1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/dm-bufio.h>
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 
22 #define DM_MSG_PREFIX "bufio"
23 
24 /*
25  * Memory management policy:
26  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *	dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS		8
33 
34 #define DM_BUFIO_MEMORY_PERCENT		2
35 #define DM_BUFIO_VMALLOC_PERCENT	25
36 #define DM_BUFIO_WRITEBACK_RATIO	3
37 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
38 
39 /*
40  * Check buffer ages in this interval (seconds)
41  */
42 #define DM_BUFIO_WORK_TIMER_SECS	30
43 
44 /*
45  * Free buffers when they are older than this (seconds)
46  */
47 #define DM_BUFIO_DEFAULT_AGE_SECS	300
48 
49 /*
50  * The nr of bytes of cached data to keep around.
51  */
52 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
53 
54 /*
55  * Align buffer writes to this boundary.
56  * Tests show that SSDs have the highest IOPS when using 4k writes.
57  */
58 #define DM_BUFIO_WRITE_ALIGN		4096
59 
60 /*
61  * dm_buffer->list_mode
62  */
63 #define LIST_CLEAN	0
64 #define LIST_DIRTY	1
65 #define LIST_SIZE	2
66 
67 /*
68  * Linking of buffers:
69  *	All buffers are linked to buffer_tree with their node field.
70  *
71  *	Clean buffers that are not being written (B_WRITING not set)
72  *	are linked to lru[LIST_CLEAN] with their lru_list field.
73  *
74  *	Dirty and clean buffers that are being written are linked to
75  *	lru[LIST_DIRTY] with their lru_list field. When the write
76  *	finishes, the buffer cannot be relinked immediately (because we
77  *	are in an interrupt context and relinking requires process
78  *	context), so some clean-not-writing buffers can be held on
79  *	dirty_lru too.  They are later added to lru in the process
80  *	context.
81  */
82 struct dm_bufio_client {
83 	struct mutex lock;
84 
85 	struct list_head lru[LIST_SIZE];
86 	unsigned long n_buffers[LIST_SIZE];
87 
88 	struct block_device *bdev;
89 	unsigned block_size;
90 	s8 sectors_per_block_bits;
91 	void (*alloc_callback)(struct dm_buffer *);
92 	void (*write_callback)(struct dm_buffer *);
93 
94 	struct kmem_cache *slab_buffer;
95 	struct kmem_cache *slab_cache;
96 	struct dm_io_client *dm_io;
97 
98 	struct list_head reserved_buffers;
99 	unsigned need_reserved_buffers;
100 
101 	unsigned minimum_buffers;
102 
103 	struct rb_root buffer_tree;
104 	wait_queue_head_t free_buffer_wait;
105 
106 	sector_t start;
107 
108 	int async_write_error;
109 
110 	struct list_head client_list;
111 
112 	struct shrinker shrinker;
113 	struct work_struct shrink_work;
114 	atomic_long_t need_shrink;
115 };
116 
117 /*
118  * Buffer state bits.
119  */
120 #define B_READING	0
121 #define B_WRITING	1
122 #define B_DIRTY		2
123 
124 /*
125  * Describes how the block was allocated:
126  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127  * See the comment at alloc_buffer_data.
128  */
129 enum data_mode {
130 	DATA_MODE_SLAB = 0,
131 	DATA_MODE_GET_FREE_PAGES = 1,
132 	DATA_MODE_VMALLOC = 2,
133 	DATA_MODE_LIMIT = 3
134 };
135 
136 struct dm_buffer {
137 	struct rb_node node;
138 	struct list_head lru_list;
139 	struct list_head global_list;
140 	sector_t block;
141 	void *data;
142 	unsigned char data_mode;		/* DATA_MODE_* */
143 	unsigned char list_mode;		/* LIST_* */
144 	blk_status_t read_error;
145 	blk_status_t write_error;
146 	unsigned accessed;
147 	unsigned hold_count;
148 	unsigned long state;
149 	unsigned long last_accessed;
150 	unsigned dirty_start;
151 	unsigned dirty_end;
152 	unsigned write_start;
153 	unsigned write_end;
154 	struct dm_bufio_client *c;
155 	struct list_head write_list;
156 	void (*end_io)(struct dm_buffer *, blk_status_t);
157 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
158 #define MAX_STACK 10
159 	unsigned int stack_len;
160 	unsigned long stack_entries[MAX_STACK];
161 #endif
162 };
163 
164 /*----------------------------------------------------------------*/
165 
166 #define dm_bufio_in_request()	(!!current->bio_list)
167 
dm_bufio_lock(struct dm_bufio_client * c)168 static void dm_bufio_lock(struct dm_bufio_client *c)
169 {
170 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
171 }
172 
dm_bufio_trylock(struct dm_bufio_client * c)173 static int dm_bufio_trylock(struct dm_bufio_client *c)
174 {
175 	return mutex_trylock(&c->lock);
176 }
177 
dm_bufio_unlock(struct dm_bufio_client * c)178 static void dm_bufio_unlock(struct dm_bufio_client *c)
179 {
180 	mutex_unlock(&c->lock);
181 }
182 
183 /*----------------------------------------------------------------*/
184 
185 /*
186  * Default cache size: available memory divided by the ratio.
187  */
188 static unsigned long dm_bufio_default_cache_size;
189 
190 /*
191  * Total cache size set by the user.
192  */
193 static unsigned long dm_bufio_cache_size;
194 
195 /*
196  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
197  * at any time.  If it disagrees, the user has changed cache size.
198  */
199 static unsigned long dm_bufio_cache_size_latch;
200 
201 static DEFINE_SPINLOCK(global_spinlock);
202 
203 static LIST_HEAD(global_queue);
204 
205 static unsigned long global_num = 0;
206 
207 /*
208  * Buffers are freed after this timeout
209  */
210 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
211 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
212 
213 static unsigned long dm_bufio_peak_allocated;
214 static unsigned long dm_bufio_allocated_kmem_cache;
215 static unsigned long dm_bufio_allocated_get_free_pages;
216 static unsigned long dm_bufio_allocated_vmalloc;
217 static unsigned long dm_bufio_current_allocated;
218 
219 /*----------------------------------------------------------------*/
220 
221 /*
222  * The current number of clients.
223  */
224 static int dm_bufio_client_count;
225 
226 /*
227  * The list of all clients.
228  */
229 static LIST_HEAD(dm_bufio_all_clients);
230 
231 /*
232  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
233  */
234 static DEFINE_MUTEX(dm_bufio_clients_lock);
235 
236 static struct workqueue_struct *dm_bufio_wq;
237 static struct delayed_work dm_bufio_cleanup_old_work;
238 static struct work_struct dm_bufio_replacement_work;
239 
240 
241 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
buffer_record_stack(struct dm_buffer * b)242 static void buffer_record_stack(struct dm_buffer *b)
243 {
244 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
245 }
246 #endif
247 
248 /*----------------------------------------------------------------
249  * A red/black tree acts as an index for all the buffers.
250  *--------------------------------------------------------------*/
__find(struct dm_bufio_client * c,sector_t block)251 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
252 {
253 	struct rb_node *n = c->buffer_tree.rb_node;
254 	struct dm_buffer *b;
255 
256 	while (n) {
257 		b = container_of(n, struct dm_buffer, node);
258 
259 		if (b->block == block)
260 			return b;
261 
262 		n = block < b->block ? n->rb_left : n->rb_right;
263 	}
264 
265 	return NULL;
266 }
267 
__find_next(struct dm_bufio_client * c,sector_t block)268 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
269 {
270 	struct rb_node *n = c->buffer_tree.rb_node;
271 	struct dm_buffer *b;
272 	struct dm_buffer *best = NULL;
273 
274 	while (n) {
275 		b = container_of(n, struct dm_buffer, node);
276 
277 		if (b->block == block)
278 			return b;
279 
280 		if (block <= b->block) {
281 			n = n->rb_left;
282 			best = b;
283 		} else {
284 			n = n->rb_right;
285 		}
286 	}
287 
288 	return best;
289 }
290 
__insert(struct dm_bufio_client * c,struct dm_buffer * b)291 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
292 {
293 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
294 	struct dm_buffer *found;
295 
296 	while (*new) {
297 		found = container_of(*new, struct dm_buffer, node);
298 
299 		if (found->block == b->block) {
300 			BUG_ON(found != b);
301 			return;
302 		}
303 
304 		parent = *new;
305 		new = b->block < found->block ?
306 			&found->node.rb_left : &found->node.rb_right;
307 	}
308 
309 	rb_link_node(&b->node, parent, new);
310 	rb_insert_color(&b->node, &c->buffer_tree);
311 }
312 
__remove(struct dm_bufio_client * c,struct dm_buffer * b)313 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
314 {
315 	rb_erase(&b->node, &c->buffer_tree);
316 }
317 
318 /*----------------------------------------------------------------*/
319 
adjust_total_allocated(struct dm_buffer * b,bool unlink)320 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
321 {
322 	unsigned char data_mode;
323 	long diff;
324 
325 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
326 		&dm_bufio_allocated_kmem_cache,
327 		&dm_bufio_allocated_get_free_pages,
328 		&dm_bufio_allocated_vmalloc,
329 	};
330 
331 	data_mode = b->data_mode;
332 	diff = (long)b->c->block_size;
333 	if (unlink)
334 		diff = -diff;
335 
336 	spin_lock(&global_spinlock);
337 
338 	*class_ptr[data_mode] += diff;
339 
340 	dm_bufio_current_allocated += diff;
341 
342 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
343 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
344 
345 	b->accessed = 1;
346 
347 	if (!unlink) {
348 		list_add(&b->global_list, &global_queue);
349 		global_num++;
350 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
351 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
352 	} else {
353 		list_del(&b->global_list);
354 		global_num--;
355 	}
356 
357 	spin_unlock(&global_spinlock);
358 }
359 
360 /*
361  * Change the number of clients and recalculate per-client limit.
362  */
__cache_size_refresh(void)363 static void __cache_size_refresh(void)
364 {
365 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
366 	BUG_ON(dm_bufio_client_count < 0);
367 
368 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
369 
370 	/*
371 	 * Use default if set to 0 and report the actual cache size used.
372 	 */
373 	if (!dm_bufio_cache_size_latch) {
374 		(void)cmpxchg(&dm_bufio_cache_size, 0,
375 			      dm_bufio_default_cache_size);
376 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
377 	}
378 }
379 
380 /*
381  * Allocating buffer data.
382  *
383  * Small buffers are allocated with kmem_cache, to use space optimally.
384  *
385  * For large buffers, we choose between get_free_pages and vmalloc.
386  * Each has advantages and disadvantages.
387  *
388  * __get_free_pages can randomly fail if the memory is fragmented.
389  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
390  * as low as 128M) so using it for caching is not appropriate.
391  *
392  * If the allocation may fail we use __get_free_pages. Memory fragmentation
393  * won't have a fatal effect here, but it just causes flushes of some other
394  * buffers and more I/O will be performed. Don't use __get_free_pages if it
395  * always fails (i.e. order >= MAX_ORDER).
396  *
397  * If the allocation shouldn't fail we use __vmalloc. This is only for the
398  * initial reserve allocation, so there's no risk of wasting all vmalloc
399  * space.
400  */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,unsigned char * data_mode)401 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
402 			       unsigned char *data_mode)
403 {
404 	if (unlikely(c->slab_cache != NULL)) {
405 		*data_mode = DATA_MODE_SLAB;
406 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
407 	}
408 
409 	if (c->block_size <= KMALLOC_MAX_SIZE &&
410 	    gfp_mask & __GFP_NORETRY) {
411 		*data_mode = DATA_MODE_GET_FREE_PAGES;
412 		return (void *)__get_free_pages(gfp_mask,
413 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
414 	}
415 
416 	*data_mode = DATA_MODE_VMALLOC;
417 
418 	/*
419 	 * __vmalloc allocates the data pages and auxiliary structures with
420 	 * gfp_flags that were specified, but pagetables are always allocated
421 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
422 	 *
423 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
424 	 * all allocations done by this process (including pagetables) are done
425 	 * as if GFP_NOIO was specified.
426 	 */
427 	if (gfp_mask & __GFP_NORETRY) {
428 		unsigned noio_flag = memalloc_noio_save();
429 		void *ptr = __vmalloc(c->block_size, gfp_mask);
430 
431 		memalloc_noio_restore(noio_flag);
432 		return ptr;
433 	}
434 
435 	return __vmalloc(c->block_size, gfp_mask);
436 }
437 
438 /*
439  * Free buffer's data.
440  */
free_buffer_data(struct dm_bufio_client * c,void * data,unsigned char data_mode)441 static void free_buffer_data(struct dm_bufio_client *c,
442 			     void *data, unsigned char data_mode)
443 {
444 	switch (data_mode) {
445 	case DATA_MODE_SLAB:
446 		kmem_cache_free(c->slab_cache, data);
447 		break;
448 
449 	case DATA_MODE_GET_FREE_PAGES:
450 		free_pages((unsigned long)data,
451 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
452 		break;
453 
454 	case DATA_MODE_VMALLOC:
455 		vfree(data);
456 		break;
457 
458 	default:
459 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
460 		       data_mode);
461 		BUG();
462 	}
463 }
464 
465 /*
466  * Allocate buffer and its data.
467  */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)468 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
469 {
470 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
471 
472 	if (!b)
473 		return NULL;
474 
475 	b->c = c;
476 
477 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
478 	if (!b->data) {
479 		kmem_cache_free(c->slab_buffer, b);
480 		return NULL;
481 	}
482 
483 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
484 	b->stack_len = 0;
485 #endif
486 	return b;
487 }
488 
489 /*
490  * Free buffer and its data.
491  */
free_buffer(struct dm_buffer * b)492 static void free_buffer(struct dm_buffer *b)
493 {
494 	struct dm_bufio_client *c = b->c;
495 
496 	free_buffer_data(c, b->data, b->data_mode);
497 	kmem_cache_free(c->slab_buffer, b);
498 }
499 
500 /*
501  * Link buffer to the buffer tree and clean or dirty queue.
502  */
__link_buffer(struct dm_buffer * b,sector_t block,int dirty)503 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
504 {
505 	struct dm_bufio_client *c = b->c;
506 
507 	c->n_buffers[dirty]++;
508 	b->block = block;
509 	b->list_mode = dirty;
510 	list_add(&b->lru_list, &c->lru[dirty]);
511 	__insert(b->c, b);
512 	b->last_accessed = jiffies;
513 
514 	adjust_total_allocated(b, false);
515 }
516 
517 /*
518  * Unlink buffer from the buffer tree and dirty or clean queue.
519  */
__unlink_buffer(struct dm_buffer * b)520 static void __unlink_buffer(struct dm_buffer *b)
521 {
522 	struct dm_bufio_client *c = b->c;
523 
524 	BUG_ON(!c->n_buffers[b->list_mode]);
525 
526 	c->n_buffers[b->list_mode]--;
527 	__remove(b->c, b);
528 	list_del(&b->lru_list);
529 
530 	adjust_total_allocated(b, true);
531 }
532 
533 /*
534  * Place the buffer to the head of dirty or clean LRU queue.
535  */
__relink_lru(struct dm_buffer * b,int dirty)536 static void __relink_lru(struct dm_buffer *b, int dirty)
537 {
538 	struct dm_bufio_client *c = b->c;
539 
540 	b->accessed = 1;
541 
542 	BUG_ON(!c->n_buffers[b->list_mode]);
543 
544 	c->n_buffers[b->list_mode]--;
545 	c->n_buffers[dirty]++;
546 	b->list_mode = dirty;
547 	list_move(&b->lru_list, &c->lru[dirty]);
548 	b->last_accessed = jiffies;
549 }
550 
551 /*----------------------------------------------------------------
552  * Submit I/O on the buffer.
553  *
554  * Bio interface is faster but it has some problems:
555  *	the vector list is limited (increasing this limit increases
556  *	memory-consumption per buffer, so it is not viable);
557  *
558  *	the memory must be direct-mapped, not vmalloced;
559  *
560  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
561  * it is not vmalloced, try using the bio interface.
562  *
563  * If the buffer is big, if it is vmalloced or if the underlying device
564  * rejects the bio because it is too large, use dm-io layer to do the I/O.
565  * The dm-io layer splits the I/O into multiple requests, avoiding the above
566  * shortcomings.
567  *--------------------------------------------------------------*/
568 
569 /*
570  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
571  * that the request was handled directly with bio interface.
572  */
dmio_complete(unsigned long error,void * context)573 static void dmio_complete(unsigned long error, void *context)
574 {
575 	struct dm_buffer *b = context;
576 
577 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
578 }
579 
use_dmio(struct dm_buffer * b,int rw,sector_t sector,unsigned n_sectors,unsigned offset)580 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
581 		     unsigned n_sectors, unsigned offset)
582 {
583 	int r;
584 	struct dm_io_request io_req = {
585 		.bi_op = rw,
586 		.bi_op_flags = 0,
587 		.notify.fn = dmio_complete,
588 		.notify.context = b,
589 		.client = b->c->dm_io,
590 	};
591 	struct dm_io_region region = {
592 		.bdev = b->c->bdev,
593 		.sector = sector,
594 		.count = n_sectors,
595 	};
596 
597 	if (b->data_mode != DATA_MODE_VMALLOC) {
598 		io_req.mem.type = DM_IO_KMEM;
599 		io_req.mem.ptr.addr = (char *)b->data + offset;
600 	} else {
601 		io_req.mem.type = DM_IO_VMA;
602 		io_req.mem.ptr.vma = (char *)b->data + offset;
603 	}
604 
605 	r = dm_io(&io_req, 1, &region, NULL);
606 	if (unlikely(r))
607 		b->end_io(b, errno_to_blk_status(r));
608 }
609 
bio_complete(struct bio * bio)610 static void bio_complete(struct bio *bio)
611 {
612 	struct dm_buffer *b = bio->bi_private;
613 	blk_status_t status = bio->bi_status;
614 	bio_put(bio);
615 	b->end_io(b, status);
616 }
617 
use_bio(struct dm_buffer * b,int rw,sector_t sector,unsigned n_sectors,unsigned offset)618 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
619 		    unsigned n_sectors, unsigned offset)
620 {
621 	struct bio *bio;
622 	char *ptr;
623 	unsigned vec_size, len;
624 
625 	vec_size = b->c->block_size >> PAGE_SHIFT;
626 	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
627 		vec_size += 2;
628 
629 	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
630 	if (!bio) {
631 dmio:
632 		use_dmio(b, rw, sector, n_sectors, offset);
633 		return;
634 	}
635 
636 	bio->bi_iter.bi_sector = sector;
637 	bio_set_dev(bio, b->c->bdev);
638 	bio_set_op_attrs(bio, rw, 0);
639 	bio->bi_end_io = bio_complete;
640 	bio->bi_private = b;
641 
642 	ptr = (char *)b->data + offset;
643 	len = n_sectors << SECTOR_SHIFT;
644 
645 	do {
646 		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
647 		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
648 				  offset_in_page(ptr))) {
649 			bio_put(bio);
650 			goto dmio;
651 		}
652 
653 		len -= this_step;
654 		ptr += this_step;
655 	} while (len > 0);
656 
657 	submit_bio(bio);
658 }
659 
block_to_sector(struct dm_bufio_client * c,sector_t block)660 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
661 {
662 	sector_t sector;
663 
664 	if (likely(c->sectors_per_block_bits >= 0))
665 		sector = block << c->sectors_per_block_bits;
666 	else
667 		sector = block * (c->block_size >> SECTOR_SHIFT);
668 	sector += c->start;
669 
670 	return sector;
671 }
672 
submit_io(struct dm_buffer * b,int rw,void (* end_io)(struct dm_buffer *,blk_status_t))673 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
674 {
675 	unsigned n_sectors;
676 	sector_t sector;
677 	unsigned offset, end;
678 
679 	b->end_io = end_io;
680 
681 	sector = block_to_sector(b->c, b->block);
682 
683 	if (rw != REQ_OP_WRITE) {
684 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
685 		offset = 0;
686 	} else {
687 		if (b->c->write_callback)
688 			b->c->write_callback(b);
689 		offset = b->write_start;
690 		end = b->write_end;
691 		offset &= -DM_BUFIO_WRITE_ALIGN;
692 		end += DM_BUFIO_WRITE_ALIGN - 1;
693 		end &= -DM_BUFIO_WRITE_ALIGN;
694 		if (unlikely(end > b->c->block_size))
695 			end = b->c->block_size;
696 
697 		sector += offset >> SECTOR_SHIFT;
698 		n_sectors = (end - offset) >> SECTOR_SHIFT;
699 	}
700 
701 	if (b->data_mode != DATA_MODE_VMALLOC)
702 		use_bio(b, rw, sector, n_sectors, offset);
703 	else
704 		use_dmio(b, rw, sector, n_sectors, offset);
705 }
706 
707 /*----------------------------------------------------------------
708  * Writing dirty buffers
709  *--------------------------------------------------------------*/
710 
711 /*
712  * The endio routine for write.
713  *
714  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
715  * it.
716  */
write_endio(struct dm_buffer * b,blk_status_t status)717 static void write_endio(struct dm_buffer *b, blk_status_t status)
718 {
719 	b->write_error = status;
720 	if (unlikely(status)) {
721 		struct dm_bufio_client *c = b->c;
722 
723 		(void)cmpxchg(&c->async_write_error, 0,
724 				blk_status_to_errno(status));
725 	}
726 
727 	BUG_ON(!test_bit(B_WRITING, &b->state));
728 
729 	smp_mb__before_atomic();
730 	clear_bit(B_WRITING, &b->state);
731 	smp_mb__after_atomic();
732 
733 	wake_up_bit(&b->state, B_WRITING);
734 }
735 
736 /*
737  * Initiate a write on a dirty buffer, but don't wait for it.
738  *
739  * - If the buffer is not dirty, exit.
740  * - If there some previous write going on, wait for it to finish (we can't
741  *   have two writes on the same buffer simultaneously).
742  * - Submit our write and don't wait on it. We set B_WRITING indicating
743  *   that there is a write in progress.
744  */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)745 static void __write_dirty_buffer(struct dm_buffer *b,
746 				 struct list_head *write_list)
747 {
748 	if (!test_bit(B_DIRTY, &b->state))
749 		return;
750 
751 	clear_bit(B_DIRTY, &b->state);
752 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
753 
754 	b->write_start = b->dirty_start;
755 	b->write_end = b->dirty_end;
756 
757 	if (!write_list)
758 		submit_io(b, REQ_OP_WRITE, write_endio);
759 	else
760 		list_add_tail(&b->write_list, write_list);
761 }
762 
__flush_write_list(struct list_head * write_list)763 static void __flush_write_list(struct list_head *write_list)
764 {
765 	struct blk_plug plug;
766 	blk_start_plug(&plug);
767 	while (!list_empty(write_list)) {
768 		struct dm_buffer *b =
769 			list_entry(write_list->next, struct dm_buffer, write_list);
770 		list_del(&b->write_list);
771 		submit_io(b, REQ_OP_WRITE, write_endio);
772 		cond_resched();
773 	}
774 	blk_finish_plug(&plug);
775 }
776 
777 /*
778  * Wait until any activity on the buffer finishes.  Possibly write the
779  * buffer if it is dirty.  When this function finishes, there is no I/O
780  * running on the buffer and the buffer is not dirty.
781  */
__make_buffer_clean(struct dm_buffer * b)782 static void __make_buffer_clean(struct dm_buffer *b)
783 {
784 	BUG_ON(b->hold_count);
785 
786 	if (!b->state)	/* fast case */
787 		return;
788 
789 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
790 	__write_dirty_buffer(b, NULL);
791 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
792 }
793 
794 /*
795  * Find some buffer that is not held by anybody, clean it, unlink it and
796  * return it.
797  */
__get_unclaimed_buffer(struct dm_bufio_client * c)798 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
799 {
800 	struct dm_buffer *b;
801 
802 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
803 		BUG_ON(test_bit(B_WRITING, &b->state));
804 		BUG_ON(test_bit(B_DIRTY, &b->state));
805 
806 		if (!b->hold_count) {
807 			__make_buffer_clean(b);
808 			__unlink_buffer(b);
809 			return b;
810 		}
811 		cond_resched();
812 	}
813 
814 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
815 		BUG_ON(test_bit(B_READING, &b->state));
816 
817 		if (!b->hold_count) {
818 			__make_buffer_clean(b);
819 			__unlink_buffer(b);
820 			return b;
821 		}
822 		cond_resched();
823 	}
824 
825 	return NULL;
826 }
827 
828 /*
829  * Wait until some other threads free some buffer or release hold count on
830  * some buffer.
831  *
832  * This function is entered with c->lock held, drops it and regains it
833  * before exiting.
834  */
__wait_for_free_buffer(struct dm_bufio_client * c)835 static void __wait_for_free_buffer(struct dm_bufio_client *c)
836 {
837 	DECLARE_WAITQUEUE(wait, current);
838 
839 	add_wait_queue(&c->free_buffer_wait, &wait);
840 	set_current_state(TASK_UNINTERRUPTIBLE);
841 	dm_bufio_unlock(c);
842 
843 	io_schedule();
844 
845 	remove_wait_queue(&c->free_buffer_wait, &wait);
846 
847 	dm_bufio_lock(c);
848 }
849 
850 enum new_flag {
851 	NF_FRESH = 0,
852 	NF_READ = 1,
853 	NF_GET = 2,
854 	NF_PREFETCH = 3
855 };
856 
857 /*
858  * Allocate a new buffer. If the allocation is not possible, wait until
859  * some other thread frees a buffer.
860  *
861  * May drop the lock and regain it.
862  */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)863 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
864 {
865 	struct dm_buffer *b;
866 	bool tried_noio_alloc = false;
867 
868 	/*
869 	 * dm-bufio is resistant to allocation failures (it just keeps
870 	 * one buffer reserved in cases all the allocations fail).
871 	 * So set flags to not try too hard:
872 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
873 	 *		    mutex and wait ourselves.
874 	 *	__GFP_NORETRY: don't retry and rather return failure
875 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
876 	 *	__GFP_NOWARN: don't print a warning in case of failure
877 	 *
878 	 * For debugging, if we set the cache size to 1, no new buffers will
879 	 * be allocated.
880 	 */
881 	while (1) {
882 		if (dm_bufio_cache_size_latch != 1) {
883 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
884 			if (b)
885 				return b;
886 		}
887 
888 		if (nf == NF_PREFETCH)
889 			return NULL;
890 
891 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
892 			dm_bufio_unlock(c);
893 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
894 			dm_bufio_lock(c);
895 			if (b)
896 				return b;
897 			tried_noio_alloc = true;
898 		}
899 
900 		if (!list_empty(&c->reserved_buffers)) {
901 			b = list_entry(c->reserved_buffers.next,
902 				       struct dm_buffer, lru_list);
903 			list_del(&b->lru_list);
904 			c->need_reserved_buffers++;
905 
906 			return b;
907 		}
908 
909 		b = __get_unclaimed_buffer(c);
910 		if (b)
911 			return b;
912 
913 		__wait_for_free_buffer(c);
914 	}
915 }
916 
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)917 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
918 {
919 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
920 
921 	if (!b)
922 		return NULL;
923 
924 	if (c->alloc_callback)
925 		c->alloc_callback(b);
926 
927 	return b;
928 }
929 
930 /*
931  * Free a buffer and wake other threads waiting for free buffers.
932  */
__free_buffer_wake(struct dm_buffer * b)933 static void __free_buffer_wake(struct dm_buffer *b)
934 {
935 	struct dm_bufio_client *c = b->c;
936 
937 	if (!c->need_reserved_buffers)
938 		free_buffer(b);
939 	else {
940 		list_add(&b->lru_list, &c->reserved_buffers);
941 		c->need_reserved_buffers--;
942 	}
943 
944 	wake_up(&c->free_buffer_wait);
945 }
946 
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)947 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
948 					struct list_head *write_list)
949 {
950 	struct dm_buffer *b, *tmp;
951 
952 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
953 		BUG_ON(test_bit(B_READING, &b->state));
954 
955 		if (!test_bit(B_DIRTY, &b->state) &&
956 		    !test_bit(B_WRITING, &b->state)) {
957 			__relink_lru(b, LIST_CLEAN);
958 			continue;
959 		}
960 
961 		if (no_wait && test_bit(B_WRITING, &b->state))
962 			return;
963 
964 		__write_dirty_buffer(b, write_list);
965 		cond_resched();
966 	}
967 }
968 
969 /*
970  * Check if we're over watermark.
971  * If we are over threshold_buffers, start freeing buffers.
972  * If we're over "limit_buffers", block until we get under the limit.
973  */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)974 static void __check_watermark(struct dm_bufio_client *c,
975 			      struct list_head *write_list)
976 {
977 	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
978 		__write_dirty_buffers_async(c, 1, write_list);
979 }
980 
981 /*----------------------------------------------------------------
982  * Getting a buffer
983  *--------------------------------------------------------------*/
984 
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)985 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
986 				     enum new_flag nf, int *need_submit,
987 				     struct list_head *write_list)
988 {
989 	struct dm_buffer *b, *new_b = NULL;
990 
991 	*need_submit = 0;
992 
993 	b = __find(c, block);
994 	if (b)
995 		goto found_buffer;
996 
997 	if (nf == NF_GET)
998 		return NULL;
999 
1000 	new_b = __alloc_buffer_wait(c, nf);
1001 	if (!new_b)
1002 		return NULL;
1003 
1004 	/*
1005 	 * We've had a period where the mutex was unlocked, so need to
1006 	 * recheck the buffer tree.
1007 	 */
1008 	b = __find(c, block);
1009 	if (b) {
1010 		__free_buffer_wake(new_b);
1011 		goto found_buffer;
1012 	}
1013 
1014 	__check_watermark(c, write_list);
1015 
1016 	b = new_b;
1017 	b->hold_count = 1;
1018 	b->read_error = 0;
1019 	b->write_error = 0;
1020 	__link_buffer(b, block, LIST_CLEAN);
1021 
1022 	if (nf == NF_FRESH) {
1023 		b->state = 0;
1024 		return b;
1025 	}
1026 
1027 	b->state = 1 << B_READING;
1028 	*need_submit = 1;
1029 
1030 	return b;
1031 
1032 found_buffer:
1033 	if (nf == NF_PREFETCH)
1034 		return NULL;
1035 	/*
1036 	 * Note: it is essential that we don't wait for the buffer to be
1037 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1038 	 * dm_bufio_prefetch can be used in the driver request routine.
1039 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1040 	 * the same buffer, it would deadlock if we waited.
1041 	 */
1042 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1043 		return NULL;
1044 
1045 	b->hold_count++;
1046 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1047 		     test_bit(B_WRITING, &b->state));
1048 	return b;
1049 }
1050 
1051 /*
1052  * The endio routine for reading: set the error, clear the bit and wake up
1053  * anyone waiting on the buffer.
1054  */
read_endio(struct dm_buffer * b,blk_status_t status)1055 static void read_endio(struct dm_buffer *b, blk_status_t status)
1056 {
1057 	b->read_error = status;
1058 
1059 	BUG_ON(!test_bit(B_READING, &b->state));
1060 
1061 	smp_mb__before_atomic();
1062 	clear_bit(B_READING, &b->state);
1063 	smp_mb__after_atomic();
1064 
1065 	wake_up_bit(&b->state, B_READING);
1066 }
1067 
1068 /*
1069  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1070  * functions is similar except that dm_bufio_new doesn't read the
1071  * buffer from the disk (assuming that the caller overwrites all the data
1072  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1073  */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp)1074 static void *new_read(struct dm_bufio_client *c, sector_t block,
1075 		      enum new_flag nf, struct dm_buffer **bp)
1076 {
1077 	int need_submit;
1078 	struct dm_buffer *b;
1079 
1080 	LIST_HEAD(write_list);
1081 
1082 	dm_bufio_lock(c);
1083 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1084 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1085 	if (b && b->hold_count == 1)
1086 		buffer_record_stack(b);
1087 #endif
1088 	dm_bufio_unlock(c);
1089 
1090 	__flush_write_list(&write_list);
1091 
1092 	if (!b)
1093 		return NULL;
1094 
1095 	if (need_submit)
1096 		submit_io(b, REQ_OP_READ, read_endio);
1097 
1098 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1099 
1100 	if (b->read_error) {
1101 		int error = blk_status_to_errno(b->read_error);
1102 
1103 		dm_bufio_release(b);
1104 
1105 		return ERR_PTR(error);
1106 	}
1107 
1108 	*bp = b;
1109 
1110 	return b->data;
1111 }
1112 
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1113 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1114 		   struct dm_buffer **bp)
1115 {
1116 	return new_read(c, block, NF_GET, bp);
1117 }
1118 EXPORT_SYMBOL_GPL(dm_bufio_get);
1119 
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1120 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1121 		    struct dm_buffer **bp)
1122 {
1123 	BUG_ON(dm_bufio_in_request());
1124 
1125 	return new_read(c, block, NF_READ, bp);
1126 }
1127 EXPORT_SYMBOL_GPL(dm_bufio_read);
1128 
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1129 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1130 		   struct dm_buffer **bp)
1131 {
1132 	BUG_ON(dm_bufio_in_request());
1133 
1134 	return new_read(c, block, NF_FRESH, bp);
1135 }
1136 EXPORT_SYMBOL_GPL(dm_bufio_new);
1137 
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned n_blocks)1138 void dm_bufio_prefetch(struct dm_bufio_client *c,
1139 		       sector_t block, unsigned n_blocks)
1140 {
1141 	struct blk_plug plug;
1142 
1143 	LIST_HEAD(write_list);
1144 
1145 	BUG_ON(dm_bufio_in_request());
1146 
1147 	blk_start_plug(&plug);
1148 	dm_bufio_lock(c);
1149 
1150 	for (; n_blocks--; block++) {
1151 		int need_submit;
1152 		struct dm_buffer *b;
1153 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1154 				&write_list);
1155 		if (unlikely(!list_empty(&write_list))) {
1156 			dm_bufio_unlock(c);
1157 			blk_finish_plug(&plug);
1158 			__flush_write_list(&write_list);
1159 			blk_start_plug(&plug);
1160 			dm_bufio_lock(c);
1161 		}
1162 		if (unlikely(b != NULL)) {
1163 			dm_bufio_unlock(c);
1164 
1165 			if (need_submit)
1166 				submit_io(b, REQ_OP_READ, read_endio);
1167 			dm_bufio_release(b);
1168 
1169 			cond_resched();
1170 
1171 			if (!n_blocks)
1172 				goto flush_plug;
1173 			dm_bufio_lock(c);
1174 		}
1175 	}
1176 
1177 	dm_bufio_unlock(c);
1178 
1179 flush_plug:
1180 	blk_finish_plug(&plug);
1181 }
1182 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1183 
dm_bufio_release(struct dm_buffer * b)1184 void dm_bufio_release(struct dm_buffer *b)
1185 {
1186 	struct dm_bufio_client *c = b->c;
1187 
1188 	dm_bufio_lock(c);
1189 
1190 	BUG_ON(!b->hold_count);
1191 
1192 	b->hold_count--;
1193 	if (!b->hold_count) {
1194 		wake_up(&c->free_buffer_wait);
1195 
1196 		/*
1197 		 * If there were errors on the buffer, and the buffer is not
1198 		 * to be written, free the buffer. There is no point in caching
1199 		 * invalid buffer.
1200 		 */
1201 		if ((b->read_error || b->write_error) &&
1202 		    !test_bit(B_READING, &b->state) &&
1203 		    !test_bit(B_WRITING, &b->state) &&
1204 		    !test_bit(B_DIRTY, &b->state)) {
1205 			__unlink_buffer(b);
1206 			__free_buffer_wake(b);
1207 		}
1208 	}
1209 
1210 	dm_bufio_unlock(c);
1211 }
1212 EXPORT_SYMBOL_GPL(dm_bufio_release);
1213 
dm_bufio_mark_partial_buffer_dirty(struct dm_buffer * b,unsigned start,unsigned end)1214 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1215 					unsigned start, unsigned end)
1216 {
1217 	struct dm_bufio_client *c = b->c;
1218 
1219 	BUG_ON(start >= end);
1220 	BUG_ON(end > b->c->block_size);
1221 
1222 	dm_bufio_lock(c);
1223 
1224 	BUG_ON(test_bit(B_READING, &b->state));
1225 
1226 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1227 		b->dirty_start = start;
1228 		b->dirty_end = end;
1229 		__relink_lru(b, LIST_DIRTY);
1230 	} else {
1231 		if (start < b->dirty_start)
1232 			b->dirty_start = start;
1233 		if (end > b->dirty_end)
1234 			b->dirty_end = end;
1235 	}
1236 
1237 	dm_bufio_unlock(c);
1238 }
1239 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1240 
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)1241 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1242 {
1243 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1244 }
1245 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1246 
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)1247 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1248 {
1249 	LIST_HEAD(write_list);
1250 
1251 	BUG_ON(dm_bufio_in_request());
1252 
1253 	dm_bufio_lock(c);
1254 	__write_dirty_buffers_async(c, 0, &write_list);
1255 	dm_bufio_unlock(c);
1256 	__flush_write_list(&write_list);
1257 }
1258 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1259 
1260 /*
1261  * For performance, it is essential that the buffers are written asynchronously
1262  * and simultaneously (so that the block layer can merge the writes) and then
1263  * waited upon.
1264  *
1265  * Finally, we flush hardware disk cache.
1266  */
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)1267 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1268 {
1269 	int a, f;
1270 	unsigned long buffers_processed = 0;
1271 	struct dm_buffer *b, *tmp;
1272 
1273 	LIST_HEAD(write_list);
1274 
1275 	dm_bufio_lock(c);
1276 	__write_dirty_buffers_async(c, 0, &write_list);
1277 	dm_bufio_unlock(c);
1278 	__flush_write_list(&write_list);
1279 	dm_bufio_lock(c);
1280 
1281 again:
1282 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1283 		int dropped_lock = 0;
1284 
1285 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1286 			buffers_processed++;
1287 
1288 		BUG_ON(test_bit(B_READING, &b->state));
1289 
1290 		if (test_bit(B_WRITING, &b->state)) {
1291 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1292 				dropped_lock = 1;
1293 				b->hold_count++;
1294 				dm_bufio_unlock(c);
1295 				wait_on_bit_io(&b->state, B_WRITING,
1296 					       TASK_UNINTERRUPTIBLE);
1297 				dm_bufio_lock(c);
1298 				b->hold_count--;
1299 			} else
1300 				wait_on_bit_io(&b->state, B_WRITING,
1301 					       TASK_UNINTERRUPTIBLE);
1302 		}
1303 
1304 		if (!test_bit(B_DIRTY, &b->state) &&
1305 		    !test_bit(B_WRITING, &b->state))
1306 			__relink_lru(b, LIST_CLEAN);
1307 
1308 		cond_resched();
1309 
1310 		/*
1311 		 * If we dropped the lock, the list is no longer consistent,
1312 		 * so we must restart the search.
1313 		 *
1314 		 * In the most common case, the buffer just processed is
1315 		 * relinked to the clean list, so we won't loop scanning the
1316 		 * same buffer again and again.
1317 		 *
1318 		 * This may livelock if there is another thread simultaneously
1319 		 * dirtying buffers, so we count the number of buffers walked
1320 		 * and if it exceeds the total number of buffers, it means that
1321 		 * someone is doing some writes simultaneously with us.  In
1322 		 * this case, stop, dropping the lock.
1323 		 */
1324 		if (dropped_lock)
1325 			goto again;
1326 	}
1327 	wake_up(&c->free_buffer_wait);
1328 	dm_bufio_unlock(c);
1329 
1330 	a = xchg(&c->async_write_error, 0);
1331 	f = dm_bufio_issue_flush(c);
1332 	if (a)
1333 		return a;
1334 
1335 	return f;
1336 }
1337 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1338 
1339 /*
1340  * Use dm-io to send an empty barrier to flush the device.
1341  */
dm_bufio_issue_flush(struct dm_bufio_client * c)1342 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1343 {
1344 	struct dm_io_request io_req = {
1345 		.bi_op = REQ_OP_WRITE,
1346 		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1347 		.mem.type = DM_IO_KMEM,
1348 		.mem.ptr.addr = NULL,
1349 		.client = c->dm_io,
1350 	};
1351 	struct dm_io_region io_reg = {
1352 		.bdev = c->bdev,
1353 		.sector = 0,
1354 		.count = 0,
1355 	};
1356 
1357 	BUG_ON(dm_bufio_in_request());
1358 
1359 	return dm_io(&io_req, 1, &io_reg, NULL);
1360 }
1361 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1362 
1363 /*
1364  * Use dm-io to send a discard request to flush the device.
1365  */
dm_bufio_issue_discard(struct dm_bufio_client * c,sector_t block,sector_t count)1366 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1367 {
1368 	struct dm_io_request io_req = {
1369 		.bi_op = REQ_OP_DISCARD,
1370 		.bi_op_flags = REQ_SYNC,
1371 		.mem.type = DM_IO_KMEM,
1372 		.mem.ptr.addr = NULL,
1373 		.client = c->dm_io,
1374 	};
1375 	struct dm_io_region io_reg = {
1376 		.bdev = c->bdev,
1377 		.sector = block_to_sector(c, block),
1378 		.count = block_to_sector(c, count),
1379 	};
1380 
1381 	BUG_ON(dm_bufio_in_request());
1382 
1383 	return dm_io(&io_req, 1, &io_reg, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1386 
1387 /*
1388  * We first delete any other buffer that may be at that new location.
1389  *
1390  * Then, we write the buffer to the original location if it was dirty.
1391  *
1392  * Then, if we are the only one who is holding the buffer, relink the buffer
1393  * in the buffer tree for the new location.
1394  *
1395  * If there was someone else holding the buffer, we write it to the new
1396  * location but not relink it, because that other user needs to have the buffer
1397  * at the same place.
1398  */
dm_bufio_release_move(struct dm_buffer * b,sector_t new_block)1399 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1400 {
1401 	struct dm_bufio_client *c = b->c;
1402 	struct dm_buffer *new;
1403 
1404 	BUG_ON(dm_bufio_in_request());
1405 
1406 	dm_bufio_lock(c);
1407 
1408 retry:
1409 	new = __find(c, new_block);
1410 	if (new) {
1411 		if (new->hold_count) {
1412 			__wait_for_free_buffer(c);
1413 			goto retry;
1414 		}
1415 
1416 		/*
1417 		 * FIXME: Is there any point waiting for a write that's going
1418 		 * to be overwritten in a bit?
1419 		 */
1420 		__make_buffer_clean(new);
1421 		__unlink_buffer(new);
1422 		__free_buffer_wake(new);
1423 	}
1424 
1425 	BUG_ON(!b->hold_count);
1426 	BUG_ON(test_bit(B_READING, &b->state));
1427 
1428 	__write_dirty_buffer(b, NULL);
1429 	if (b->hold_count == 1) {
1430 		wait_on_bit_io(&b->state, B_WRITING,
1431 			       TASK_UNINTERRUPTIBLE);
1432 		set_bit(B_DIRTY, &b->state);
1433 		b->dirty_start = 0;
1434 		b->dirty_end = c->block_size;
1435 		__unlink_buffer(b);
1436 		__link_buffer(b, new_block, LIST_DIRTY);
1437 	} else {
1438 		sector_t old_block;
1439 		wait_on_bit_lock_io(&b->state, B_WRITING,
1440 				    TASK_UNINTERRUPTIBLE);
1441 		/*
1442 		 * Relink buffer to "new_block" so that write_callback
1443 		 * sees "new_block" as a block number.
1444 		 * After the write, link the buffer back to old_block.
1445 		 * All this must be done in bufio lock, so that block number
1446 		 * change isn't visible to other threads.
1447 		 */
1448 		old_block = b->block;
1449 		__unlink_buffer(b);
1450 		__link_buffer(b, new_block, b->list_mode);
1451 		submit_io(b, REQ_OP_WRITE, write_endio);
1452 		wait_on_bit_io(&b->state, B_WRITING,
1453 			       TASK_UNINTERRUPTIBLE);
1454 		__unlink_buffer(b);
1455 		__link_buffer(b, old_block, b->list_mode);
1456 	}
1457 
1458 	dm_bufio_unlock(c);
1459 	dm_bufio_release(b);
1460 }
1461 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1462 
forget_buffer_locked(struct dm_buffer * b)1463 static void forget_buffer_locked(struct dm_buffer *b)
1464 {
1465 	if (likely(!b->hold_count) && likely(!b->state)) {
1466 		__unlink_buffer(b);
1467 		__free_buffer_wake(b);
1468 	}
1469 }
1470 
1471 /*
1472  * Free the given buffer.
1473  *
1474  * This is just a hint, if the buffer is in use or dirty, this function
1475  * does nothing.
1476  */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)1477 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1478 {
1479 	struct dm_buffer *b;
1480 
1481 	dm_bufio_lock(c);
1482 
1483 	b = __find(c, block);
1484 	if (b)
1485 		forget_buffer_locked(b);
1486 
1487 	dm_bufio_unlock(c);
1488 }
1489 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1490 
dm_bufio_forget_buffers(struct dm_bufio_client * c,sector_t block,sector_t n_blocks)1491 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1492 {
1493 	struct dm_buffer *b;
1494 	sector_t end_block = block + n_blocks;
1495 
1496 	while (block < end_block) {
1497 		dm_bufio_lock(c);
1498 
1499 		b = __find_next(c, block);
1500 		if (b) {
1501 			block = b->block + 1;
1502 			forget_buffer_locked(b);
1503 		}
1504 
1505 		dm_bufio_unlock(c);
1506 
1507 		if (!b)
1508 			break;
1509 	}
1510 
1511 }
1512 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1513 
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned n)1514 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1515 {
1516 	c->minimum_buffers = n;
1517 }
1518 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1519 
dm_bufio_get_block_size(struct dm_bufio_client * c)1520 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1521 {
1522 	return c->block_size;
1523 }
1524 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1525 
dm_bufio_get_device_size(struct dm_bufio_client * c)1526 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1527 {
1528 	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1529 	if (s >= c->start)
1530 		s -= c->start;
1531 	else
1532 		s = 0;
1533 	if (likely(c->sectors_per_block_bits >= 0))
1534 		s >>= c->sectors_per_block_bits;
1535 	else
1536 		sector_div(s, c->block_size >> SECTOR_SHIFT);
1537 	return s;
1538 }
1539 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1540 
dm_bufio_get_dm_io_client(struct dm_bufio_client * c)1541 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1542 {
1543 	return c->dm_io;
1544 }
1545 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1546 
dm_bufio_get_block_number(struct dm_buffer * b)1547 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1548 {
1549 	return b->block;
1550 }
1551 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1552 
dm_bufio_get_block_data(struct dm_buffer * b)1553 void *dm_bufio_get_block_data(struct dm_buffer *b)
1554 {
1555 	return b->data;
1556 }
1557 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1558 
dm_bufio_get_aux_data(struct dm_buffer * b)1559 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1560 {
1561 	return b + 1;
1562 }
1563 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1564 
dm_bufio_get_client(struct dm_buffer * b)1565 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1566 {
1567 	return b->c;
1568 }
1569 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1570 
drop_buffers(struct dm_bufio_client * c)1571 static void drop_buffers(struct dm_bufio_client *c)
1572 {
1573 	struct dm_buffer *b;
1574 	int i;
1575 	bool warned = false;
1576 
1577 	BUG_ON(dm_bufio_in_request());
1578 
1579 	/*
1580 	 * An optimization so that the buffers are not written one-by-one.
1581 	 */
1582 	dm_bufio_write_dirty_buffers_async(c);
1583 
1584 	dm_bufio_lock(c);
1585 
1586 	while ((b = __get_unclaimed_buffer(c)))
1587 		__free_buffer_wake(b);
1588 
1589 	for (i = 0; i < LIST_SIZE; i++)
1590 		list_for_each_entry(b, &c->lru[i], lru_list) {
1591 			WARN_ON(!warned);
1592 			warned = true;
1593 			DMERR("leaked buffer %llx, hold count %u, list %d",
1594 			      (unsigned long long)b->block, b->hold_count, i);
1595 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1596 			stack_trace_print(b->stack_entries, b->stack_len, 1);
1597 			/* mark unclaimed to avoid BUG_ON below */
1598 			b->hold_count = 0;
1599 #endif
1600 		}
1601 
1602 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1603 	while ((b = __get_unclaimed_buffer(c)))
1604 		__free_buffer_wake(b);
1605 #endif
1606 
1607 	for (i = 0; i < LIST_SIZE; i++)
1608 		BUG_ON(!list_empty(&c->lru[i]));
1609 
1610 	dm_bufio_unlock(c);
1611 }
1612 
1613 /*
1614  * We may not be able to evict this buffer if IO pending or the client
1615  * is still using it.  Caller is expected to know buffer is too old.
1616  *
1617  * And if GFP_NOFS is used, we must not do any I/O because we hold
1618  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1619  * rerouted to different bufio client.
1620  */
__try_evict_buffer(struct dm_buffer * b,gfp_t gfp)1621 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1622 {
1623 	if (!(gfp & __GFP_FS)) {
1624 		if (test_bit(B_READING, &b->state) ||
1625 		    test_bit(B_WRITING, &b->state) ||
1626 		    test_bit(B_DIRTY, &b->state))
1627 			return false;
1628 	}
1629 
1630 	if (b->hold_count)
1631 		return false;
1632 
1633 	__make_buffer_clean(b);
1634 	__unlink_buffer(b);
1635 	__free_buffer_wake(b);
1636 
1637 	return true;
1638 }
1639 
get_retain_buffers(struct dm_bufio_client * c)1640 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1641 {
1642 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1643 	if (likely(c->sectors_per_block_bits >= 0))
1644 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1645 	else
1646 		retain_bytes /= c->block_size;
1647 	return retain_bytes;
1648 }
1649 
__scan(struct dm_bufio_client * c)1650 static void __scan(struct dm_bufio_client *c)
1651 {
1652 	int l;
1653 	struct dm_buffer *b, *tmp;
1654 	unsigned long freed = 0;
1655 	unsigned long count = c->n_buffers[LIST_CLEAN] +
1656 			      c->n_buffers[LIST_DIRTY];
1657 	unsigned long retain_target = get_retain_buffers(c);
1658 
1659 	for (l = 0; l < LIST_SIZE; l++) {
1660 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1661 			if (count - freed <= retain_target)
1662 				atomic_long_set(&c->need_shrink, 0);
1663 			if (!atomic_long_read(&c->need_shrink))
1664 				return;
1665 			if (__try_evict_buffer(b, GFP_KERNEL)) {
1666 				atomic_long_dec(&c->need_shrink);
1667 				freed++;
1668 			}
1669 			cond_resched();
1670 		}
1671 	}
1672 }
1673 
shrink_work(struct work_struct * w)1674 static void shrink_work(struct work_struct *w)
1675 {
1676 	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1677 
1678 	dm_bufio_lock(c);
1679 	__scan(c);
1680 	dm_bufio_unlock(c);
1681 }
1682 
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1683 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1684 {
1685 	struct dm_bufio_client *c;
1686 
1687 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1688 	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1689 	queue_work(dm_bufio_wq, &c->shrink_work);
1690 
1691 	return sc->nr_to_scan;
1692 }
1693 
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1694 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1695 {
1696 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1697 	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1698 			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1699 	unsigned long retain_target = get_retain_buffers(c);
1700 	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1701 
1702 	if (unlikely(count < retain_target))
1703 		count = 0;
1704 	else
1705 		count -= retain_target;
1706 
1707 	if (unlikely(count < queued_for_cleanup))
1708 		count = 0;
1709 	else
1710 		count -= queued_for_cleanup;
1711 
1712 	return count;
1713 }
1714 
1715 /*
1716  * Create the buffering interface
1717  */
dm_bufio_client_create(struct block_device * bdev,unsigned block_size,unsigned reserved_buffers,unsigned aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *))1718 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1719 					       unsigned reserved_buffers, unsigned aux_size,
1720 					       void (*alloc_callback)(struct dm_buffer *),
1721 					       void (*write_callback)(struct dm_buffer *))
1722 {
1723 	int r;
1724 	struct dm_bufio_client *c;
1725 	unsigned i;
1726 	char slab_name[27];
1727 
1728 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1729 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1730 		r = -EINVAL;
1731 		goto bad_client;
1732 	}
1733 
1734 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1735 	if (!c) {
1736 		r = -ENOMEM;
1737 		goto bad_client;
1738 	}
1739 	c->buffer_tree = RB_ROOT;
1740 
1741 	c->bdev = bdev;
1742 	c->block_size = block_size;
1743 	if (is_power_of_2(block_size))
1744 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1745 	else
1746 		c->sectors_per_block_bits = -1;
1747 
1748 	c->alloc_callback = alloc_callback;
1749 	c->write_callback = write_callback;
1750 
1751 	for (i = 0; i < LIST_SIZE; i++) {
1752 		INIT_LIST_HEAD(&c->lru[i]);
1753 		c->n_buffers[i] = 0;
1754 	}
1755 
1756 	mutex_init(&c->lock);
1757 	INIT_LIST_HEAD(&c->reserved_buffers);
1758 	c->need_reserved_buffers = reserved_buffers;
1759 
1760 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1761 
1762 	init_waitqueue_head(&c->free_buffer_wait);
1763 	c->async_write_error = 0;
1764 
1765 	c->dm_io = dm_io_client_create();
1766 	if (IS_ERR(c->dm_io)) {
1767 		r = PTR_ERR(c->dm_io);
1768 		goto bad_dm_io;
1769 	}
1770 
1771 	if (block_size <= KMALLOC_MAX_SIZE &&
1772 	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1773 		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1774 		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1775 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1776 						  SLAB_RECLAIM_ACCOUNT, NULL);
1777 		if (!c->slab_cache) {
1778 			r = -ENOMEM;
1779 			goto bad;
1780 		}
1781 	}
1782 	if (aux_size)
1783 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1784 	else
1785 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1786 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1787 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1788 	if (!c->slab_buffer) {
1789 		r = -ENOMEM;
1790 		goto bad;
1791 	}
1792 
1793 	while (c->need_reserved_buffers) {
1794 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1795 
1796 		if (!b) {
1797 			r = -ENOMEM;
1798 			goto bad;
1799 		}
1800 		__free_buffer_wake(b);
1801 	}
1802 
1803 	INIT_WORK(&c->shrink_work, shrink_work);
1804 	atomic_long_set(&c->need_shrink, 0);
1805 
1806 	c->shrinker.count_objects = dm_bufio_shrink_count;
1807 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1808 	c->shrinker.seeks = 1;
1809 	c->shrinker.batch = 0;
1810 	r = register_shrinker(&c->shrinker);
1811 	if (r)
1812 		goto bad;
1813 
1814 	mutex_lock(&dm_bufio_clients_lock);
1815 	dm_bufio_client_count++;
1816 	list_add(&c->client_list, &dm_bufio_all_clients);
1817 	__cache_size_refresh();
1818 	mutex_unlock(&dm_bufio_clients_lock);
1819 
1820 	return c;
1821 
1822 bad:
1823 	while (!list_empty(&c->reserved_buffers)) {
1824 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1825 						 struct dm_buffer, lru_list);
1826 		list_del(&b->lru_list);
1827 		free_buffer(b);
1828 	}
1829 	kmem_cache_destroy(c->slab_cache);
1830 	kmem_cache_destroy(c->slab_buffer);
1831 	dm_io_client_destroy(c->dm_io);
1832 bad_dm_io:
1833 	mutex_destroy(&c->lock);
1834 	kfree(c);
1835 bad_client:
1836 	return ERR_PTR(r);
1837 }
1838 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1839 
1840 /*
1841  * Free the buffering interface.
1842  * It is required that there are no references on any buffers.
1843  */
dm_bufio_client_destroy(struct dm_bufio_client * c)1844 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1845 {
1846 	unsigned i;
1847 
1848 	drop_buffers(c);
1849 
1850 	unregister_shrinker(&c->shrinker);
1851 	flush_work(&c->shrink_work);
1852 
1853 	mutex_lock(&dm_bufio_clients_lock);
1854 
1855 	list_del(&c->client_list);
1856 	dm_bufio_client_count--;
1857 	__cache_size_refresh();
1858 
1859 	mutex_unlock(&dm_bufio_clients_lock);
1860 
1861 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1862 	BUG_ON(c->need_reserved_buffers);
1863 
1864 	while (!list_empty(&c->reserved_buffers)) {
1865 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1866 						 struct dm_buffer, lru_list);
1867 		list_del(&b->lru_list);
1868 		free_buffer(b);
1869 	}
1870 
1871 	for (i = 0; i < LIST_SIZE; i++)
1872 		if (c->n_buffers[i])
1873 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1874 
1875 	for (i = 0; i < LIST_SIZE; i++)
1876 		BUG_ON(c->n_buffers[i]);
1877 
1878 	kmem_cache_destroy(c->slab_cache);
1879 	kmem_cache_destroy(c->slab_buffer);
1880 	dm_io_client_destroy(c->dm_io);
1881 	mutex_destroy(&c->lock);
1882 	kfree(c);
1883 }
1884 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1885 
dm_bufio_set_sector_offset(struct dm_bufio_client * c,sector_t start)1886 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1887 {
1888 	c->start = start;
1889 }
1890 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1891 
get_max_age_hz(void)1892 static unsigned get_max_age_hz(void)
1893 {
1894 	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1895 
1896 	if (max_age > UINT_MAX / HZ)
1897 		max_age = UINT_MAX / HZ;
1898 
1899 	return max_age * HZ;
1900 }
1901 
older_than(struct dm_buffer * b,unsigned long age_hz)1902 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1903 {
1904 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1905 }
1906 
__evict_old_buffers(struct dm_bufio_client * c,unsigned long age_hz)1907 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1908 {
1909 	struct dm_buffer *b, *tmp;
1910 	unsigned long retain_target = get_retain_buffers(c);
1911 	unsigned long count;
1912 	LIST_HEAD(write_list);
1913 
1914 	dm_bufio_lock(c);
1915 
1916 	__check_watermark(c, &write_list);
1917 	if (unlikely(!list_empty(&write_list))) {
1918 		dm_bufio_unlock(c);
1919 		__flush_write_list(&write_list);
1920 		dm_bufio_lock(c);
1921 	}
1922 
1923 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1924 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1925 		if (count <= retain_target)
1926 			break;
1927 
1928 		if (!older_than(b, age_hz))
1929 			break;
1930 
1931 		if (__try_evict_buffer(b, 0))
1932 			count--;
1933 
1934 		cond_resched();
1935 	}
1936 
1937 	dm_bufio_unlock(c);
1938 }
1939 
do_global_cleanup(struct work_struct * w)1940 static void do_global_cleanup(struct work_struct *w)
1941 {
1942 	struct dm_bufio_client *locked_client = NULL;
1943 	struct dm_bufio_client *current_client;
1944 	struct dm_buffer *b;
1945 	unsigned spinlock_hold_count;
1946 	unsigned long threshold = dm_bufio_cache_size -
1947 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1948 	unsigned long loops = global_num * 2;
1949 
1950 	mutex_lock(&dm_bufio_clients_lock);
1951 
1952 	while (1) {
1953 		cond_resched();
1954 
1955 		spin_lock(&global_spinlock);
1956 		if (unlikely(dm_bufio_current_allocated <= threshold))
1957 			break;
1958 
1959 		spinlock_hold_count = 0;
1960 get_next:
1961 		if (!loops--)
1962 			break;
1963 		if (unlikely(list_empty(&global_queue)))
1964 			break;
1965 		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1966 
1967 		if (b->accessed) {
1968 			b->accessed = 0;
1969 			list_move(&b->global_list, &global_queue);
1970 			if (likely(++spinlock_hold_count < 16))
1971 				goto get_next;
1972 			spin_unlock(&global_spinlock);
1973 			continue;
1974 		}
1975 
1976 		current_client = b->c;
1977 		if (unlikely(current_client != locked_client)) {
1978 			if (locked_client)
1979 				dm_bufio_unlock(locked_client);
1980 
1981 			if (!dm_bufio_trylock(current_client)) {
1982 				spin_unlock(&global_spinlock);
1983 				dm_bufio_lock(current_client);
1984 				locked_client = current_client;
1985 				continue;
1986 			}
1987 
1988 			locked_client = current_client;
1989 		}
1990 
1991 		spin_unlock(&global_spinlock);
1992 
1993 		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
1994 			spin_lock(&global_spinlock);
1995 			list_move(&b->global_list, &global_queue);
1996 			spin_unlock(&global_spinlock);
1997 		}
1998 	}
1999 
2000 	spin_unlock(&global_spinlock);
2001 
2002 	if (locked_client)
2003 		dm_bufio_unlock(locked_client);
2004 
2005 	mutex_unlock(&dm_bufio_clients_lock);
2006 }
2007 
cleanup_old_buffers(void)2008 static void cleanup_old_buffers(void)
2009 {
2010 	unsigned long max_age_hz = get_max_age_hz();
2011 	struct dm_bufio_client *c;
2012 
2013 	mutex_lock(&dm_bufio_clients_lock);
2014 
2015 	__cache_size_refresh();
2016 
2017 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2018 		__evict_old_buffers(c, max_age_hz);
2019 
2020 	mutex_unlock(&dm_bufio_clients_lock);
2021 }
2022 
work_fn(struct work_struct * w)2023 static void work_fn(struct work_struct *w)
2024 {
2025 	cleanup_old_buffers();
2026 
2027 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2028 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2029 }
2030 
2031 /*----------------------------------------------------------------
2032  * Module setup
2033  *--------------------------------------------------------------*/
2034 
2035 /*
2036  * This is called only once for the whole dm_bufio module.
2037  * It initializes memory limit.
2038  */
dm_bufio_init(void)2039 static int __init dm_bufio_init(void)
2040 {
2041 	__u64 mem;
2042 
2043 	dm_bufio_allocated_kmem_cache = 0;
2044 	dm_bufio_allocated_get_free_pages = 0;
2045 	dm_bufio_allocated_vmalloc = 0;
2046 	dm_bufio_current_allocated = 0;
2047 
2048 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2049 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2050 
2051 	if (mem > ULONG_MAX)
2052 		mem = ULONG_MAX;
2053 
2054 #ifdef CONFIG_MMU
2055 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2056 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2057 #endif
2058 
2059 	dm_bufio_default_cache_size = mem;
2060 
2061 	mutex_lock(&dm_bufio_clients_lock);
2062 	__cache_size_refresh();
2063 	mutex_unlock(&dm_bufio_clients_lock);
2064 
2065 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2066 	if (!dm_bufio_wq)
2067 		return -ENOMEM;
2068 
2069 	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2070 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2071 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2072 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2073 
2074 	return 0;
2075 }
2076 
2077 /*
2078  * This is called once when unloading the dm_bufio module.
2079  */
dm_bufio_exit(void)2080 static void __exit dm_bufio_exit(void)
2081 {
2082 	int bug = 0;
2083 
2084 	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2085 	flush_workqueue(dm_bufio_wq);
2086 	destroy_workqueue(dm_bufio_wq);
2087 
2088 	if (dm_bufio_client_count) {
2089 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2090 			__func__, dm_bufio_client_count);
2091 		bug = 1;
2092 	}
2093 
2094 	if (dm_bufio_current_allocated) {
2095 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2096 			__func__, dm_bufio_current_allocated);
2097 		bug = 1;
2098 	}
2099 
2100 	if (dm_bufio_allocated_get_free_pages) {
2101 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2102 		       __func__, dm_bufio_allocated_get_free_pages);
2103 		bug = 1;
2104 	}
2105 
2106 	if (dm_bufio_allocated_vmalloc) {
2107 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2108 		       __func__, dm_bufio_allocated_vmalloc);
2109 		bug = 1;
2110 	}
2111 
2112 	BUG_ON(bug);
2113 }
2114 
2115 module_init(dm_bufio_init)
2116 module_exit(dm_bufio_exit)
2117 
2118 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2119 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2120 
2121 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2122 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2123 
2124 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2125 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2126 
2127 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2128 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2129 
2130 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2131 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2132 
2133 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2134 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2135 
2136 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2137 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2138 
2139 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2140 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2141 
2142 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2143 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2144 MODULE_LICENSE("GPL");
2145