1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32 
33 
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39 
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44 
45 
46 /* Constants */
47 
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
50 
51 /* Macros */
52 
53 #define REG(reg_name) \
54 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55 
56 
57 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
rn_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)58 int rn_get_active_display_cnt_wa(
59 		struct dc *dc,
60 		struct dc_state *context)
61 {
62 	int i, display_count;
63 	bool tmds_present = false;
64 
65 	display_count = 0;
66 	for (i = 0; i < context->stream_count; i++) {
67 		const struct dc_stream_state *stream = context->streams[i];
68 
69 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
70 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
71 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
72 			tmds_present = true;
73 	}
74 
75 	for (i = 0; i < dc->link_count; i++) {
76 		const struct dc_link *link = dc->links[i];
77 
78 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
79 		if (link->link_enc->funcs->is_dig_enabled(link->link_enc))
80 			display_count++;
81 	}
82 
83 	/* WA for hang on HDMI after display off back back on*/
84 	if (display_count == 0 && tmds_present)
85 		display_count = 1;
86 
87 	return display_count;
88 }
89 
rn_set_low_power_state(struct clk_mgr * clk_mgr_base)90 void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
91 {
92 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
93 
94 	rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
95 	/* update power state */
96 	clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
97 }
98 
rn_update_clocks_update_dpp_dto(struct clk_mgr_internal * clk_mgr,struct dc_state * context,int ref_dpp_clk,bool safe_to_lower)99 static void rn_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr,
100 		struct dc_state *context, int ref_dpp_clk, bool safe_to_lower)
101 {
102 	int i;
103 
104 	clk_mgr->dccg->ref_dppclk = ref_dpp_clk;
105 
106 	for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
107 		int dpp_inst, dppclk_khz, prev_dppclk_khz;
108 
109 		/* Loop index will match dpp->inst if resource exists,
110 		 * and we want to avoid dependency on dpp object
111 		 */
112 		dpp_inst = i;
113 		dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz;
114 
115 		prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[i];
116 
117 		if (safe_to_lower || prev_dppclk_khz < dppclk_khz)
118 			clk_mgr->dccg->funcs->update_dpp_dto(
119 							clk_mgr->dccg, dpp_inst, dppclk_khz);
120 	}
121 }
122 
123 
rn_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)124 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
125 			struct dc_state *context,
126 			bool safe_to_lower)
127 {
128 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
129 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
130 	struct dc *dc = clk_mgr_base->ctx->dc;
131 	int display_count, i;
132 	bool update_dppclk = false;
133 	bool update_dispclk = false;
134 	bool dpp_clock_lowered = false;
135 
136 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
137 
138 	if (dc->work_arounds.skip_clock_update)
139 		return;
140 
141 	/*
142 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
143 	 * also if safe to lower is false, we just go in the higher state
144 	 */
145 	if (safe_to_lower && !dc->debug.disable_48mhz_pwrdwn) {
146 		/* check that we're not already in lower */
147 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
148 
149 			display_count = rn_get_active_display_cnt_wa(dc, context);
150 			/* if we can go lower, go lower */
151 			if (display_count == 0) {
152 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
153 				/* update power state */
154 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
155 			}
156 		}
157 	} else {
158 		/* check that we're not already in D0 */
159 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
160 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
161 			/* update power state */
162 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
163 		}
164 	}
165 
166 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
167 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
168 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
169 	}
170 
171 	if (should_set_clock(safe_to_lower,
172 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
173 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
174 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
175 	}
176 
177 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
178 	// Do not adjust dppclk if dppclk is 0 to avoid unexpected result
179 	if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
180 		new_clocks->dppclk_khz = 100000;
181 
182 	/*
183 	 * Temporally ignore thew 0 cases for disp and dpp clks.
184 	 * We may have a new feature that requires 0 clks in the future.
185 	 */
186 	if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
187 		new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
188 		new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
189 	}
190 
191 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
192 		if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
193 			dpp_clock_lowered = true;
194 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
195 		update_dppclk = true;
196 	}
197 
198 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
199 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
200 		clk_mgr_base->clks.actual_dispclk_khz = rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
201 
202 		update_dispclk = true;
203 	}
204 
205 	if (dpp_clock_lowered) {
206 		// increase per DPP DTO before lowering global dppclk with requested dppclk
207 		rn_update_clocks_update_dpp_dto(
208 				clk_mgr,
209 				context,
210 				clk_mgr_base->clks.dppclk_khz,
211 				safe_to_lower);
212 
213 		for (i = 0; i < context->stream_count; i++) {
214 			if (context->streams[i]->signal == SIGNAL_TYPE_EDP &&
215 				context->streams[i]->apply_seamless_boot_optimization) {
216 				dc_wait_for_vblank(dc, context->streams[i]);
217 				break;
218 			}
219 		}
220 
221 		clk_mgr_base->clks.actual_dppclk_khz =
222 				rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
223 
224 		//update dpp dto with actual dpp clk.
225 		rn_update_clocks_update_dpp_dto(
226 				clk_mgr,
227 				context,
228 				clk_mgr_base->clks.actual_dppclk_khz,
229 				safe_to_lower);
230 
231 	} else {
232 		// increase global DPPCLK before lowering per DPP DTO
233 		if (update_dppclk || update_dispclk)
234 			clk_mgr_base->clks.actual_dppclk_khz =
235 					rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
236 
237 		// always update dtos unless clock is lowered and not safe to lower
238 		rn_update_clocks_update_dpp_dto(
239 				clk_mgr,
240 				context,
241 				clk_mgr_base->clks.actual_dppclk_khz,
242 				safe_to_lower);
243 	}
244 
245 	if (update_dispclk &&
246 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
247 		/*update dmcu for wait_loop count*/
248 		dmcu->funcs->set_psr_wait_loop(dmcu,
249 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
250 	}
251 }
252 
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)253 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
254 {
255 	/* get FbMult value */
256 	struct fixed31_32 pll_req;
257 	unsigned int fbmult_frac_val = 0;
258 	unsigned int fbmult_int_val = 0;
259 
260 
261 	/*
262 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
263 	 * to leverage the fix point operations available in driver
264 	 */
265 
266 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
267 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
268 
269 	pll_req = dc_fixpt_from_int(fbmult_int_val);
270 
271 	/*
272 	 * since fractional part is only 16 bit in register definition but is 32 bit
273 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
274 	 */
275 	pll_req.value |= fbmult_frac_val << 16;
276 
277 	/* multiply by REFCLK period */
278 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
279 
280 	/* integer part is now VCO frequency in kHz */
281 	return dc_fixpt_floor(pll_req);
282 }
283 
rn_dump_clk_registers_internal(struct rn_clk_internal * internal,struct clk_mgr * clk_mgr_base)284 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
285 {
286 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
287 
288 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
289 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
290 
291 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
292 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
293 
294 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
295 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
296 
297 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
298 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
299 
300 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
301 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
302 }
303 
304 /* This function collect raw clk register values */
rn_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)305 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
306 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
307 {
308 	struct rn_clk_internal internal = {0};
309 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
310 	unsigned int chars_printed = 0;
311 	unsigned int remaining_buffer = log_info->bufSize;
312 
313 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
314 
315 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
316 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
317 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
318 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
319 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
320 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
321 
322 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
323 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
324 		regs_and_bypass->dppclk_bypass = 0;
325 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
326 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
327 		regs_and_bypass->dcfclk_bypass = 0;
328 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
329 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
330 		regs_and_bypass->dispclk_bypass = 0;
331 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
332 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
333 		regs_and_bypass->dprefclk_bypass = 0;
334 
335 	if (log_info->enabled) {
336 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
337 		remaining_buffer -= chars_printed;
338 		*log_info->sum_chars_printed += chars_printed;
339 		log_info->pBuf += chars_printed;
340 
341 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
342 			regs_and_bypass->dcfclk,
343 			regs_and_bypass->dcf_deep_sleep_divider,
344 			regs_and_bypass->dcf_deep_sleep_allow,
345 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
346 		remaining_buffer -= chars_printed;
347 		*log_info->sum_chars_printed += chars_printed;
348 		log_info->pBuf += chars_printed;
349 
350 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
351 			regs_and_bypass->dprefclk,
352 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
353 		remaining_buffer -= chars_printed;
354 		*log_info->sum_chars_printed += chars_printed;
355 		log_info->pBuf += chars_printed;
356 
357 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
358 			regs_and_bypass->dispclk,
359 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
360 		remaining_buffer -= chars_printed;
361 		*log_info->sum_chars_printed += chars_printed;
362 		log_info->pBuf += chars_printed;
363 
364 		//split
365 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
366 		remaining_buffer -= chars_printed;
367 		*log_info->sum_chars_printed += chars_printed;
368 		log_info->pBuf += chars_printed;
369 
370 		// REGISTER VALUES
371 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
372 		remaining_buffer -= chars_printed;
373 		*log_info->sum_chars_printed += chars_printed;
374 		log_info->pBuf += chars_printed;
375 
376 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
377 				internal.CLK1_CLK3_CURRENT_CNT);
378 		remaining_buffer -= chars_printed;
379 		*log_info->sum_chars_printed += chars_printed;
380 		log_info->pBuf += chars_printed;
381 
382 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
383 					internal.CLK1_CLK3_DS_CNTL);
384 		remaining_buffer -= chars_printed;
385 		*log_info->sum_chars_printed += chars_printed;
386 		log_info->pBuf += chars_printed;
387 
388 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
389 					internal.CLK1_CLK3_ALLOW_DS);
390 		remaining_buffer -= chars_printed;
391 		*log_info->sum_chars_printed += chars_printed;
392 		log_info->pBuf += chars_printed;
393 
394 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
395 					internal.CLK1_CLK2_CURRENT_CNT);
396 		remaining_buffer -= chars_printed;
397 		*log_info->sum_chars_printed += chars_printed;
398 		log_info->pBuf += chars_printed;
399 
400 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
401 					internal.CLK1_CLK0_CURRENT_CNT);
402 		remaining_buffer -= chars_printed;
403 		*log_info->sum_chars_printed += chars_printed;
404 		log_info->pBuf += chars_printed;
405 
406 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
407 					internal.CLK1_CLK1_CURRENT_CNT);
408 		remaining_buffer -= chars_printed;
409 		*log_info->sum_chars_printed += chars_printed;
410 		log_info->pBuf += chars_printed;
411 
412 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
413 					internal.CLK1_CLK3_BYPASS_CNTL);
414 		remaining_buffer -= chars_printed;
415 		*log_info->sum_chars_printed += chars_printed;
416 		log_info->pBuf += chars_printed;
417 
418 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
419 					internal.CLK1_CLK2_BYPASS_CNTL);
420 		remaining_buffer -= chars_printed;
421 		*log_info->sum_chars_printed += chars_printed;
422 		log_info->pBuf += chars_printed;
423 
424 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
425 					internal.CLK1_CLK0_BYPASS_CNTL);
426 		remaining_buffer -= chars_printed;
427 		*log_info->sum_chars_printed += chars_printed;
428 		log_info->pBuf += chars_printed;
429 
430 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
431 					internal.CLK1_CLK1_BYPASS_CNTL);
432 		remaining_buffer -= chars_printed;
433 		*log_info->sum_chars_printed += chars_printed;
434 		log_info->pBuf += chars_printed;
435 	}
436 }
437 
438 /* This function produce translated logical clk state values*/
rn_get_clk_states(struct clk_mgr * clk_mgr_base,struct clk_states * s)439 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
440 {
441 	struct clk_state_registers_and_bypass sb = { 0 };
442 	struct clk_log_info log_info = { 0 };
443 
444 	rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
445 
446 	s->dprefclk_khz = sb.dprefclk * 1000;
447 }
448 
rn_enable_pme_wa(struct clk_mgr * clk_mgr_base)449 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
450 {
451 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
452 
453 	rn_vbios_smu_enable_pme_wa(clk_mgr);
454 }
455 
rn_init_clocks(struct clk_mgr * clk_mgr)456 void rn_init_clocks(struct clk_mgr *clk_mgr)
457 {
458 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
459 	// Assumption is that boot state always supports pstate
460 	clk_mgr->clks.p_state_change_support = true;
461 	clk_mgr->clks.prev_p_state_change_support = true;
462 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
463 }
464 
build_watermark_ranges(struct clk_bw_params * bw_params,struct pp_smu_wm_range_sets * ranges)465 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
466 {
467 	int i, num_valid_sets;
468 
469 	num_valid_sets = 0;
470 
471 	for (i = 0; i < WM_SET_COUNT; i++) {
472 		/* skip empty entries, the smu array has no holes*/
473 		if (!bw_params->wm_table.entries[i].valid)
474 			continue;
475 
476 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
477 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
478 		/* We will not select WM based on fclk, so leave it as unconstrained */
479 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
480 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
481 		/* dcfclk wil be used to select WM*/
482 
483 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
484 			if (i == 0)
485 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
486 			else {
487 				/* add 1 to make it non-overlapping with next lvl */
488 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
489 			}
490 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
491 
492 		} else {
493 			/* unconstrained for memory retraining */
494 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
495 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
496 
497 			/* Modify previous watermark range to cover up to max */
498 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
499 		}
500 		num_valid_sets++;
501 	}
502 
503 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
504 	ranges->num_reader_wm_sets = num_valid_sets;
505 
506 	/* modify the min and max to make sure we cover the whole range*/
507 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
508 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
509 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
510 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
511 
512 	/* This is for writeback only, does not matter currently as no writeback support*/
513 	ranges->num_writer_wm_sets = 1;
514 	ranges->writer_wm_sets[0].wm_inst = WM_A;
515 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
516 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
517 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
518 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
519 
520 }
521 
rn_notify_wm_ranges(struct clk_mgr * clk_mgr_base)522 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
523 {
524 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
525 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
526 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
527 
528 	if (!debug->disable_pplib_wm_range) {
529 		build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
530 
531 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
532 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
533 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
534 	}
535 
536 }
537 
rn_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)538 static bool rn_are_clock_states_equal(struct dc_clocks *a,
539 		struct dc_clocks *b)
540 {
541 	if (a->dispclk_khz != b->dispclk_khz)
542 		return false;
543 	else if (a->dppclk_khz != b->dppclk_khz)
544 		return false;
545 	else if (a->dcfclk_khz != b->dcfclk_khz)
546 		return false;
547 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
548 		return false;
549 
550 	return true;
551 }
552 
553 
554 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
rn_notify_link_rate_change(struct clk_mgr * clk_mgr_base,struct dc_link * link)555 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
556 {
557 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
558 	unsigned int i, max_phyclk_req = 0;
559 
560 	clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
561 
562 	for (i = 0; i < MAX_PIPES * 2; i++) {
563 		if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
564 			max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
565 	}
566 
567 	if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
568 		clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
569 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
570 	}
571 }
572 
573 static struct clk_mgr_funcs dcn21_funcs = {
574 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
575 	.update_clocks = rn_update_clocks,
576 	.init_clocks = rn_init_clocks,
577 	.enable_pme_wa = rn_enable_pme_wa,
578 	.are_clock_states_equal = rn_are_clock_states_equal,
579 	.set_low_power_state = rn_set_low_power_state,
580 	.notify_wm_ranges = rn_notify_wm_ranges,
581 	.notify_link_rate_change = rn_notify_link_rate_change,
582 };
583 
584 static struct clk_bw_params rn_bw_params = {
585 	.vram_type = Ddr4MemType,
586 	.num_channels = 1,
587 	.clk_table = {
588 		.entries = {
589 			{
590 				.voltage = 0,
591 				.dcfclk_mhz = 400,
592 				.fclk_mhz = 400,
593 				.memclk_mhz = 800,
594 				.socclk_mhz = 0,
595 			},
596 			{
597 				.voltage = 0,
598 				.dcfclk_mhz = 483,
599 				.fclk_mhz = 800,
600 				.memclk_mhz = 1600,
601 				.socclk_mhz = 0,
602 			},
603 			{
604 				.voltage = 0,
605 				.dcfclk_mhz = 602,
606 				.fclk_mhz = 1067,
607 				.memclk_mhz = 1067,
608 				.socclk_mhz = 0,
609 			},
610 			{
611 				.voltage = 0,
612 				.dcfclk_mhz = 738,
613 				.fclk_mhz = 1333,
614 				.memclk_mhz = 1600,
615 				.socclk_mhz = 0,
616 			},
617 		},
618 
619 		.num_entries = 4,
620 	},
621 
622 };
623 
624 static struct wm_table ddr4_wm_table_gs = {
625 	.entries = {
626 		{
627 			.wm_inst = WM_A,
628 			.wm_type = WM_TYPE_PSTATE_CHG,
629 			.pstate_latency_us = 11.72,
630 			.sr_exit_time_us = 7.09,
631 			.sr_enter_plus_exit_time_us = 8.14,
632 			.valid = true,
633 		},
634 		{
635 			.wm_inst = WM_B,
636 			.wm_type = WM_TYPE_PSTATE_CHG,
637 			.pstate_latency_us = 11.72,
638 			.sr_exit_time_us = 10.12,
639 			.sr_enter_plus_exit_time_us = 11.48,
640 			.valid = true,
641 		},
642 		{
643 			.wm_inst = WM_C,
644 			.wm_type = WM_TYPE_PSTATE_CHG,
645 			.pstate_latency_us = 11.72,
646 			.sr_exit_time_us = 10.12,
647 			.sr_enter_plus_exit_time_us = 11.48,
648 			.valid = true,
649 		},
650 		{
651 			.wm_inst = WM_D,
652 			.wm_type = WM_TYPE_PSTATE_CHG,
653 			.pstate_latency_us = 11.72,
654 			.sr_exit_time_us = 10.12,
655 			.sr_enter_plus_exit_time_us = 11.48,
656 			.valid = true,
657 		},
658 	}
659 };
660 
661 static struct wm_table lpddr4_wm_table_gs = {
662 	.entries = {
663 		{
664 			.wm_inst = WM_A,
665 			.wm_type = WM_TYPE_PSTATE_CHG,
666 			.pstate_latency_us = 11.65333,
667 			.sr_exit_time_us = 5.32,
668 			.sr_enter_plus_exit_time_us = 6.38,
669 			.valid = true,
670 		},
671 		{
672 			.wm_inst = WM_B,
673 			.wm_type = WM_TYPE_PSTATE_CHG,
674 			.pstate_latency_us = 11.65333,
675 			.sr_exit_time_us = 9.82,
676 			.sr_enter_plus_exit_time_us = 11.196,
677 			.valid = true,
678 		},
679 		{
680 			.wm_inst = WM_C,
681 			.wm_type = WM_TYPE_PSTATE_CHG,
682 			.pstate_latency_us = 11.65333,
683 			.sr_exit_time_us = 9.89,
684 			.sr_enter_plus_exit_time_us = 11.24,
685 			.valid = true,
686 		},
687 		{
688 			.wm_inst = WM_D,
689 			.wm_type = WM_TYPE_PSTATE_CHG,
690 			.pstate_latency_us = 11.65333,
691 			.sr_exit_time_us = 9.748,
692 			.sr_enter_plus_exit_time_us = 11.102,
693 			.valid = true,
694 		},
695 	}
696 };
697 
698 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
699 	.entries = {
700 		{
701 			.wm_inst = WM_A,
702 			.wm_type = WM_TYPE_PSTATE_CHG,
703 			.pstate_latency_us = 11.65333,
704 			.sr_exit_time_us = 8.32,
705 			.sr_enter_plus_exit_time_us = 9.38,
706 			.valid = true,
707 		},
708 		{
709 			.wm_inst = WM_B,
710 			.wm_type = WM_TYPE_PSTATE_CHG,
711 			.pstate_latency_us = 11.65333,
712 			.sr_exit_time_us = 9.82,
713 			.sr_enter_plus_exit_time_us = 11.196,
714 			.valid = true,
715 		},
716 		{
717 			.wm_inst = WM_C,
718 			.wm_type = WM_TYPE_PSTATE_CHG,
719 			.pstate_latency_us = 11.65333,
720 			.sr_exit_time_us = 9.89,
721 			.sr_enter_plus_exit_time_us = 11.24,
722 			.valid = true,
723 		},
724 		{
725 			.wm_inst = WM_D,
726 			.wm_type = WM_TYPE_PSTATE_CHG,
727 			.pstate_latency_us = 11.65333,
728 			.sr_exit_time_us = 9.748,
729 			.sr_enter_plus_exit_time_us = 11.102,
730 			.valid = true,
731 		},
732 	}
733 };
734 
735 static struct wm_table ddr4_wm_table_rn = {
736 	.entries = {
737 		{
738 			.wm_inst = WM_A,
739 			.wm_type = WM_TYPE_PSTATE_CHG,
740 			.pstate_latency_us = 11.72,
741 			.sr_exit_time_us = 11.90,
742 			.sr_enter_plus_exit_time_us = 12.80,
743 			.valid = true,
744 		},
745 		{
746 			.wm_inst = WM_B,
747 			.wm_type = WM_TYPE_PSTATE_CHG,
748 			.pstate_latency_us = 11.72,
749 			.sr_exit_time_us = 13.18,
750 			.sr_enter_plus_exit_time_us = 14.30,
751 			.valid = true,
752 		},
753 		{
754 			.wm_inst = WM_C,
755 			.wm_type = WM_TYPE_PSTATE_CHG,
756 			.pstate_latency_us = 11.72,
757 			.sr_exit_time_us = 13.18,
758 			.sr_enter_plus_exit_time_us = 14.30,
759 			.valid = true,
760 		},
761 		{
762 			.wm_inst = WM_D,
763 			.wm_type = WM_TYPE_PSTATE_CHG,
764 			.pstate_latency_us = 11.72,
765 			.sr_exit_time_us = 13.18,
766 			.sr_enter_plus_exit_time_us = 14.30,
767 			.valid = true,
768 		},
769 	}
770 };
771 
772 static struct wm_table ddr4_1R_wm_table_rn = {
773 	.entries = {
774 		{
775 			.wm_inst = WM_A,
776 			.wm_type = WM_TYPE_PSTATE_CHG,
777 			.pstate_latency_us = 11.72,
778 			.sr_exit_time_us = 13.90,
779 			.sr_enter_plus_exit_time_us = 14.80,
780 			.valid = true,
781 		},
782 		{
783 			.wm_inst = WM_B,
784 			.wm_type = WM_TYPE_PSTATE_CHG,
785 			.pstate_latency_us = 11.72,
786 			.sr_exit_time_us = 13.90,
787 			.sr_enter_plus_exit_time_us = 14.80,
788 			.valid = true,
789 		},
790 		{
791 			.wm_inst = WM_C,
792 			.wm_type = WM_TYPE_PSTATE_CHG,
793 			.pstate_latency_us = 11.72,
794 			.sr_exit_time_us = 13.90,
795 			.sr_enter_plus_exit_time_us = 14.80,
796 			.valid = true,
797 		},
798 		{
799 			.wm_inst = WM_D,
800 			.wm_type = WM_TYPE_PSTATE_CHG,
801 			.pstate_latency_us = 11.72,
802 			.sr_exit_time_us = 13.90,
803 			.sr_enter_plus_exit_time_us = 14.80,
804 			.valid = true,
805 		},
806 	}
807 };
808 
809 static struct wm_table lpddr4_wm_table_rn = {
810 	.entries = {
811 		{
812 			.wm_inst = WM_A,
813 			.wm_type = WM_TYPE_PSTATE_CHG,
814 			.pstate_latency_us = 11.65333,
815 			.sr_exit_time_us = 7.32,
816 			.sr_enter_plus_exit_time_us = 8.38,
817 			.valid = true,
818 		},
819 		{
820 			.wm_inst = WM_B,
821 			.wm_type = WM_TYPE_PSTATE_CHG,
822 			.pstate_latency_us = 11.65333,
823 			.sr_exit_time_us = 9.82,
824 			.sr_enter_plus_exit_time_us = 11.196,
825 			.valid = true,
826 		},
827 		{
828 			.wm_inst = WM_C,
829 			.wm_type = WM_TYPE_PSTATE_CHG,
830 			.pstate_latency_us = 11.65333,
831 			.sr_exit_time_us = 9.89,
832 			.sr_enter_plus_exit_time_us = 11.24,
833 			.valid = true,
834 		},
835 		{
836 			.wm_inst = WM_D,
837 			.wm_type = WM_TYPE_PSTATE_CHG,
838 			.pstate_latency_us = 11.65333,
839 			.sr_exit_time_us = 9.748,
840 			.sr_enter_plus_exit_time_us = 11.102,
841 			.valid = true,
842 		},
843 	}
844 };
find_socclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)845 static unsigned int find_socclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
846 {
847 	int i;
848 
849 	for (i = 0; i < PP_SMU_NUM_SOCCLK_DPM_LEVELS; i++) {
850 		if (clock_table->SocClocks[i].Vol == voltage)
851 			return clock_table->SocClocks[i].Freq;
852 	}
853 
854 	ASSERT(0);
855 	return 0;
856 }
find_dcfclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)857 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
858 {
859 	int i;
860 
861 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
862 		if (clock_table->DcfClocks[i].Vol == voltage)
863 			return clock_table->DcfClocks[i].Freq;
864 	}
865 
866 	ASSERT(0);
867 	return 0;
868 }
869 
rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params * bw_params,struct dpm_clocks * clock_table,struct integrated_info * bios_info)870 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
871 {
872 	int i, j = 0;
873 
874 	j = -1;
875 
876 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
877 
878 	/* Find lowest DPM, FCLK is filled in reverse order*/
879 
880 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
881 		if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
882 			j = i;
883 			break;
884 		}
885 	}
886 
887 	if (j == -1) {
888 		/* clock table is all 0s, just use our own hardcode */
889 		ASSERT(0);
890 		return;
891 	}
892 
893 	bw_params->clk_table.num_entries = j + 1;
894 
895 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
896 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
897 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
898 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
899 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
900 		bw_params->clk_table.entries[i].socclk_mhz = find_socclk_for_voltage(clock_table,
901 									bw_params->clk_table.entries[i].voltage);
902 	}
903 
904 	bw_params->vram_type = bios_info->memory_type;
905 	bw_params->num_channels = bios_info->ma_channel_number;
906 
907 	for (i = 0; i < WM_SET_COUNT; i++) {
908 		bw_params->wm_table.entries[i].wm_inst = i;
909 
910 		if (i >= bw_params->clk_table.num_entries) {
911 			bw_params->wm_table.entries[i].valid = false;
912 			continue;
913 		}
914 
915 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
916 		bw_params->wm_table.entries[i].valid = true;
917 	}
918 
919 	if (bw_params->vram_type == LpDdr4MemType) {
920 		/*
921 		 * WM set D will be re-purposed for memory retraining
922 		 */
923 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
924 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
925 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
926 		bw_params->wm_table.entries[WM_D].valid = true;
927 	}
928 
929 }
930 
rn_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_internal * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)931 void rn_clk_mgr_construct(
932 		struct dc_context *ctx,
933 		struct clk_mgr_internal *clk_mgr,
934 		struct pp_smu_funcs *pp_smu,
935 		struct dccg *dccg)
936 {
937 	struct dc_debug_options *debug = &ctx->dc->debug;
938 	struct dpm_clocks clock_table = { 0 };
939 	enum pp_smu_status status = 0;
940 	int is_green_sardine = 0;
941 
942 #if defined(CONFIG_DRM_AMD_DC_DCN)
943 	is_green_sardine = ASICREV_IS_GREEN_SARDINE(ctx->asic_id.hw_internal_rev);
944 #endif
945 
946 	clk_mgr->base.ctx = ctx;
947 	clk_mgr->base.funcs = &dcn21_funcs;
948 
949 	clk_mgr->pp_smu = pp_smu;
950 
951 	clk_mgr->dccg = dccg;
952 	clk_mgr->dfs_bypass_disp_clk = 0;
953 
954 	clk_mgr->dprefclk_ss_percentage = 0;
955 	clk_mgr->dprefclk_ss_divider = 1000;
956 	clk_mgr->ss_on_dprefclk = false;
957 	clk_mgr->dfs_ref_freq_khz = 48000;
958 
959 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
960 
961 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
962 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
963 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
964 	} else {
965 		struct clk_log_info log_info = {0};
966 
967 		clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
968 
969 		/* SMU Version 55.51.0 and up no longer have an issue
970 		 * that needs to limit minimum dispclk */
971 		if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
972 			debug->min_disp_clk_khz = 0;
973 
974 		/* TODO: Check we get what we expect during bringup */
975 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
976 
977 		/* in case we don't get a value from the register, use default */
978 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
979 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
980 
981 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
982 			if (clk_mgr->periodic_retraining_disabled) {
983 				rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
984 			} else {
985 				if (is_green_sardine)
986 					rn_bw_params.wm_table = lpddr4_wm_table_gs;
987 				else
988 					rn_bw_params.wm_table = lpddr4_wm_table_rn;
989 			}
990 		} else {
991 			if (is_green_sardine)
992 				rn_bw_params.wm_table = ddr4_wm_table_gs;
993 			else {
994 				if (ctx->dc->config.is_single_rank_dimm)
995 					rn_bw_params.wm_table = ddr4_1R_wm_table_rn;
996 				else
997 					rn_bw_params.wm_table = ddr4_wm_table_rn;
998 			}
999 		}
1000 		/* Saved clocks configured at boot for debug purposes */
1001 		rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
1002 	}
1003 
1004 	clk_mgr->base.dprefclk_khz = 600000;
1005 	dce_clock_read_ss_info(clk_mgr);
1006 
1007 
1008 	clk_mgr->base.bw_params = &rn_bw_params;
1009 
1010 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
1011 		status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
1012 
1013 		if (status == PP_SMU_RESULT_OK &&
1014 		    ctx->dc_bios && ctx->dc_bios->integrated_info) {
1015 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
1016 			/* treat memory config as single channel if memory is asymmetrics. */
1017 			if (ctx->dc->config.is_asymmetric_memory)
1018 				clk_mgr->base.bw_params->num_channels = 1;
1019 		}
1020 	}
1021 
1022 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
1023 		/* enable powerfeatures when displaycount goes to 0 */
1024 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
1025 	}
1026 }
1027 
1028