1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 // For dce12_get_dp_ref_freq_khz
30 #include "dce100/dce_clk_mgr.h"
31 
32 // For dcn20_update_clocks_update_dpp_dto
33 #include "dcn20/dcn20_clk_mgr.h"
34 
35 #include "vg_clk_mgr.h"
36 #include "dcn301_smu.h"
37 #include "reg_helper.h"
38 #include "core_types.h"
39 #include "dm_helpers.h"
40 
41 #include "atomfirmware.h"
42 #include "vangogh_ip_offset.h"
43 #include "clk/clk_11_5_0_offset.h"
44 #include "clk/clk_11_5_0_sh_mask.h"
45 
46 /* Constants */
47 
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 
50 /* Macros */
51 
52 #define TO_CLK_MGR_VGH(clk_mgr)\
53 	container_of(clk_mgr, struct clk_mgr_vgh, base)
54 
55 #define REG(reg_name) \
56 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
57 
58 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
vg_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)59 static int vg_get_active_display_cnt_wa(
60 		struct dc *dc,
61 		struct dc_state *context)
62 {
63 	int i, display_count;
64 	bool tmds_present = false;
65 
66 	display_count = 0;
67 	for (i = 0; i < context->stream_count; i++) {
68 		const struct dc_stream_state *stream = context->streams[i];
69 
70 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
71 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
72 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
73 			tmds_present = true;
74 	}
75 
76 	for (i = 0; i < dc->link_count; i++) {
77 		const struct dc_link *link = dc->links[i];
78 
79 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
80 		if (link->link_enc->funcs->is_dig_enabled &&
81 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
82 			display_count++;
83 	}
84 
85 	/* WA for hang on HDMI after display off back back on*/
86 	if (display_count == 0 && tmds_present)
87 		display_count = 1;
88 
89 	return display_count;
90 }
91 
vg_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)92 void vg_update_clocks(struct clk_mgr *clk_mgr_base,
93 			struct dc_state *context,
94 			bool safe_to_lower)
95 {
96 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
97 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
98 	struct dc *dc = clk_mgr_base->ctx->dc;
99 	int display_count;
100 	bool update_dppclk = false;
101 	bool update_dispclk = false;
102 	bool dpp_clock_lowered = false;
103 
104 	if (dc->work_arounds.skip_clock_update)
105 		return;
106 
107 	/*
108 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
109 	 * also if safe to lower is false, we just go in the higher state
110 	 */
111 	if (safe_to_lower) {
112 		/* check that we're not already in lower */
113 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
114 
115 			display_count = vg_get_active_display_cnt_wa(dc, context);
116 			/* if we can go lower, go lower */
117 			if (display_count == 0) {
118 				union display_idle_optimization_u idle_info = { 0 };
119 
120 				idle_info.idle_info.df_request_disabled = 1;
121 				idle_info.idle_info.phy_ref_clk_off = 1;
122 
123 				dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
124 				/* update power state */
125 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
126 			}
127 		}
128 	} else {
129 		/* check that we're not already in D0 */
130 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
131 			union display_idle_optimization_u idle_info = { 0 };
132 
133 			dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
134 			/* update power state */
135 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
136 		}
137 	}
138 
139 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz) && !dc->debug.disable_min_fclk) {
140 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
141 		dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
142 	}
143 
144 	if (should_set_clock(safe_to_lower,
145 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz) && !dc->debug.disable_min_fclk) {
146 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
147 		dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
148 	}
149 
150 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
151 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
152 		if (new_clocks->dppclk_khz < 100000)
153 			new_clocks->dppclk_khz = 100000;
154 	}
155 
156 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
157 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
158 			dpp_clock_lowered = true;
159 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
160 		update_dppclk = true;
161 	}
162 
163 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
164 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
165 		dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
166 
167 		update_dispclk = true;
168 	}
169 
170 	if (dpp_clock_lowered) {
171 		// increase per DPP DTO before lowering global dppclk
172 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
173 		dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
174 	} else {
175 		// increase global DPPCLK before lowering per DPP DTO
176 		if (update_dppclk || update_dispclk)
177 			dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
178 		// always update dtos unless clock is lowered and not safe to lower
179 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
180 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
181 	}
182 }
183 
184 
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)185 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
186 {
187 	/* get FbMult value */
188 	struct fixed31_32 pll_req;
189 	unsigned int fbmult_frac_val = 0;
190 	unsigned int fbmult_int_val = 0;
191 
192 
193 	/*
194 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
195 	 * to leverage the fix point operations available in driver
196 	 */
197 
198 	REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
199 	REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
200 
201 	pll_req = dc_fixpt_from_int(fbmult_int_val);
202 
203 	/*
204 	 * since fractional part is only 16 bit in register definition but is 32 bit
205 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
206 	 */
207 	pll_req.value |= fbmult_frac_val << 16;
208 
209 	/* multiply by REFCLK period */
210 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
211 
212 	/* integer part is now VCO frequency in kHz */
213 	return dc_fixpt_floor(pll_req);
214 }
215 
vg_dump_clk_registers_internal(struct dcn301_clk_internal * internal,struct clk_mgr * clk_mgr_base)216 static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
217 {
218 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
219 
220 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
221 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
222 
223 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
224 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
225 
226 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
227 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
228 
229 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
230 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
231 
232 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
233 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
234 }
235 
236 /* This function collect raw clk register values */
vg_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)237 static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
238 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
239 {
240 	struct dcn301_clk_internal internal = {0};
241 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
242 	unsigned int chars_printed = 0;
243 	unsigned int remaining_buffer = log_info->bufSize;
244 
245 	vg_dump_clk_registers_internal(&internal, clk_mgr_base);
246 
247 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
248 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
249 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
250 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
251 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
252 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
253 
254 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
255 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
256 		regs_and_bypass->dppclk_bypass = 0;
257 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
258 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
259 		regs_and_bypass->dcfclk_bypass = 0;
260 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
261 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
262 		regs_and_bypass->dispclk_bypass = 0;
263 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
264 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
265 		regs_and_bypass->dprefclk_bypass = 0;
266 
267 	if (log_info->enabled) {
268 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
269 		remaining_buffer -= chars_printed;
270 		*log_info->sum_chars_printed += chars_printed;
271 		log_info->pBuf += chars_printed;
272 
273 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
274 			regs_and_bypass->dcfclk,
275 			regs_and_bypass->dcf_deep_sleep_divider,
276 			regs_and_bypass->dcf_deep_sleep_allow,
277 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
278 		remaining_buffer -= chars_printed;
279 		*log_info->sum_chars_printed += chars_printed;
280 		log_info->pBuf += chars_printed;
281 
282 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
283 			regs_and_bypass->dprefclk,
284 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
285 		remaining_buffer -= chars_printed;
286 		*log_info->sum_chars_printed += chars_printed;
287 		log_info->pBuf += chars_printed;
288 
289 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
290 			regs_and_bypass->dispclk,
291 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
292 		remaining_buffer -= chars_printed;
293 		*log_info->sum_chars_printed += chars_printed;
294 		log_info->pBuf += chars_printed;
295 
296 		//split
297 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
298 		remaining_buffer -= chars_printed;
299 		*log_info->sum_chars_printed += chars_printed;
300 		log_info->pBuf += chars_printed;
301 
302 		// REGISTER VALUES
303 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
304 		remaining_buffer -= chars_printed;
305 		*log_info->sum_chars_printed += chars_printed;
306 		log_info->pBuf += chars_printed;
307 
308 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
309 				internal.CLK1_CLK3_CURRENT_CNT);
310 		remaining_buffer -= chars_printed;
311 		*log_info->sum_chars_printed += chars_printed;
312 		log_info->pBuf += chars_printed;
313 
314 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
315 					internal.CLK1_CLK3_DS_CNTL);
316 		remaining_buffer -= chars_printed;
317 		*log_info->sum_chars_printed += chars_printed;
318 		log_info->pBuf += chars_printed;
319 
320 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
321 					internal.CLK1_CLK3_ALLOW_DS);
322 		remaining_buffer -= chars_printed;
323 		*log_info->sum_chars_printed += chars_printed;
324 		log_info->pBuf += chars_printed;
325 
326 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
327 					internal.CLK1_CLK2_CURRENT_CNT);
328 		remaining_buffer -= chars_printed;
329 		*log_info->sum_chars_printed += chars_printed;
330 		log_info->pBuf += chars_printed;
331 
332 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
333 					internal.CLK1_CLK0_CURRENT_CNT);
334 		remaining_buffer -= chars_printed;
335 		*log_info->sum_chars_printed += chars_printed;
336 		log_info->pBuf += chars_printed;
337 
338 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
339 					internal.CLK1_CLK1_CURRENT_CNT);
340 		remaining_buffer -= chars_printed;
341 		*log_info->sum_chars_printed += chars_printed;
342 		log_info->pBuf += chars_printed;
343 
344 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
345 					internal.CLK1_CLK3_BYPASS_CNTL);
346 		remaining_buffer -= chars_printed;
347 		*log_info->sum_chars_printed += chars_printed;
348 		log_info->pBuf += chars_printed;
349 
350 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
351 					internal.CLK1_CLK2_BYPASS_CNTL);
352 		remaining_buffer -= chars_printed;
353 		*log_info->sum_chars_printed += chars_printed;
354 		log_info->pBuf += chars_printed;
355 
356 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
357 					internal.CLK1_CLK0_BYPASS_CNTL);
358 		remaining_buffer -= chars_printed;
359 		*log_info->sum_chars_printed += chars_printed;
360 		log_info->pBuf += chars_printed;
361 
362 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
363 					internal.CLK1_CLK1_BYPASS_CNTL);
364 		remaining_buffer -= chars_printed;
365 		*log_info->sum_chars_printed += chars_printed;
366 		log_info->pBuf += chars_printed;
367 	}
368 }
369 
370 /* This function produce translated logical clk state values*/
vg_get_clk_states(struct clk_mgr * clk_mgr_base,struct clk_states * s)371 void vg_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
372 {
373 
374 	struct clk_state_registers_and_bypass sb = { 0 };
375 	struct clk_log_info log_info = { 0 };
376 
377 	vg_dump_clk_registers(&sb, clk_mgr_base, &log_info);
378 
379 	s->dprefclk_khz = sb.dprefclk * 1000;
380 }
381 
vg_enable_pme_wa(struct clk_mgr * clk_mgr_base)382 static void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
383 {
384 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
385 
386 	dcn301_smu_enable_pme_wa(clk_mgr);
387 }
388 
vg_init_clocks(struct clk_mgr * clk_mgr)389 void vg_init_clocks(struct clk_mgr *clk_mgr)
390 {
391 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
392 	// Assumption is that boot state always supports pstate
393 	clk_mgr->clks.p_state_change_support = true;
394 	clk_mgr->clks.prev_p_state_change_support = true;
395 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
396 }
397 
vg_build_watermark_ranges(struct clk_bw_params * bw_params,struct watermarks * table)398 static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
399 {
400 	int i, num_valid_sets;
401 
402 	num_valid_sets = 0;
403 
404 	for (i = 0; i < WM_SET_COUNT; i++) {
405 		/* skip empty entries, the smu array has no holes*/
406 		if (!bw_params->wm_table.entries[i].valid)
407 			continue;
408 
409 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
410 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
411 		/* We will not select WM based on fclk, so leave it as unconstrained */
412 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
413 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
414 
415 		if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
416 			if (i == 0)
417 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
418 			else {
419 				/* add 1 to make it non-overlapping with next lvl */
420 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
421 						bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
422 			}
423 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
424 					bw_params->clk_table.entries[i].dcfclk_mhz;
425 
426 		} else {
427 			/* unconstrained for memory retraining */
428 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
429 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
430 
431 			/* Modify previous watermark range to cover up to max */
432 			table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
433 		}
434 		num_valid_sets++;
435 	}
436 
437 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
438 
439 	/* modify the min and max to make sure we cover the whole range*/
440 	table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
441 	table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
442 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
443 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
444 
445 	/* This is for writeback only, does not matter currently as no writeback support*/
446 	table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
447 	table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
448 	table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
449 	table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
450 	table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
451 }
452 
453 
vg_notify_wm_ranges(struct clk_mgr * clk_mgr_base)454 static void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
455 {
456 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
457 	struct clk_mgr_vgh *clk_mgr_vgh = TO_CLK_MGR_VGH(clk_mgr);
458 	struct watermarks *table = clk_mgr_vgh->smu_wm_set.wm_set;
459 
460 	if (!clk_mgr->smu_ver)
461 		return;
462 
463 	if (!table || clk_mgr_vgh->smu_wm_set.mc_address.quad_part == 0)
464 		return;
465 
466 	memset(table, 0, sizeof(*table));
467 
468 	vg_build_watermark_ranges(clk_mgr_base->bw_params, table);
469 
470 	dcn301_smu_set_dram_addr_high(clk_mgr,
471 			clk_mgr_vgh->smu_wm_set.mc_address.high_part);
472 	dcn301_smu_set_dram_addr_low(clk_mgr,
473 			clk_mgr_vgh->smu_wm_set.mc_address.low_part);
474 	dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
475 }
476 
vg_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)477 static bool vg_are_clock_states_equal(struct dc_clocks *a,
478 		struct dc_clocks *b)
479 {
480 	if (a->dispclk_khz != b->dispclk_khz)
481 		return false;
482 	else if (a->dppclk_khz != b->dppclk_khz)
483 		return false;
484 	else if (a->dcfclk_khz != b->dcfclk_khz)
485 		return false;
486 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
487 		return false;
488 
489 	return true;
490 }
491 
492 
493 static struct clk_mgr_funcs vg_funcs = {
494 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
495 	.update_clocks = vg_update_clocks,
496 	.init_clocks = vg_init_clocks,
497 	.enable_pme_wa = vg_enable_pme_wa,
498 	.are_clock_states_equal = vg_are_clock_states_equal,
499 	.notify_wm_ranges = vg_notify_wm_ranges
500 };
501 
502 static struct clk_bw_params vg_bw_params = {
503 	.vram_type = Ddr4MemType,
504 	.num_channels = 1,
505 	.clk_table = {
506 		.entries = {
507 			{
508 				.voltage = 0,
509 				.dcfclk_mhz = 400,
510 				.fclk_mhz = 400,
511 				.memclk_mhz = 800,
512 				.socclk_mhz = 0,
513 			},
514 			{
515 				.voltage = 0,
516 				.dcfclk_mhz = 483,
517 				.fclk_mhz = 800,
518 				.memclk_mhz = 1600,
519 				.socclk_mhz = 0,
520 			},
521 			{
522 				.voltage = 0,
523 				.dcfclk_mhz = 602,
524 				.fclk_mhz = 1067,
525 				.memclk_mhz = 1067,
526 				.socclk_mhz = 0,
527 			},
528 			{
529 				.voltage = 0,
530 				.dcfclk_mhz = 738,
531 				.fclk_mhz = 1333,
532 				.memclk_mhz = 1600,
533 				.socclk_mhz = 0,
534 			},
535 		},
536 
537 		.num_entries = 4,
538 	},
539 
540 };
541 
542 static struct wm_table ddr4_wm_table = {
543 	.entries = {
544 		{
545 			.wm_inst = WM_A,
546 			.wm_type = WM_TYPE_PSTATE_CHG,
547 			.pstate_latency_us = 11.72,
548 			.sr_exit_time_us = 6.09,
549 			.sr_enter_plus_exit_time_us = 7.14,
550 			.valid = true,
551 		},
552 		{
553 			.wm_inst = WM_B,
554 			.wm_type = WM_TYPE_PSTATE_CHG,
555 			.pstate_latency_us = 11.72,
556 			.sr_exit_time_us = 10.12,
557 			.sr_enter_plus_exit_time_us = 11.48,
558 			.valid = true,
559 		},
560 		{
561 			.wm_inst = WM_C,
562 			.wm_type = WM_TYPE_PSTATE_CHG,
563 			.pstate_latency_us = 11.72,
564 			.sr_exit_time_us = 10.12,
565 			.sr_enter_plus_exit_time_us = 11.48,
566 			.valid = true,
567 		},
568 		{
569 			.wm_inst = WM_D,
570 			.wm_type = WM_TYPE_PSTATE_CHG,
571 			.pstate_latency_us = 11.72,
572 			.sr_exit_time_us = 10.12,
573 			.sr_enter_plus_exit_time_us = 11.48,
574 			.valid = true,
575 		},
576 	}
577 };
578 
579 static struct wm_table lpddr5_wm_table = {
580 	.entries = {
581 		{
582 			.wm_inst = WM_A,
583 			.wm_type = WM_TYPE_PSTATE_CHG,
584 			.pstate_latency_us = 11.65333,
585 			.sr_exit_time_us = 5.32,
586 			.sr_enter_plus_exit_time_us = 6.38,
587 			.valid = true,
588 		},
589 		{
590 			.wm_inst = WM_B,
591 			.wm_type = WM_TYPE_PSTATE_CHG,
592 			.pstate_latency_us = 11.65333,
593 			.sr_exit_time_us = 9.82,
594 			.sr_enter_plus_exit_time_us = 11.196,
595 			.valid = true,
596 		},
597 		{
598 			.wm_inst = WM_C,
599 			.wm_type = WM_TYPE_PSTATE_CHG,
600 			.pstate_latency_us = 11.65333,
601 			.sr_exit_time_us = 9.89,
602 			.sr_enter_plus_exit_time_us = 11.24,
603 			.valid = true,
604 		},
605 		{
606 			.wm_inst = WM_D,
607 			.wm_type = WM_TYPE_PSTATE_CHG,
608 			.pstate_latency_us = 11.65333,
609 			.sr_exit_time_us = 9.748,
610 			.sr_enter_plus_exit_time_us = 11.102,
611 			.valid = true,
612 		},
613 	}
614 };
615 
616 
find_dcfclk_for_voltage(const struct vg_dpm_clocks * clock_table,unsigned int voltage)617 static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
618 		unsigned int voltage)
619 {
620 	int i;
621 
622 	for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
623 		if (clock_table->SocVoltage[i] == voltage)
624 			return clock_table->DcfClocks[i];
625 	}
626 
627 	ASSERT(0);
628 	return 0;
629 }
630 
vg_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal * clk_mgr,struct integrated_info * bios_info,const struct vg_dpm_clocks * clock_table)631 static void vg_clk_mgr_helper_populate_bw_params(
632 		struct clk_mgr_internal *clk_mgr,
633 		struct integrated_info *bios_info,
634 		const struct vg_dpm_clocks *clock_table)
635 {
636 	int i, j;
637 	struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
638 
639 	j = -1;
640 
641 	ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
642 
643 	/* Find lowest DPM, FCLK is filled in reverse order*/
644 
645 	for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
646 		if (clock_table->DfPstateTable[i].fclk != 0) {
647 			j = i;
648 			break;
649 		}
650 	}
651 
652 	if (j == -1) {
653 		/* clock table is all 0s, just use our own hardcode */
654 		ASSERT(0);
655 		return;
656 	}
657 
658 	bw_params->clk_table.num_entries = j + 1;
659 
660 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
661 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
662 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
663 		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
664 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage);
665 	}
666 
667 	bw_params->vram_type = bios_info->memory_type;
668 	bw_params->num_channels = bios_info->ma_channel_number;
669 
670 	for (i = 0; i < WM_SET_COUNT; i++) {
671 		bw_params->wm_table.entries[i].wm_inst = i;
672 
673 		if (i >= bw_params->clk_table.num_entries) {
674 			bw_params->wm_table.entries[i].valid = false;
675 			continue;
676 		}
677 
678 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
679 		bw_params->wm_table.entries[i].valid = true;
680 	}
681 
682 	if (bw_params->vram_type == LpDdr4MemType) {
683 		/*
684 		 * WM set D will be re-purposed for memory retraining
685 		 */
686 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
687 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
688 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
689 		bw_params->wm_table.entries[WM_D].valid = true;
690 	}
691 
692 }
693 
694 /* Temporary Place holder until we can get them from fuse */
695 static struct vg_dpm_clocks dummy_clocks = {
696 		.DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
697 		.SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
698 		.SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
699 		.DfPstateTable = {
700 				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
701 				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
702 				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
703 				{ .fclk = 400,  .memclk = 400, .voltage = 2800 }
704 		}
705 };
706 
707 static struct watermarks dummy_wms = { 0 };
708 
vg_get_dpm_table_from_smu(struct clk_mgr_internal * clk_mgr,struct smu_dpm_clks * smu_dpm_clks)709 static void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
710 		struct smu_dpm_clks *smu_dpm_clks)
711 {
712 	struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
713 
714 	if (!clk_mgr->smu_ver)
715 		return;
716 
717 	if (!table || smu_dpm_clks->mc_address.quad_part == 0)
718 		return;
719 
720 	memset(table, 0, sizeof(*table));
721 
722 	dcn301_smu_set_dram_addr_high(clk_mgr,
723 			smu_dpm_clks->mc_address.high_part);
724 	dcn301_smu_set_dram_addr_low(clk_mgr,
725 			smu_dpm_clks->mc_address.low_part);
726 	dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
727 }
728 
vg_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_vgh * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)729 void vg_clk_mgr_construct(
730 		struct dc_context *ctx,
731 		struct clk_mgr_vgh *clk_mgr,
732 		struct pp_smu_funcs *pp_smu,
733 		struct dccg *dccg)
734 {
735 	struct smu_dpm_clks smu_dpm_clks = { 0 };
736 
737 	clk_mgr->base.base.ctx = ctx;
738 	clk_mgr->base.base.funcs = &vg_funcs;
739 
740 	clk_mgr->base.pp_smu = pp_smu;
741 
742 	clk_mgr->base.dccg = dccg;
743 	clk_mgr->base.dfs_bypass_disp_clk = 0;
744 
745 	clk_mgr->base.dprefclk_ss_percentage = 0;
746 	clk_mgr->base.dprefclk_ss_divider = 1000;
747 	clk_mgr->base.ss_on_dprefclk = false;
748 	clk_mgr->base.dfs_ref_freq_khz = 48000;
749 
750 	clk_mgr->smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
751 				clk_mgr->base.base.ctx,
752 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
753 				sizeof(struct watermarks),
754 				&clk_mgr->smu_wm_set.mc_address.quad_part);
755 
756 	if (clk_mgr->smu_wm_set.wm_set == 0) {
757 		clk_mgr->smu_wm_set.wm_set = &dummy_wms;
758 		clk_mgr->smu_wm_set.mc_address.quad_part = 0;
759 	}
760 	ASSERT(clk_mgr->smu_wm_set.wm_set);
761 
762 	smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
763 				clk_mgr->base.base.ctx,
764 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
765 				sizeof(struct vg_dpm_clocks),
766 				&smu_dpm_clks.mc_address.quad_part);
767 
768 	if (smu_dpm_clks.dpm_clks == NULL) {
769 		smu_dpm_clks.dpm_clks = &dummy_clocks;
770 		smu_dpm_clks.mc_address.quad_part = 0;
771 	}
772 
773 	ASSERT(smu_dpm_clks.dpm_clks);
774 
775 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
776 		vg_funcs.update_clocks = dcn2_update_clocks_fpga;
777 		clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
778 	} else {
779 		struct clk_log_info log_info = {0};
780 
781 		clk_mgr->base.smu_ver = dcn301_smu_get_smu_version(&clk_mgr->base);
782 
783 		if (clk_mgr->base.smu_ver)
784 			clk_mgr->base.smu_present = true;
785 
786 		/* TODO: Check we get what we expect during bringup */
787 		clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
788 
789 		/* in case we don't get a value from the register, use default */
790 		if (clk_mgr->base.base.dentist_vco_freq_khz == 0)
791 			clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
792 
793 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
794 			vg_bw_params.wm_table = lpddr5_wm_table;
795 		} else {
796 			vg_bw_params.wm_table = ddr4_wm_table;
797 		}
798 		/* Saved clocks configured at boot for debug purposes */
799 		vg_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info);
800 	}
801 
802 	clk_mgr->base.base.dprefclk_khz = 600000;
803 	dce_clock_read_ss_info(&clk_mgr->base);
804 
805 	clk_mgr->base.base.bw_params = &vg_bw_params;
806 
807 	vg_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
808 	if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
809 		vg_clk_mgr_helper_populate_bw_params(
810 				&clk_mgr->base,
811 				ctx->dc_bios->integrated_info,
812 				smu_dpm_clks.dpm_clks);
813 	}
814 
815 	if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
816 		dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
817 				smu_dpm_clks.dpm_clks);
818 /*
819 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->base.smu_ver) {
820 		 enable powerfeatures when displaycount goes to 0
821 		dcn301_smu_enable_phy_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
822 	}
823 */
824 }
825 
vg_clk_mgr_destroy(struct clk_mgr_internal * clk_mgr_int)826 void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
827 {
828 	struct clk_mgr_vgh *clk_mgr = TO_CLK_MGR_VGH(clk_mgr_int);
829 
830 	if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
831 		dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
832 				clk_mgr->smu_wm_set.wm_set);
833 }
834