsetting array based on its number.
231  */
232 struct usb_interface {
233 	/* array of alternate settings for this interface,
234 	 * stored in no particular order */
235 	struct usb_host_interface *altsetting;
236 
237 	struct usb_host_interface *cur_altsetting;	/* the currently
238 					 * active alternate setting */
239 	unsigned num_altsetting;	/* number of alternate settings */
240 
241 	/* If there is an interface association descriptor then it will list
242 	 * the associated interfaces */
243 	struct usb_interface_assoc_descriptor *intf_assoc;
244 
245 	int minor;			/* minor number this interface is
246 					 * bound to */
247 	enum usb_interface_condition condition;		/* state of binding */
248 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
249 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
250 	unsigned unregistering:1;	/* unregistration is in progress */
251 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
252 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
253 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
254 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
255 	unsigned authorized:1;		/* used for interface authorization */
256 
257 	struct device dev;		/* interface specific device info */
258 	struct device *usb_dev;
259 	struct work_struct reset_ws;	/* for resets in atomic context */
260 };
261 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
262 
usb_get_intfdata(struct usb_interface * intf)263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265 	return dev_get_drvdata(&intf->dev);
266 }
267 
usb_set_intfdata(struct usb_interface * intf,void * data)268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270 	dev_set_drvdata(&intf->dev, data);
271 }
272 
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275 
276 /* Hard limit */
277 #define USB_MAXENDPOINTS	30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES	32
280 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
281 
282 /*
283  * USB Resume Timer: Every Host controller driver should drive the resume
284  * signalling on the bus for the amount of time defined by this macro.
285  *
286  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
287  *
288  * Note that the USB Specification states we should drive resume for *at least*
289  * 20 ms, but it doesn't give an upper bound. This creates two possible
290  * situations which we want to avoid:
291  *
292  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
293  * us to fail USB Electrical Tests, thus failing Certification
294  *
295  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
296  * and while we can argue that's against the USB Specification, we don't have
297  * control over which devices a certification laboratory will be using for
298  * certification. If CertLab uses a device which was tested against Windows and
299  * that happens to have relaxed resume signalling rules, we might fall into
300  * situations where we fail interoperability and electrical tests.
301  *
302  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
303  * should cope with both LPJ calibration errors and devices not following every
304  * detail of the USB Specification.
305  */
306 #define USB_RESUME_TIMEOUT	40 /* ms */
307 
308 /**
309  * struct usb_interface_cache - long-term representation of a device interface
310  * @num_altsetting: number of altsettings defined.
311  * @ref: reference counter.
312  * @altsetting: variable-length array of interface structures, one for
313  *	each alternate setting that may be selected.  Each one includes a
314  *	set of endpoint configurations.  They will be in no particular order.
315  *
316  * These structures persist for the lifetime of a usb_device, unlike
317  * struct usb_interface (which persists only as long as its configuration
318  * is installed).  The altsetting arrays can be accessed through these
319  * structures at any time, permitting comparison of configurations and
320  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
321  */
322 struct usb_interface_cache {
323 	unsigned num_altsetting;	/* number of alternate settings */
324 	struct kref ref;		/* reference counter */
325 
326 	/* variable-length array of alternate settings for this interface,
327 	 * stored in no particular order */
328 	struct usb_host_interface altsetting[];
329 };
330 #define	ref_to_usb_interface_cache(r) \
331 		container_of(r, struct usb_interface_cache, ref)
332 #define	altsetting_to_usb_interface_cache(a) \
333 		container_of(a, struct usb_interface_cache, altsetting[0])
334 
335 /**
336  * struct usb_host_config - representation of a device's configuration
337  * @desc: the device's configuration descriptor.
338  * @string: pointer to the cached version of the iConfiguration string, if
339  *	present for this configuration.
340  * @intf_assoc: list of any interface association descriptors in this config
341  * @interface: array of pointers to usb_interface structures, one for each
342  *	interface in the configuration.  The number of interfaces is stored
343  *	in desc.bNumInterfaces.  These pointers are valid only while the
344  *	configuration is active.
345  * @intf_cache: array of pointers to usb_interface_cache structures, one
346  *	for each interface in the configuration.  These structures exist
347  *	for the entire life of the device.
348  * @extra: pointer to buffer containing all extra descriptors associated
349  *	with this configuration (those preceding the first interface
350  *	descriptor).
351  * @extralen: length of the extra descriptors buffer.
352  *
353  * USB devices may have multiple configurations, but only one can be active
354  * at any time.  Each encapsulates a different operational environment;
355  * for example, a dual-speed device would have separate configurations for
356  * full-speed and high-speed operation.  The number of configurations
357  * available is stored in the device descriptor as bNumConfigurations.
358  *
359  * A configuration can contain multiple interfaces.  Each corresponds to
360  * a different function of the USB device, and all are available whenever
361  * the configuration is active.  The USB standard says that interfaces
362  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
363  * of devices get this wrong.  In addition, the interface array is not
364  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
365  * look up an interface entry based on its number.
366  *
367  * Device drivers should not attempt to activate configurations.  The choice
368  * of which configuration to install is a policy decision based on such
369  * considerations as available power, functionality provided, and the user's
370  * desires (expressed through userspace tools).  However, drivers can call
371  * usb_reset_configuration() to reinitialize the current configuration and
372  * all its interfaces.
373  */
374 struct usb_host_config {
375 	struct usb_config_descriptor	desc;
376 
377 	char *string;		/* iConfiguration string, if present */
378 
379 	/* List of any Interface Association Descriptors in this
380 	 * configuration. */
381 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
382 
383 	/* the interfaces associated with this configuration,
384 	 * stored in no particular order */
385 	struct usb_interface *interface[USB_MAXINTERFACES];
386 
387 	/* Interface information available even when this is not the
388 	 * active configuration */
389 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
390 
391 	unsigned char *extra;   /* Extra descriptors */
392 	int extralen;
393 };
394 
395 /* USB2.0 and USB3.0 device BOS descriptor set */
396 struct usb_host_bos {
397 	struct usb_bos_descriptor	*desc;
398 
399 	/* wireless cap descriptor is handled by wusb */
400 	struct usb_ext_cap_descriptor	*ext_cap;
401 	struct usb_ss_cap_descriptor	*ss_cap;
402 	struct usb_ssp_cap_descriptor	*ssp_cap;
403 	struct usb_ss_container_id_descriptor	*ss_id;
404 	struct usb_ptm_cap_descriptor	*ptm_cap;
405 };
406 
407 int __usb_get_extra_descriptor(char *buffer, unsigned size,
408 	unsigned char type, void **ptr, size_t min);
409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
410 				__usb_get_extra_descriptor((ifpoint)->extra, \
411 				(ifpoint)->extralen, \
412 				type, (void **)ptr, sizeof(**(ptr)))
413 
414 /* ----------------------------------------------------------------------- */
415 
416 /* USB device number allocation bitmap */
417 struct usb_devmap {
418 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
419 };
420 
421 /*
422  * Allocated per bus (tree of devices) we have:
423  */
424 struct usb_bus {
425 	struct device *controller;	/* host side hardware */
426 	struct device *sysdev;		/* as seen from firmware or bus */
427 	int busnum;			/* Bus number (in order of reg) */
428 	const char *bus_name;		/* stable id (PCI slot_name etc) */
429 	u8 uses_pio_for_control;	/*
430 					 * Does the host controller use PIO
431 					 * for control transfers?
432 					 */
433 	u8 otg_port;			/* 0, or number of OTG/HNP port */
434 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
435 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
436 	unsigned no_stop_on_short:1;    /*
437 					 * Quirk: some controllers don't stop
438 					 * the ep queue on a short transfer
439 					 * with the URB_SHORT_NOT_OK flag set.
440 					 */
441 	unsigned no_sg_constraint:1;	/* no sg constraint */
442 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
443 
444 	int devnum_next;		/* Next open device number in
445 					 * round-robin allocation */
446 	struct mutex devnum_next_mutex; /* devnum_next mutex */
447 
448 	struct usb_devmap devmap;	/* device address allocation map */
449 	struct usb_device *root_hub;	/* Root hub */
450 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
451 
452 	int bandwidth_allocated;	/* on this bus: how much of the time
453 					 * reserved for periodic (intr/iso)
454 					 * requests is used, on average?
455 					 * Units: microseconds/frame.
456 					 * Limits: Full/low speed reserve 90%,
457 					 * while high speed reserves 80%.
458 					 */
459 	int bandwidth_int_reqs;		/* number of Interrupt requests */
460 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
461 
462 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
463 
464 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
465 	struct mon_bus *mon_bus;	/* non-null when associated */
466 	int monitored;			/* non-zero when monitored */
467 #endif
468 };
469 
470 struct usb_dev_state;
471 
472 /* ----------------------------------------------------------------------- */
473 
474 struct usb_tt;
475 
476 enum usb_device_removable {
477 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
478 	USB_DEVICE_REMOVABLE,
479 	USB_DEVICE_FIXED,
480 };
481 
482 enum usb_port_connect_type {
483 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
484 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
485 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
486 	USB_PORT_NOT_USED,
487 };
488 
489 /*
490  * USB port quirks.
491  */
492 
493 /* For the given port, prefer the old (faster) enumeration scheme. */
494 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
495 
496 /* Decrease TRSTRCY to 10ms during device enumeration. */
497 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
498 
499 /*
500  * USB 2.0 Link Power Management (LPM) parameters.
501  */
502 struct usb2_lpm_parameters {
503 	/* Best effort service latency indicate how long the host will drive
504 	 * resume on an exit from L1.
505 	 */
506 	unsigned int besl;
507 
508 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
509 	 * When the timer counts to zero, the parent hub will initiate a LPM
510 	 * transition to L1.
511 	 */
512 	int timeout;
513 };
514 
515 /*
516  * USB 3.0 Link Power Management (LPM) parameters.
517  *
518  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
519  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
520  * All three are stored in nanoseconds.
521  */
522 struct usb3_lpm_parameters {
523 	/*
524 	 * Maximum exit latency (MEL) for the host to send a packet to the
525 	 * device (either a Ping for isoc endpoints, or a data packet for
526 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
527 	 * in the path to transition the links to U0.
528 	 */
529 	unsigned int mel;
530 	/*
531 	 * Maximum exit latency for a device-initiated LPM transition to bring
532 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
533 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
534 	 */
535 	unsigned int pel;
536 
537 	/*
538 	 * The System Exit Latency (SEL) includes PEL, and three other
539 	 * latencies.  After a device initiates a U0 transition, it will take
540 	 * some time from when the device sends the ERDY to when it will finally
541 	 * receive the data packet.  Basically, SEL should be the worse-case
542 	 * latency from when a device starts initiating a U0 transition to when
543 	 * it will get data.
544 	 */
545 	unsigned int sel;
546 	/*
547 	 * The idle timeout value that is currently programmed into the parent
548 	 * hub for this device.  When the timer counts to zero, the parent hub
549 	 * will initiate an LPM transition to either U1 or U2.
550 	 */
551 	int timeout;
552 };
553 
554 /**
555  * struct usb_device - kernel's representation of a USB device
556  * @devnum: device number; address on a USB bus
557  * @devpath: device ID string for use in messages (e.g., /port/...)
558  * @route: tree topology hex string for use with xHCI
559  * @state: device state: configured, not attached, etc.
560  * @speed: device speed: high/full/low (or error)
561  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
562  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
563  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
564  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
565  * @ttport: device port on that tt hub
566  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
567  * @parent: our hub, unless we're the root
568  * @bus: bus we're part of
569  * @ep0: endpoint 0 data (default control pipe)
570  * @dev: generic device interface
571  * @descriptor: USB device descriptor
572  * @bos: USB device BOS descriptor set
573  * @config: all of the device's configs
574  * @actconfig: the active configuration
575  * @ep_in: array of IN endpoints
576  * @ep_out: array of OUT endpoints
577  * @rawdescriptors: raw descriptors for each config
578  * @bus_mA: Current available from the bus
579  * @portnum: parent port number (origin 1)
580  * @level: number of USB hub ancestors
581  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
582  * @can_submit: URBs may be submitted
583  * @persist_enabled:  USB_PERSIST enabled for this device
584  * @have_langid: whether string_langid is valid
585  * @authorized: policy has said we can use it;
586  *	(user space) policy determines if we authorize this device to be
587  *	used or not. By default, wired USB devices are authorized.
588  *	WUSB devices are not, until we authorize them from user space.
589  *	FIXME -- complete doc
590  * @authenticated: Crypto authentication passed
591  * @wusb: device is Wireless USB
592  * @lpm_capable: device supports LPM
593  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
594  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
595  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
596  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
597  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
598  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
599  * @string_langid: language ID for strings
600  * @product: iProduct string, if present (static)
601  * @manufacturer: iManufacturer string, if present (static)
602  * @serial: iSerialNumber string, if present (static)
603  * @filelist: usbfs files that are open to this device
604  * @maxchild: number of ports if hub
605  * @quirks: quirks of the whole device
606  * @urbnum: number of URBs submitted for the whole device
607  * @active_duration: total time device is not suspended
608  * @connect_time: time device was first connected
609  * @do_remote_wakeup:  remote wakeup should be enabled
610  * @reset_resume: needs reset instead of resume
611  * @port_is_suspended: the upstream port is suspended (L2 or U3)
612  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
613  *	specific data for the device.
614  * @slot_id: Slot ID assigned by xHCI
615  * @removable: Device can be physically removed from this port
616  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
617  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
618  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
619  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
620  *	to keep track of the number of functions that require USB 3.0 Link Power
621  *	Management to be disabled for this usb_device.  This count should only
622  *	be manipulated by those functions, with the bandwidth_mutex is held.
623  * @hub_delay: cached value consisting of:
624  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
625  *	Will be used as wValue for SetIsochDelay requests.
626  * @use_generic_driver: ask driver core to reprobe using the generic driver.
627  *
628  * Notes:
629  * Usbcore drivers should not set usbdev->state directly.  Instead use
630  * usb_set_device_state().
631  */
632 struct usb_device {
633 	int		devnum;
634 	char		devpath[16];
635 	u32		route;
636 	enum usb_device_state	state;
637 	enum usb_device_speed	speed;
638 	unsigned int		rx_lanes;
639 	unsigned int		tx_lanes;
640 	enum usb_ssp_rate	ssp_rate;
641 
642 	struct usb_tt	*tt;
643 	int		ttport;
644 
645 	unsigned int toggle[2];
646 
647 	struct usb_device *parent;
648 	struct usb_bus *bus;
649 	struct usb_host_endpoint ep0;
650 
651 	struct device dev;
652 
653 	struct usb_device_descriptor descriptor;
654 	struct usb_host_bos *bos;
655 	struct usb_host_config *config;
656 
657 	struct usb_host_config *actconfig;
658 	struct usb_host_endpoint *ep_in[16];
659 	struct usb_host_endpoint *ep_out[16];
660 
661 	char **rawdescriptors;
662 
663 	unsigned short bus_mA;
664 	u8 portnum;
665 	u8 level;
666 	u8 devaddr;
667 
668 	unsigned can_submit:1;
669 	unsigned persist_enabled:1;
670 	unsigned have_langid:1;
671 	unsigned authorized:1;
672 	unsigned authenticated:1;
673 	unsigned wusb:1;
674 	unsigned lpm_capable:1;
675 	unsigned usb2_hw_lpm_capable:1;
676 	unsigned usb2_hw_lpm_besl_capable:1;
677 	unsigned usb2_hw_lpm_enabled:1;
678 	unsigned usb2_hw_lpm_allowed:1;
679 	unsigned usb3_lpm_u1_enabled:1;
680 	unsigned usb3_lpm_u2_enabled:1;
681 	int string_langid;
682 
683 	/* static strings from the device */
684 	char *product;
685 	char *manufacturer;
686 	char *serial;
687 
688 	struct list_head filelist;
689 
690 	int maxchild;
691 
692 	u32 quirks;
693 	atomic_t urbnum;
694 
695 	unsigned long active_duration;
696 
697 #ifdef CONFIG_PM
698 	unsigned long connect_time;
699 
700 	unsigned do_remote_wakeup:1;
701 	unsigned reset_resume:1;
702 	unsigned port_is_suspended:1;
703 #endif
704 	struct wusb_dev *wusb_dev;
705 	int slot_id;
706 	enum usb_device_removable removable;
707 	struct usb2_lpm_parameters l1_params;
708 	struct usb3_lpm_parameters u1_params;
709 	struct usb3_lpm_parameters u2_params;
710 	unsigned lpm_disable_count;
711 
712 	u16 hub_delay;
713 	unsigned use_generic_driver:1;
714 };
715 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
716 
interface_to_usbdev(struct usb_interface * intf)717 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
718 {
719 	return to_usb_device(intf->dev.parent);
720 }
721 
722 extern struct usb_device *usb_get_dev(struct usb_device *dev);
723 extern void usb_put_dev(struct usb_device *dev);
724 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
725 	int port1);
726 
727 /**
728  * usb_hub_for_each_child - iterate over all child devices on the hub
729  * @hdev:  USB device belonging to the usb hub
730  * @port1: portnum associated with child device
731  * @child: child device pointer
732  */
733 #define usb_hub_for_each_child(hdev, port1, child) \
734 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
735 			port1 <= hdev->maxchild; \
736 			child = usb_hub_find_child(hdev, ++port1)) \
737 		if (!child) continue; else
738 
739 /* USB device locking */
740 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
741 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
742 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
743 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
744 extern int usb_lock_device_for_reset(struct usb_device *udev,
745 				     const struct usb_interface *iface);
746 
747 /* USB port reset for device reinitialization */
748 extern int usb_reset_device(struct usb_device *dev);
749 extern void usb_queue_reset_device(struct usb_interface *dev);
750 
751 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
752 
753 #ifdef CONFIG_ACPI
754 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
755 	bool enable);
756 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
757 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)758 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
759 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)760 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
761 	{ return true; }
762 #endif
763 
764 /* USB autosuspend and autoresume */
765 #ifdef CONFIG_PM
766 extern void usb_enable_autosuspend(struct usb_device *udev);
767 extern void usb_disable_autosuspend(struct usb_device *udev);
768 
769 extern int usb_autopm_get_interface(struct usb_interface *intf);
770 extern void usb_autopm_put_interface(struct usb_interface *intf);
771 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
772 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
773 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
774 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
775 
usb_mark_last_busy(struct usb_device * udev)776 static inline void usb_mark_last_busy(struct usb_device *udev)
777 {
778 	pm_runtime_mark_last_busy(&udev->dev);
779 }
780 
781 #else
782 
usb_enable_autosuspend(struct usb_device * udev)783 static inline int usb_enable_autosuspend(struct usb_device *udev)
784 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)785 static inline int usb_disable_autosuspend(struct usb_device *udev)
786 { return 0; }
787 
usb_autopm_get_interface(struct usb_interface * intf)788 static inline int usb_autopm_get_interface(struct usb_interface *intf)
789 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)790 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
791 { return 0; }
792 
usb_autopm_put_interface(struct usb_interface * intf)793 static inline void usb_autopm_put_interface(struct usb_interface *intf)
794 { }
usb_autopm_put_interface_async(struct usb_interface * intf)795 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
796 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)797 static inline void usb_autopm_get_interface_no_resume(
798 		struct usb_interface *intf)
799 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)800 static inline void usb_autopm_put_interface_no_suspend(
801 		struct usb_interface *intf)
802 { }
usb_mark_last_busy(struct usb_device * udev)803 static inline void usb_mark_last_busy(struct usb_device *udev)
804 { }
805 #endif
806 
807 extern int usb_disable_lpm(struct usb_device *udev);
808 extern void usb_enable_lpm(struct usb_device *udev);
809 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
810 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
811 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
812 
813 extern int usb_disable_ltm(struct usb_device *udev);
814 extern void usb_enable_ltm(struct usb_device *udev);
815 
usb_device_supports_ltm(struct usb_device * udev)816 static inline bool usb_device_supports_ltm(struct usb_device *udev)
817 {
818 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
819 		return false;
820 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
821 }
822 
usb_device_no_sg_constraint(struct usb_device * udev)823 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
824 {
825 	return udev && udev->bus && udev->bus->no_sg_constraint;
826 }
827 
828 
829 /*-------------------------------------------------------------------------*/
830 
831 /* for drivers using iso endpoints */
832 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
833 
834 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
835 extern int usb_alloc_streams(struct usb_interface *interface,
836 		struct usb_host_endpoint **eps, unsigned int num_eps,
837 		unsigned int num_streams, gfp_t mem_flags);
838 
839 /* Reverts a group of bulk endpoints back to not using stream IDs. */
840 extern int usb_free_streams(struct usb_interface *interface,
841 		struct usb_host_endpoint **eps, unsigned int num_eps,
842 		gfp_t mem_flags);
843 
844 /* used these for multi-interface device registration */
845 extern int usb_driver_claim_interface(struct usb_driver *driver,
846 			struct usb_interface *iface, void *data);
847 
848 /**
849  * usb_interface_claimed - returns true iff an interface is claimed
850  * @iface: the interface being checked
851  *
852  * Return: %true (nonzero) iff the interface is claimed, else %false
853  * (zero).
854  *
855  * Note:
856  * Callers must own the driver model's usb bus readlock.  So driver
857  * probe() entries don't need extra locking, but other call contexts
858  * may need to explicitly claim that lock.
859  *
860  */
usb_interface_claimed(struct usb_interface * iface)861 static inline int usb_interface_claimed(struct usb_interface *iface)
862 {
863 	return (iface->dev.driver != NULL);
864 }
865 
866 extern void usb_driver_release_interface(struct usb_driver *driver,
867 			struct usb_interface *iface);
868 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
869 					 const struct usb_device_id *id);
870 extern int usb_match_one_id(struct usb_interface *interface,
871 			    const struct usb_device_id *id);
872 
873 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
874 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
875 		int minor);
876 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
877 		unsigned ifnum);
878 extern struct usb_host_interface *usb_altnum_to_altsetting(
879 		const struct usb_interface *intf, unsigned int altnum);
880 extern struct usb_host_interface *usb_find_alt_setting(
881 		struct usb_host_config *config,
882 		unsigned int iface_num,
883 		unsigned int alt_num);
884 
885 #if IS_REACHABLE(CONFIG_USB)
886 int usb_for_each_port(void *data, int (*fn)(struct device *, void *));
887 #else
usb_for_each_port(void * data,int (* fn)(struct device *,void *))888 static inline int usb_for_each_port(void *data, int (*fn)(struct device *, void *))
889 {
890 	return 0;
891 }
892 #endif
893 
894 /* port claiming functions */
895 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
896 		struct usb_dev_state *owner);
897 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
898 		struct usb_dev_state *owner);
899 
900 /**
901  * usb_make_path - returns stable device path in the usb tree
902  * @dev: the device whose path is being constructed
903  * @buf: where to put the string
904  * @size: how big is "buf"?
905  *
906  * Return: Length of the string (> 0) or negative if size was too small.
907  *
908  * Note:
909  * This identifier is intended to be "stable", reflecting physical paths in
910  * hardware such as physical bus addresses for host controllers or ports on
911  * USB hubs.  That makes it stay the same until systems are physically
912  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
913  * controllers.  Adding and removing devices, including virtual root hubs
914  * in host controller driver modules, does not change these path identifiers;
915  * neither does rebooting or re-enumerating.  These are more useful identifiers
916  * than changeable ("unstable") ones like bus numbers or device addresses.
917  *
918  * With a partial exception for devices connected to USB 2.0 root hubs, these
919  * identifiers are also predictable.  So long as the device tree isn't changed,
920  * plugging any USB device into a given hub port always gives it the same path.
921  * Because of the use of "companion" controllers, devices connected to ports on
922  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
923  * high speed, and a different one if they are full or low speed.
924  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)925 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
926 {
927 	int actual;
928 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
929 			  dev->devpath);
930 	return (actual >= (int)size) ? -1 : actual;
931 }
932 
933 /*-------------------------------------------------------------------------*/
934 
935 #define USB_DEVICE_ID_MATCH_DEVICE \
936 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
937 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
938 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
939 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
940 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
941 #define USB_DEVICE_ID_MATCH_DEV_INFO \
942 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
943 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
944 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
945 #define USB_DEVICE_ID_MATCH_INT_INFO \
946 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
947 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
948 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
949 
950 /**
951  * USB_DEVICE - macro used to describe a specific usb device
952  * @vend: the 16 bit USB Vendor ID
953  * @prod: the 16 bit USB Product ID
954  *
955  * This macro is used to create a struct usb_device_id that matches a
956  * specific device.
957  */
958 #define USB_DEVICE(vend, prod) \
959 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
960 	.idVendor = (vend), \
961 	.idProduct = (prod)
962 /**
963  * USB_DEVICE_VER - describe a specific usb device with a version range
964  * @vend: the 16 bit USB Vendor ID
965  * @prod: the 16 bit USB Product ID
966  * @lo: the bcdDevice_lo value
967  * @hi: the bcdDevice_hi value
968  *
969  * This macro is used to create a struct usb_device_id that matches a
970  * specific device, with a version range.
971  */
972 #define USB_DEVICE_VER(vend, prod, lo, hi) \
973 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
974 	.idVendor = (vend), \
975 	.idProduct = (prod), \
976 	.bcdDevice_lo = (lo), \
977 	.bcdDevice_hi = (hi)
978 
979 /**
980  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
981  * @vend: the 16 bit USB Vendor ID
982  * @prod: the 16 bit USB Product ID
983  * @cl: bInterfaceClass value
984  *
985  * This macro is used to create a struct usb_device_id that matches a
986  * specific interface class of devices.
987  */
988 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
989 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
990 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
991 	.idVendor = (vend), \
992 	.idProduct = (prod), \
993 	.bInterfaceClass = (cl)
994 
995 /**
996  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
997  * @vend: the 16 bit USB Vendor ID
998  * @prod: the 16 bit USB Product ID
999  * @pr: bInterfaceProtocol value
1000  *
1001  * This macro is used to create a struct usb_device_id that matches a
1002  * specific interface protocol of devices.
1003  */
1004 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1005 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1006 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1007 	.idVendor = (vend), \
1008 	.idProduct = (prod), \
1009 	.bInterfaceProtocol = (pr)
1010 
1011 /**
1012  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1013  * @vend: the 16 bit USB Vendor ID
1014  * @prod: the 16 bit USB Product ID
1015  * @num: bInterfaceNumber value
1016  *
1017  * This macro is used to create a struct usb_device_id that matches a
1018  * specific interface number of devices.
1019  */
1020 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1021 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1022 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1023 	.idVendor = (vend), \
1024 	.idProduct = (prod), \
1025 	.bInterfaceNumber = (num)
1026 
1027 /**
1028  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1029  * @cl: bDeviceClass value
1030  * @sc: bDeviceSubClass value
1031  * @pr: bDeviceProtocol value
1032  *
1033  * This macro is used to create a struct usb_device_id that matches a
1034  * specific class of devices.
1035  */
1036 #define USB_DEVICE_INFO(cl, sc, pr) \
1037 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1038 	.bDeviceClass = (cl), \
1039 	.bDeviceSubClass = (sc), \
1040 	.bDeviceProtocol = (pr)
1041 
1042 /**
1043  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1044  * @cl: bInterfaceClass value
1045  * @sc: bInterfaceSubClass value
1046  * @pr: bInterfaceProtocol value
1047  *
1048  * This macro is used to create a struct usb_device_id that matches a
1049  * specific class of interfaces.
1050  */
1051 #define USB_INTERFACE_INFO(cl, sc, pr) \
1052 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1053 	.bInterfaceClass = (cl), \
1054 	.bInterfaceSubClass = (sc), \
1055 	.bInterfaceProtocol = (pr)
1056 
1057 /**
1058  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1059  * @vend: the 16 bit USB Vendor ID
1060  * @prod: the 16 bit USB Product ID
1061  * @cl: bInterfaceClass value
1062  * @sc: bInterfaceSubClass value
1063  * @pr: bInterfaceProtocol value
1064  *
1065  * This macro is used to create a struct usb_device_id that matches a
1066  * specific device with a specific class of interfaces.
1067  *
1068  * This is especially useful when explicitly matching devices that have
1069  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1070  */
1071 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1072 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1073 		| USB_DEVICE_ID_MATCH_DEVICE, \
1074 	.idVendor = (vend), \
1075 	.idProduct = (prod), \
1076 	.bInterfaceClass = (cl), \
1077 	.bInterfaceSubClass = (sc), \
1078 	.bInterfaceProtocol = (pr)
1079 
1080 /**
1081  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1082  * @vend: the 16 bit USB Vendor ID
1083  * @cl: bInterfaceClass value
1084  * @sc: bInterfaceSubClass value
1085  * @pr: bInterfaceProtocol value
1086  *
1087  * This macro is used to create a struct usb_device_id that matches a
1088  * specific vendor with a specific class of interfaces.
1089  *
1090  * This is especially useful when explicitly matching devices that have
1091  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1092  */
1093 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1094 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1095 		| USB_DEVICE_ID_MATCH_VENDOR, \
1096 	.idVendor = (vend), \
1097 	.bInterfaceClass = (cl), \
1098 	.bInterfaceSubClass = (sc), \
1099 	.bInterfaceProtocol = (pr)
1100 
1101 /* ----------------------------------------------------------------------- */
1102 
1103 /* Stuff for dynamic usb ids */
1104 struct usb_dynids {
1105 	spinlock_t lock;
1106 	struct list_head list;
1107 };
1108 
1109 struct usb_dynid {
1110 	struct list_head node;
1111 	struct usb_device_id id;
1112 };
1113 
1114 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1115 				const struct usb_device_id *id_table,
1116 				struct device_driver *driver,
1117 				const char *buf, size_t count);
1118 
1119 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1120 
1121 /**
1122  * struct usbdrv_wrap - wrapper for driver-model structure
1123  * @driver: The driver-model core driver structure.
1124  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1125  */
1126 struct usbdrv_wrap {
1127 	struct device_driver driver;
1128 	int for_devices;
1129 };
1130 
1131 /**
1132  * struct usb_driver - identifies USB interface driver to usbcore
1133  * @name: The driver name should be unique among USB drivers,
1134  *	and should normally be the same as the module name.
1135  * @probe: Called to see if the driver is willing to manage a particular
1136  *	interface on a device.  If it is, probe returns zero and uses
1137  *	usb_set_intfdata() to associate driver-specific data with the
1138  *	interface.  It may also use usb_set_interface() to specify the
1139  *	appropriate altsetting.  If unwilling to manage the interface,
1140  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1141  *	negative errno value.
1142  * @disconnect: Called when the interface is no longer accessible, usually
1143  *	because its device has been (or is being) disconnected or the
1144  *	driver module is being unloaded.
1145  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1146  *	the "usbfs" filesystem.  This lets devices provide ways to
1147  *	expose information to user space regardless of where they
1148  *	do (or don't) show up otherwise in the filesystem.
1149  * @suspend: Called when the device is going to be suspended by the
1150  *	system either from system sleep or runtime suspend context. The
1151  *	return value will be ignored in system sleep context, so do NOT
1152  *	try to continue using the device if suspend fails in this case.
1153  *	Instead, let the resume or reset-resume routine recover from
1154  *	the failure.
1155  * @resume: Called when the device is being resumed by the system.
1156  * @reset_resume: Called when the suspended device has been reset instead
1157  *	of being resumed.
1158  * @pre_reset: Called by usb_reset_device() when the device is about to be
1159  *	reset.  This routine must not return until the driver has no active
1160  *	URBs for the device, and no more URBs may be submitted until the
1161  *	post_reset method is called.
1162  * @post_reset: Called by usb_reset_device() after the device
1163  *	has been reset
1164  * @id_table: USB drivers use ID table to support hotplugging.
1165  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1166  *	or your driver's probe function will never get called.
1167  * @dev_groups: Attributes attached to the device that will be created once it
1168  *	is bound to the driver.
1169  * @dynids: used internally to hold the list of dynamically added device
1170  *	ids for this driver.
1171  * @drvwrap: Driver-model core structure wrapper.
1172  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1173  *	added to this driver by preventing the sysfs file from being created.
1174  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1175  *	for interfaces bound to this driver.
1176  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1177  *	endpoints before calling the driver's disconnect method.
1178  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1179  *	to initiate lower power link state transitions when an idle timeout
1180  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1181  *
1182  * USB interface drivers must provide a name, probe() and disconnect()
1183  * methods, and an id_table.  Other driver fields are optional.
1184  *
1185  * The id_table is used in hotplugging.  It holds a set of descriptors,
1186  * and specialized data may be associated with each entry.  That table
1187  * is used by both user and kernel mode hotplugging support.
1188  *
1189  * The probe() and disconnect() methods are called in a context where
1190  * they can sleep, but they should avoid abusing the privilege.  Most
1191  * work to connect to a device should be done when the device is opened,
1192  * and undone at the last close.  The disconnect code needs to address
1193  * concurrency issues with respect to open() and close() methods, as
1194  * well as forcing all pending I/O requests to complete (by unlinking
1195  * them as necessary, and blocking until the unlinks complete).
1196  */
1197 struct usb_driver {
1198 	const char *name;
1199 
1200 	int (*probe) (struct usb_interface *intf,
1201 		      const struct usb_device_id *id);
1202 
1203 	void (*disconnect) (struct usb_interface *intf);
1204 
1205 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1206 			void *buf);
1207 
1208 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1209 	int (*resume) (struct usb_interface *intf);
1210 	int (*reset_resume)(struct usb_interface *intf);
1211 
1212 	int (*pre_reset)(struct usb_interface *intf);
1213 	int (*post_reset)(struct usb_interface *intf);
1214 
1215 	const struct usb_device_id *id_table;
1216 	const struct attribute_group **dev_groups;
1217 
1218 	struct usb_dynids dynids;
1219 	struct usbdrv_wrap drvwrap;
1220 	unsigned int no_dynamic_id:1;
1221 	unsigned int supports_autosuspend:1;
1222 	unsigned int disable_hub_initiated_lpm:1;
1223 	unsigned int soft_unbind:1;
1224 };
1225 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1226 
1227 /**
1228  * struct usb_device_driver - identifies USB device driver to usbcore
1229  * @name: The driver name should be unique among USB drivers,
1230  *	and should normally be the same as the module name.
1231  * @match: If set, used for better device/driver matching.
1232  * @probe: Called to see if the driver is willing to manage a particular
1233  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1234  *	to associate driver-specific data with the device.  If unwilling
1235  *	to manage the device, return a negative errno value.
1236  * @disconnect: Called when the device is no longer accessible, usually
1237  *	because it has been (or is being) disconnected or the driver's
1238  *	module is being unloaded.
1239  * @suspend: Called when the device is going to be suspended by the system.
1240  * @resume: Called when the device is being resumed by the system.
1241  * @dev_groups: Attributes attached to the device that will be created once it
1242  *	is bound to the driver.
1243  * @drvwrap: Driver-model core structure wrapper.
1244  * @id_table: used with @match() to select better matching driver at
1245  * 	probe() time.
1246  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1247  *	for devices bound to this driver.
1248  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1249  *	resume and suspend functions will be called in addition to the driver's
1250  *	own, so this part of the setup does not need to be replicated.
1251  *
1252  * USB drivers must provide all the fields listed above except drvwrap,
1253  * match, and id_table.
1254  */
1255 struct usb_device_driver {
1256 	const char *name;
1257 
1258 	bool (*match) (struct usb_device *udev);
1259 	int (*probe) (struct usb_device *udev);
1260 	void (*disconnect) (struct usb_device *udev);
1261 
1262 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1263 	int (*resume) (struct usb_device *udev, pm_message_t message);
1264 	const struct attribute_group **dev_groups;
1265 	struct usbdrv_wrap drvwrap;
1266 	const struct usb_device_id *id_table;
1267 	unsigned int supports_autosuspend:1;
1268 	unsigned int generic_subclass:1;
1269 };
1270 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1271 		drvwrap.driver)
1272 
1273 /**
1274  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1275  * @name: the usb class device name for this driver.  Will show up in sysfs.
1276  * @devnode: Callback to provide a naming hint for a possible
1277  *	device node to create.
1278  * @fops: pointer to the struct file_operations of this driver.
1279  * @minor_base: the start of the minor range for this driver.
1280  *
1281  * This structure is used for the usb_register_dev() and
1282  * usb_deregister_dev() functions, to consolidate a number of the
1283  * parameters used for them.
1284  */
1285 struct usb_class_driver {
1286 	char *name;
1287 	char *(*devnode)(struct device *dev, umode_t *mode);
1288 	const struct file_operations *fops;
1289 	int minor_base;
1290 };
1291 
1292 /*
1293  * use these in module_init()/module_exit()
1294  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1295  */
1296 extern int usb_register_driver(struct usb_driver *, struct module *,
1297 			       const char *);
1298 
1299 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1300 #define usb_register(driver) \
1301 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1302 
1303 extern void usb_deregister(struct usb_driver *);
1304 
1305 /**
1306  * module_usb_driver() - Helper macro for registering a USB driver
1307  * @__usb_driver: usb_driver struct
1308  *
1309  * Helper macro for USB drivers which do not do anything special in module
1310  * init/exit. This eliminates a lot of boilerplate. Each module may only
1311  * use this macro once, and calling it replaces module_init() and module_exit()
1312  */
1313 #define module_usb_driver(__usb_driver) \
1314 	module_driver(__usb_driver, usb_register, \
1315 		       usb_deregister)
1316 
1317 extern int usb_register_device_driver(struct usb_device_driver *,
1318 			struct module *);
1319 extern void usb_deregister_device_driver(struct usb_device_driver *);
1320 
1321 extern int usb_register_dev(struct usb_interface *intf,
1322 			    struct usb_class_driver *class_driver);
1323 extern void usb_deregister_dev(struct usb_interface *intf,
1324 			       struct usb_class_driver *class_driver);
1325 
1326 extern int usb_disabled(void);
1327 
1328 /* ----------------------------------------------------------------------- */
1329 
1330 /*
1331  * URB support, for asynchronous request completions
1332  */
1333 
1334 /*
1335  * urb->transfer_flags:
1336  *
1337  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1338  */
1339 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1340 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1341 					 * slot in the schedule */
1342 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1343 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1344 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1345 					 * needed */
1346 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1347 
1348 /* The following flags are used internally by usbcore and HCDs */
1349 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1350 #define URB_DIR_OUT		0
1351 #define URB_DIR_MASK		URB_DIR_IN
1352 
1353 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1354 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1355 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1356 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1357 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1358 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1359 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1360 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1361 
1362 struct usb_iso_packet_descriptor {
1363 	unsigned int offset;
1364 	unsigned int length;		/* expected length */
1365 	unsigned int actual_length;
1366 	int status;
1367 };
1368 
1369 struct urb;
1370 
1371 struct usb_anchor {
1372 	struct list_head urb_list;
1373 	wait_queue_head_t wait;
1374 	spinlock_t lock;
1375 	atomic_t suspend_wakeups;
1376 	unsigned int poisoned:1;
1377 };
1378 
init_usb_anchor(struct usb_anchor * anchor)1379 static inline void init_usb_anchor(struct usb_anchor *anchor)
1380 {
1381 	memset(anchor, 0, sizeof(*anchor));
1382 	INIT_LIST_HEAD(&anchor->urb_list);
1383 	init_waitqueue_head(&anchor->wait);
1384 	spin_lock_init(&anchor->lock);
1385 }
1386 
1387 typedef void (*usb_complete_t)(struct urb *);
1388 
1389 /**
1390  * struct urb - USB Request Block
1391  * @urb_list: For use by current owner of the URB.
1392  * @anchor_list: membership in the list of an anchor
1393  * @anchor: to anchor URBs to a common mooring
1394  * @ep: Points to the endpoint's data structure.  Will eventually
1395  *	replace @pipe.
1396  * @pipe: Holds endpoint number, direction, type, and more.
1397  *	Create these values with the eight macros available;
1398  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1399  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1400  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1401  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1402  *	is a different endpoint (and pipe) from "out" endpoint two.
1403  *	The current configuration controls the existence, type, and
1404  *	maximum packet size of any given endpoint.
1405  * @stream_id: the endpoint's stream ID for bulk streams
1406  * @dev: Identifies the USB device to perform the request.
1407  * @status: This is read in non-iso completion functions to get the
1408  *	status of the particular request.  ISO requests only use it
1409  *	to tell whether the URB was unlinked; detailed status for
1410  *	each frame is in the fields of the iso_frame-desc.
1411  * @transfer_flags: A variety of flags may be used to affect how URB
1412  *	submission, unlinking, or operation are handled.  Different
1413  *	kinds of URB can use different flags.
1414  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1415  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1416  *	(however, do not leave garbage in transfer_buffer even then).
1417  *	This buffer must be suitable for DMA; allocate it with
1418  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1419  *	of this buffer will be modified.  This buffer is used for the data
1420  *	stage of control transfers.
1421  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1422  *	the device driver is saying that it provided this DMA address,
1423  *	which the host controller driver should use in preference to the
1424  *	transfer_buffer.
1425  * @sg: scatter gather buffer list, the buffer size of each element in
1426  * 	the list (except the last) must be divisible by the endpoint's
1427  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1428  * @num_mapped_sgs: (internal) number of mapped sg entries
1429  * @num_sgs: number of entries in the sg list
1430  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1431  *	be broken up into chunks according to the current maximum packet
1432  *	size for the endpoint, which is a function of the configuration
1433  *	and is encoded in the pipe.  When the length is zero, neither
1434  *	transfer_buffer nor transfer_dma is used.
1435  * @actual_length: This is read in non-iso completion functions, and
1436  *	it tells how many bytes (out of transfer_buffer_length) were
1437  *	transferred.  It will normally be the same as requested, unless
1438  *	either an error was reported or a short read was performed.
1439  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1440  *	short reads be reported as errors.
1441  * @setup_packet: Only used for control transfers, this points to eight bytes
1442  *	of setup data.  Control transfers always start by sending this data
1443  *	to the device.  Then transfer_buffer is read or written, if needed.
1444  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1445  *	this field; setup_packet must point to a valid buffer.
1446  * @start_frame: Returns the initial frame for isochronous transfers.
1447  * @number_of_packets: Lists the number of ISO transfer buffers.
1448  * @interval: Specifies the polling interval for interrupt or isochronous
1449  *	transfers.  The units are frames (milliseconds) for full and low
1450  *	speed devices, and microframes (1/8 millisecond) for highspeed
1451  *	and SuperSpeed devices.
1452  * @error_count: Returns the number of ISO transfers that reported errors.
1453  * @context: For use in completion functions.  This normally points to
1454  *	request-specific driver context.
1455  * @complete: Completion handler. This URB is passed as the parameter to the
1456  *	completion function.  The completion function may then do what
1457  *	it likes with the URB, including resubmitting or freeing it.
1458  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1459  *	collect the transfer status for each buffer.
1460  *
1461  * This structure identifies USB transfer requests.  URBs must be allocated by
1462  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1463  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1464  * are submitted using usb_submit_urb(), and pending requests may be canceled
1465  * using usb_unlink_urb() or usb_kill_urb().
1466  *
1467  * Data Transfer Buffers:
1468  *
1469  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1470  * taken from the general page pool.  That is provided by transfer_buffer
1471  * (control requests also use setup_packet), and host controller drivers
1472  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1473  * mapping operations can be expensive on some platforms (perhaps using a dma
1474  * bounce buffer or talking to an IOMMU),
1475  * although they're cheap on commodity x86 and ppc hardware.
1476  *
1477  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1478  * which tells the host controller driver that no such mapping is needed for
1479  * the transfer_buffer since
1480  * the device driver is DMA-aware.  For example, a device driver might
1481  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1482  * When this transfer flag is provided, host controller drivers will
1483  * attempt to use the dma address found in the transfer_dma
1484  * field rather than determining a dma address themselves.
1485  *
1486  * Note that transfer_buffer must still be set if the controller
1487  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1488  * to root hub. If you have to trasfer between highmem zone and the device
1489  * on such controller, create a bounce buffer or bail out with an error.
1490  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1491  * capable, assign NULL to it, so that usbmon knows not to use the value.
1492  * The setup_packet must always be set, so it cannot be located in highmem.
1493  *
1494  * Initialization:
1495  *
1496  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1497  * zero), and complete fields.  All URBs must also initialize
1498  * transfer_buffer and transfer_buffer_length.  They may provide the
1499  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1500  * to be treated as errors; that flag is invalid for write requests.
1501  *
1502  * Bulk URBs may
1503  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1504  * should always terminate with a short packet, even if it means adding an
1505  * extra zero length packet.
1506  *
1507  * Control URBs must provide a valid pointer in the setup_packet field.
1508  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1509  * beforehand.
1510  *
1511  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1512  * or, for highspeed devices, 125 microsecond units)
1513  * to poll for transfers.  After the URB has been submitted, the interval
1514  * field reflects how the transfer was actually scheduled.
1515  * The polling interval may be more frequent than requested.
1516  * For example, some controllers have a maximum interval of 32 milliseconds,
1517  * while others support intervals of up to 1024 milliseconds.
1518  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1519  * endpoints, as well as high speed interrupt endpoints, the encoding of
1520  * the transfer interval in the endpoint descriptor is logarithmic.
1521  * Device drivers must convert that value to linear units themselves.)
1522  *
1523  * If an isochronous endpoint queue isn't already running, the host
1524  * controller will schedule a new URB to start as soon as bandwidth
1525  * utilization allows.  If the queue is running then a new URB will be
1526  * scheduled to start in the first transfer slot following the end of the
1527  * preceding URB, if that slot has not already expired.  If the slot has
1528  * expired (which can happen when IRQ delivery is delayed for a long time),
1529  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1530  * is clear then the URB will be scheduled to start in the expired slot,
1531  * implying that some of its packets will not be transferred; if the flag
1532  * is set then the URB will be scheduled in the first unexpired slot,
1533  * breaking the queue's synchronization.  Upon URB completion, the
1534  * start_frame field will be set to the (micro)frame number in which the
1535  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1536  * and can go from as low as 256 to as high as 65536 frames.
1537  *
1538  * Isochronous URBs have a different data transfer model, in part because
1539  * the quality of service is only "best effort".  Callers provide specially
1540  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1541  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1542  * URBs are normally queued, submitted by drivers to arrange that
1543  * transfers are at least double buffered, and then explicitly resubmitted
1544  * in completion handlers, so
1545  * that data (such as audio or video) streams at as constant a rate as the
1546  * host controller scheduler can support.
1547  *
1548  * Completion Callbacks:
1549  *
1550  * The completion callback is made in_interrupt(), and one of the first
1551  * things that a completion handler should do is check the status field.
1552  * The status field is provided for all URBs.  It is used to report
1553  * unlinked URBs, and status for all non-ISO transfers.  It should not
1554  * be examined before the URB is returned to the completion handler.
1555  *
1556  * The context field is normally used to link URBs back to the relevant
1557  * driver or request state.
1558  *
1559  * When the completion callback is invoked for non-isochronous URBs, the
1560  * actual_length field tells how many bytes were transferred.  This field
1561  * is updated even when the URB terminated with an error or was unlinked.
1562  *
1563  * ISO transfer status is reported in the status and actual_length fields
1564  * of the iso_frame_desc array, and the number of errors is reported in
1565  * error_count.  Completion callbacks for ISO transfers will normally
1566  * (re)submit URBs to ensure a constant transfer rate.
1567  *
1568  * Note that even fields marked "public" should not be touched by the driver
1569  * when the urb is owned by the hcd, that is, since the call to
1570  * usb_submit_urb() till the entry into the completion routine.
1571  */
1572 struct urb {
1573 	/* private: usb core and host controller only fields in the urb */
1574 	struct kref kref;		/* reference count of the URB */
1575 	int unlinked;			/* unlink error code */
1576 	void *hcpriv;			/* private data for host controller */
1577 	atomic_t use_count;		/* concurrent submissions counter */
1578 	atomic_t reject;		/* submissions will fail */
1579 
1580 	/* public: documented fields in the urb that can be used by drivers */
1581 	struct list_head urb_list;	/* list head for use by the urb's
1582 					 * current owner */
1583 	struct list_head anchor_list;	/* the URB may be anchored */
1584 	struct usb_anchor *anchor;
1585 	struct usb_device *dev;		/* (in) pointer to associated device */
1586 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1587 	unsigned int pipe;		/* (in) pipe information */
1588 	unsigned int stream_id;		/* (in) stream ID */
1589 	int status;			/* (return) non-ISO status */
1590 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1591 	void *transfer_buffer;		/* (in) associated data buffer */
1592 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1593 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1594 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1595 	int num_sgs;			/* (in) number of entries in the sg list */
1596 	u32 transfer_buffer_length;	/* (in) data buffer length */
1597 	u32 actual_length;		/* (return) actual transfer length */
1598 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1599 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1600 	int start_frame;		/* (modify) start frame (ISO) */
1601 	int number_of_packets;		/* (in) number of ISO packets */
1602 	int interval;			/* (modify) transfer interval
1603 					 * (INT/ISO) */
1604 	int error_count;		/* (return) number of ISO errors */
1605 	void *context;			/* (in) context for completion */
1606 	usb_complete_t complete;	/* (in) completion routine */
1607 	struct usb_iso_packet_descriptor iso_frame_desc[];
1608 					/* (in) ISO ONLY */
1609 };
1610 
1611 /* ----------------------------------------------------------------------- */
1612 
1613 /**
1614  * usb_fill_control_urb - initializes a control urb
1615  * @urb: pointer to the urb to initialize.
1616  * @dev: pointer to the struct usb_device for this urb.
1617  * @pipe: the endpoint pipe
1618  * @setup_packet: pointer to the setup_packet buffer
1619  * @transfer_buffer: pointer to the transfer buffer
1620  * @buffer_length: length of the transfer buffer
1621  * @complete_fn: pointer to the usb_complete_t function
1622  * @context: what to set the urb context to.
1623  *
1624  * Initializes a control urb with the proper information needed to submit
1625  * it to a device.
1626  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1627 static inline void usb_fill_control_urb(struct urb *urb,
1628 					struct usb_device *dev,
1629 					unsigned int pipe,
1630 					unsigned char *setup_packet,
1631 					void *transfer_buffer,
1632 					int buffer_length,
1633 					usb_complete_t complete_fn,
1634 					void *context)
1635 {
1636 	urb->dev = dev;
1637 	urb->pipe = pipe;
1638 	urb->setup_packet = setup_packet;
1639 	urb->transfer_buffer = transfer_buffer;
1640 	urb->transfer_buffer_length = buffer_length;
1641 	urb->complete = complete_fn;
1642 	urb->context = context;
1643 }
1644 
1645 /**
1646  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1647  * @urb: pointer to the urb to initialize.
1648  * @dev: pointer to the struct usb_device for this urb.
1649  * @pipe: the endpoint pipe
1650  * @transfer_buffer: pointer to the transfer buffer
1651  * @buffer_length: length of the transfer buffer
1652  * @complete_fn: pointer to the usb_complete_t function
1653  * @context: what to set the urb context to.
1654  *
1655  * Initializes a bulk urb with the proper information needed to submit it
1656  * to a device.
1657  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1658 static inline void usb_fill_bulk_urb(struct urb *urb,
1659 				     struct usb_device *dev,
1660 				     unsigned int pipe,
1661 				     void *transfer_buffer,
1662 				     int buffer_length,
1663 				     usb_complete_t complete_fn,
1664 				     void *context)
1665 {
1666 	urb->dev = dev;
1667 	urb->pipe = pipe;
1668 	urb->transfer_buffer = transfer_buffer;
1669 	urb->transfer_buffer_length = buffer_length;
1670 	urb->complete = complete_fn;
1671 	urb->context = context;
1672 }
1673 
1674 /**
1675  * usb_fill_int_urb - macro to help initialize a interrupt urb
1676  * @urb: pointer to the urb to initialize.
1677  * @dev: pointer to the struct usb_device for this urb.
1678  * @pipe: the endpoint pipe
1679  * @transfer_buffer: pointer to the transfer buffer
1680  * @buffer_length: length of the transfer buffer
1681  * @complete_fn: pointer to the usb_complete_t function
1682  * @context: what to set the urb context to.
1683  * @interval: what to set the urb interval to, encoded like
1684  *	the endpoint descriptor's bInterval value.
1685  *
1686  * Initializes a interrupt urb with the proper information needed to submit
1687  * it to a device.
1688  *
1689  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1690  * encoding of the endpoint interval, and express polling intervals in
1691  * microframes (eight per millisecond) rather than in frames (one per
1692  * millisecond).
1693  *
1694  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1695  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1696  * through to the host controller, rather than being translated into microframe
1697  * units.
1698  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1699 static inline void usb_fill_int_urb(struct urb *urb,
1700 				    struct usb_device *dev,
1701 				    unsigned int pipe,
1702 				    void *transfer_buffer,
1703 				    int buffer_length,
1704 				    usb_complete_t complete_fn,
1705 				    void *context,
1706 				    int interval)
1707 {
1708 	urb->dev = dev;
1709 	urb->pipe = pipe;
1710 	urb->transfer_buffer = transfer_buffer;
1711 	urb->transfer_buffer_length = buffer_length;
1712 	urb->complete = complete_fn;
1713 	urb->context = context;
1714 
1715 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1716 		/* make sure interval is within allowed range */
1717 		interval = clamp(interval, 1, 16);
1718 
1719 		urb->interval = 1 << (interval - 1);
1720 	} else {
1721 		urb->interval = interval;
1722 	}
1723 
1724 	urb->start_frame = -1;
1725 }
1726 
1727 extern void usb_init_urb(struct urb *urb);
1728 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1729 extern void usb_free_urb(struct urb *urb);
1730 #define usb_put_urb usb_free_urb
1731 extern struct urb *usb_get_urb(struct urb *urb);
1732 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1733 extern int usb_unlink_urb(struct urb *urb);
1734 extern void usb_kill_urb(struct urb *urb);
1735 extern void usb_poison_urb(struct urb *urb);
1736 extern void usb_unpoison_urb(struct urb *urb);
1737 extern void usb_block_urb(struct urb *urb);
1738 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1739 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1740 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1741 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1742 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1743 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1744 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1745 extern void usb_unanchor_urb(struct urb *urb);
1746 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1747 					 unsigned int timeout);
1748 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1749 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1750 extern int usb_anchor_empty(struct usb_anchor *anchor);
1751 
1752 #define usb_unblock_urb	usb_unpoison_urb
1753 
1754 /**
1755  * usb_urb_dir_in - check if an URB describes an IN transfer
1756  * @urb: URB to be checked
1757  *
1758  * Return: 1 if @urb describes an IN transfer (device-to-host),
1759  * otherwise 0.
1760  */
usb_urb_dir_in(struct urb * urb)1761 static inline int usb_urb_dir_in(struct urb *urb)
1762 {
1763 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1764 }
1765 
1766 /**
1767  * usb_urb_dir_out - check if an URB describes an OUT transfer
1768  * @urb: URB to be checked
1769  *
1770  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1771  * otherwise 0.
1772  */
usb_urb_dir_out(struct urb * urb)1773 static inline int usb_urb_dir_out(struct urb *urb)
1774 {
1775 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1776 }
1777 
1778 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1779 int usb_urb_ep_type_check(const struct urb *urb);
1780 
1781 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1782 	gfp_t mem_flags, dma_addr_t *dma);
1783 void usb_free_coherent(struct usb_device *dev, size_t size,
1784 	void *addr, dma_addr_t dma);
1785 
1786 #if 0
1787 struct urb *usb_buffer_map(struct urb *urb);
1788 void usb_buffer_dmasync(struct urb *urb);
1789 void usb_buffer_unmap(struct urb *urb);
1790 #endif
1791 
1792 struct scatterlist;
1793 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1794 		      struct scatterlist *sg, int nents);
1795 #if 0
1796 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1797 			   struct scatterlist *sg, int n_hw_ents);
1798 #endif
1799 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1800 			 struct scatterlist *sg, int n_hw_ents);
1801 
1802 /*-------------------------------------------------------------------*
1803  *                         SYNCHRONOUS CALL SUPPORT                  *
1804  *-------------------------------------------------------------------*/
1805 
1806 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1807 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1808 	void *data, __u16 size, int timeout);
1809 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1810 	void *data, int len, int *actual_length, int timeout);
1811 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1812 	void *data, int len, int *actual_length,
1813 	int timeout);
1814 
1815 /* wrappers around usb_control_msg() for the most common standard requests */
1816 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1817 			 __u8 requesttype, __u16 value, __u16 index,
1818 			 const void *data, __u16 size, int timeout,
1819 			 gfp_t memflags);
1820 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1821 			 __u8 requesttype, __u16 value, __u16 index,
1822 			 void *data, __u16 size, int timeout,
1823 			 gfp_t memflags);
1824 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1825 	unsigned char descindex, void *buf, int size);
1826 extern int usb_get_status(struct usb_device *dev,
1827 	int recip, int type, int target, void *data);
1828 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1829 static inline int usb_get_std_status(struct usb_device *dev,
1830 	int recip, int target, void *data)
1831 {
1832 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1833 		data);
1834 }
1835 
usb_get_ptm_status(struct usb_device * dev,void * data)1836 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1837 {
1838 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1839 		0, data);
1840 }
1841 
1842 extern int usb_string(struct usb_device *dev, int index,
1843 	char *buf, size_t size);
1844 
1845 /* wrappers that also update important state inside usbcore */
1846 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1847 extern int usb_reset_configuration(struct usb_device *dev);
1848 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1849 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1850 
1851 /* this request isn't really synchronous, but it belongs with the others */
1852 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1853 
1854 /* choose and set configuration for device */
1855 extern int usb_choose_configuration(struct usb_device *udev);
1856 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1857 
1858 /*
1859  * timeouts, in milliseconds, used for sending/receiving control messages
1860  * they typically complete within a few frames (msec) after they're issued
1861  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1862  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1863  */
1864 #define USB_CTRL_GET_TIMEOUT	5000
1865 #define USB_CTRL_SET_TIMEOUT	5000
1866 
1867 
1868 /**
1869  * struct usb_sg_request - support for scatter/gather I/O
1870  * @status: zero indicates success, else negative errno
1871  * @bytes: counts bytes transferred.
1872  *
1873  * These requests are initialized using usb_sg_init(), and then are used
1874  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1875  * members of the request object aren't for driver access.
1876  *
1877  * The status and bytecount values are valid only after usb_sg_wait()
1878  * returns.  If the status is zero, then the bytecount matches the total
1879  * from the request.
1880  *
1881  * After an error completion, drivers may need to clear a halt condition
1882  * on the endpoint.
1883  */
1884 struct usb_sg_request {
1885 	int			status;
1886 	size_t			bytes;
1887 
1888 	/* private:
1889 	 * members below are private to usbcore,
1890 	 * and are not provided for driver access!
1891 	 */
1892 	spinlock_t		lock;
1893 
1894 	struct usb_device	*dev;
1895 	int			pipe;
1896 
1897 	int			entries;
1898 	struct urb		**urbs;
1899 
1900 	int			count;
1901 	struct completion	complete;
1902 };
1903 
1904 int usb_sg_init(
1905 	struct usb_sg_request	*io,
1906 	struct usb_device	*dev,
1907 	unsigned		pipe,
1908 	unsigned		period,
1909 	struct scatterlist	*sg,
1910 	int			nents,
1911 	size_t			length,
1912 	gfp_t			mem_flags
1913 );
1914 void usb_sg_cancel(struct usb_sg_request *io);
1915 void usb_sg_wait(struct usb_sg_request *io);
1916 
1917 
1918 /* ----------------------------------------------------------------------- */
1919 
1920 /*
1921  * For various legacy reasons, Linux has a small cookie that's paired with
1922  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1923  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1924  * an unsigned int encoded as:
1925  *
1926  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1927  *					 1 = Device-to-Host [In] ...
1928  *					like endpoint bEndpointAddress)
1929  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1930  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1931  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1932  *					 10 = control, 11 = bulk)
1933  *
1934  * Given the device address and endpoint descriptor, pipes are redundant.
1935  */
1936 
1937 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1938 /* (yet ... they're the values used by usbfs) */
1939 #define PIPE_ISOCHRONOUS		0
1940 #define PIPE_INTERRUPT			1
1941 #define PIPE_CONTROL			2
1942 #define PIPE_BULK			3
1943 
1944 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1945 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1946 
1947 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1948 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1949 
1950 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1951 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1952 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1953 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1954 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1955 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1956 static inline unsigned int __create_pipe(struct usb_device *dev,
1957 		unsigned int endpoint)
1958 {
1959 	return (dev->devnum << 8) | (endpoint << 15);
1960 }
1961 
1962 /* Create various pipes... */
1963 #define usb_sndctrlpipe(dev, endpoint)	\
1964 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1965 #define usb_rcvctrlpipe(dev, endpoint)	\
1966 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1967 #define usb_sndisocpipe(dev, endpoint)	\
1968 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1969 #define usb_rcvisocpipe(dev, endpoint)	\
1970 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1971 #define usb_sndbulkpipe(dev, endpoint)	\
1972 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1973 #define usb_rcvbulkpipe(dev, endpoint)	\
1974 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1975 #define usb_sndintpipe(dev, endpoint)	\
1976 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1977 #define usb_rcvintpipe(dev, endpoint)	\
1978 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1979 
1980 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1981 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1982 {
1983 	struct usb_host_endpoint **eps;
1984 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1985 	return eps[usb_pipeendpoint(pipe)];
1986 }
1987 
1988 /*-------------------------------------------------------------------------*/
1989 
1990 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1991 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1992 {
1993 	struct usb_host_endpoint	*ep;
1994 	unsigned			epnum = usb_pipeendpoint(pipe);
1995 
1996 	if (is_out) {
1997 		WARN_ON(usb_pipein(pipe));
1998 		ep = udev->ep_out[epnum];
1999 	} else {
2000 		WARN_ON(usb_pipeout(pipe));
2001 		ep = udev->ep_in[epnum];
2002 	}
2003 	if (!ep)
2004 		return 0;
2005 
2006 	/* NOTE:  only 0x07ff bits are for packet size... */
2007 	return usb_endpoint_maxp(&ep->desc);
2008 }
2009 
2010 /* ----------------------------------------------------------------------- */
2011 
2012 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2013 static inline int usb_translate_errors(int error_code)
2014 {
2015 	switch (error_code) {
2016 	case 0:
2017 	case -ENOMEM:
2018 	case -ENODEV:
2019 	case -EOPNOTSUPP:
2020 		return error_code;
2021 	default:
2022 		return -EIO;
2023 	}
2024 }
2025 
2026 /* Events from the usb core */
2027 #define USB_DEVICE_ADD		0x0001
2028 #define USB_DEVICE_REMOVE	0x0002
2029 #define USB_BUS_ADD		0x0003
2030 #define USB_BUS_REMOVE		0x0004
2031 extern void usb_register_notify(struct notifier_block *nb);
2032 extern void usb_unregister_notify(struct notifier_block *nb);
2033 
2034 /* debugfs stuff */
2035 extern struct dentry *usb_debug_root;
2036 
2037 /* LED triggers */
2038 enum usb_led_event {
2039 	USB_LED_EVENT_HOST = 0,
2040 	USB_LED_EVENT_GADGET = 1,
2041 };
2042 
2043 #ifdef CONFIG_USB_LED_TRIG
2044 extern void usb_led_activity(enum usb_led_event ev);
2045 #else
usb_led_activity(enum usb_led_event ev)2046 static inline void usb_led_activity(enum usb_led_event ev) {}
2047 #endif
2048 
2049 #endif  /* __KERNEL__ */
2050 
2051 #endif
2052