1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19 
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 	u64 target = 0;
30 
31 	if (!bctl)
32 		return 0;
33 
34 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 	}
44 
45 	return target;
46 }
47 
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 	u64 num_devices = fs_info->fs_devices->rw_devices;
58 	u64 target;
59 	u64 raid_type;
60 	u64 allowed = 0;
61 
62 	/*
63 	 * See if restripe for this chunk_type is in progress, if so try to
64 	 * reduce to the target profile
65 	 */
66 	spin_lock(&fs_info->balance_lock);
67 	target = get_restripe_target(fs_info, flags);
68 	if (target) {
69 		spin_unlock(&fs_info->balance_lock);
70 		return extended_to_chunk(target);
71 	}
72 	spin_unlock(&fs_info->balance_lock);
73 
74 	/* First, mask out the RAID levels which aren't possible */
75 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 			allowed |= btrfs_raid_array[raid_type].bg_flag;
78 	}
79 	allowed &= flags;
80 
81 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 		allowed = BTRFS_BLOCK_GROUP_RAID6;
83 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 		allowed = BTRFS_BLOCK_GROUP_RAID5;
85 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 		allowed = BTRFS_BLOCK_GROUP_RAID10;
87 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 		allowed = BTRFS_BLOCK_GROUP_RAID1;
89 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 		allowed = BTRFS_BLOCK_GROUP_RAID0;
91 
92 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93 
94 	return extended_to_chunk(flags | allowed);
95 }
96 
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 {
99 	unsigned seq;
100 	u64 flags;
101 
102 	do {
103 		flags = orig_flags;
104 		seq = read_seqbegin(&fs_info->profiles_lock);
105 
106 		if (flags & BTRFS_BLOCK_GROUP_DATA)
107 			flags |= fs_info->avail_data_alloc_bits;
108 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 			flags |= fs_info->avail_system_alloc_bits;
110 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 			flags |= fs_info->avail_metadata_alloc_bits;
112 	} while (read_seqretry(&fs_info->profiles_lock, seq));
113 
114 	return btrfs_reduce_alloc_profile(fs_info, flags);
115 }
116 
btrfs_get_block_group(struct btrfs_block_group * cache)117 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 {
119 	refcount_inc(&cache->refs);
120 }
121 
btrfs_put_block_group(struct btrfs_block_group * cache)122 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 {
124 	if (refcount_dec_and_test(&cache->refs)) {
125 		WARN_ON(cache->pinned > 0);
126 		WARN_ON(cache->reserved > 0);
127 
128 		/*
129 		 * A block_group shouldn't be on the discard_list anymore.
130 		 * Remove the block_group from the discard_list to prevent us
131 		 * from causing a panic due to NULL pointer dereference.
132 		 */
133 		if (WARN_ON(!list_empty(&cache->discard_list)))
134 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 						  cache);
136 
137 		/*
138 		 * If not empty, someone is still holding mutex of
139 		 * full_stripe_lock, which can only be released by caller.
140 		 * And it will definitely cause use-after-free when caller
141 		 * tries to release full stripe lock.
142 		 *
143 		 * No better way to resolve, but only to warn.
144 		 */
145 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 		kfree(cache->free_space_ctl);
147 		kfree(cache);
148 	}
149 }
150 
151 /*
152  * This adds the block group to the fs_info rb tree for the block group cache
153  */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 				       struct btrfs_block_group *block_group)
156 {
157 	struct rb_node **p;
158 	struct rb_node *parent = NULL;
159 	struct btrfs_block_group *cache;
160 
161 	ASSERT(block_group->length != 0);
162 
163 	spin_lock(&info->block_group_cache_lock);
164 	p = &info->block_group_cache_tree.rb_node;
165 
166 	while (*p) {
167 		parent = *p;
168 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169 		if (block_group->start < cache->start) {
170 			p = &(*p)->rb_left;
171 		} else if (block_group->start > cache->start) {
172 			p = &(*p)->rb_right;
173 		} else {
174 			spin_unlock(&info->block_group_cache_lock);
175 			return -EEXIST;
176 		}
177 	}
178 
179 	rb_link_node(&block_group->cache_node, parent, p);
180 	rb_insert_color(&block_group->cache_node,
181 			&info->block_group_cache_tree);
182 
183 	if (info->first_logical_byte > block_group->start)
184 		info->first_logical_byte = block_group->start;
185 
186 	spin_unlock(&info->block_group_cache_lock);
187 
188 	return 0;
189 }
190 
191 /*
192  * This will return the block group at or after bytenr if contains is 0, else
193  * it will return the block group that contains the bytenr
194  */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)195 static struct btrfs_block_group *block_group_cache_tree_search(
196 		struct btrfs_fs_info *info, u64 bytenr, int contains)
197 {
198 	struct btrfs_block_group *cache, *ret = NULL;
199 	struct rb_node *n;
200 	u64 end, start;
201 
202 	spin_lock(&info->block_group_cache_lock);
203 	n = info->block_group_cache_tree.rb_node;
204 
205 	while (n) {
206 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
207 		end = cache->start + cache->length - 1;
208 		start = cache->start;
209 
210 		if (bytenr < start) {
211 			if (!contains && (!ret || start < ret->start))
212 				ret = cache;
213 			n = n->rb_left;
214 		} else if (bytenr > start) {
215 			if (contains && bytenr <= end) {
216 				ret = cache;
217 				break;
218 			}
219 			n = n->rb_right;
220 		} else {
221 			ret = cache;
222 			break;
223 		}
224 	}
225 	if (ret) {
226 		btrfs_get_block_group(ret);
227 		if (bytenr == 0 && info->first_logical_byte > ret->start)
228 			info->first_logical_byte = ret->start;
229 	}
230 	spin_unlock(&info->block_group_cache_lock);
231 
232 	return ret;
233 }
234 
235 /*
236  * Return the block group that starts at or after bytenr
237  */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)238 struct btrfs_block_group *btrfs_lookup_first_block_group(
239 		struct btrfs_fs_info *info, u64 bytenr)
240 {
241 	return block_group_cache_tree_search(info, bytenr, 0);
242 }
243 
244 /*
245  * Return the block group that contains the given bytenr
246  */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)247 struct btrfs_block_group *btrfs_lookup_block_group(
248 		struct btrfs_fs_info *info, u64 bytenr)
249 {
250 	return block_group_cache_tree_search(info, bytenr, 1);
251 }
252 
btrfs_next_block_group(struct btrfs_block_group * cache)253 struct btrfs_block_group *btrfs_next_block_group(
254 		struct btrfs_block_group *cache)
255 {
256 	struct btrfs_fs_info *fs_info = cache->fs_info;
257 	struct rb_node *node;
258 
259 	spin_lock(&fs_info->block_group_cache_lock);
260 
261 	/* If our block group was removed, we need a full search. */
262 	if (RB_EMPTY_NODE(&cache->cache_node)) {
263 		const u64 next_bytenr = cache->start + cache->length;
264 
265 		spin_unlock(&fs_info->block_group_cache_lock);
266 		btrfs_put_block_group(cache);
267 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 	}
269 	node = rb_next(&cache->cache_node);
270 	btrfs_put_block_group(cache);
271 	if (node) {
272 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
273 		btrfs_get_block_group(cache);
274 	} else
275 		cache = NULL;
276 	spin_unlock(&fs_info->block_group_cache_lock);
277 	return cache;
278 }
279 
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 {
282 	struct btrfs_block_group *bg;
283 	bool ret = true;
284 
285 	bg = btrfs_lookup_block_group(fs_info, bytenr);
286 	if (!bg)
287 		return false;
288 
289 	spin_lock(&bg->lock);
290 	if (bg->ro)
291 		ret = false;
292 	else
293 		atomic_inc(&bg->nocow_writers);
294 	spin_unlock(&bg->lock);
295 
296 	/* No put on block group, done by btrfs_dec_nocow_writers */
297 	if (!ret)
298 		btrfs_put_block_group(bg);
299 
300 	return ret;
301 }
302 
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 
307 	bg = btrfs_lookup_block_group(fs_info, bytenr);
308 	ASSERT(bg);
309 	if (atomic_dec_and_test(&bg->nocow_writers))
310 		wake_up_var(&bg->nocow_writers);
311 	/*
312 	 * Once for our lookup and once for the lookup done by a previous call
313 	 * to btrfs_inc_nocow_writers()
314 	 */
315 	btrfs_put_block_group(bg);
316 	btrfs_put_block_group(bg);
317 }
318 
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 {
321 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322 }
323 
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 					const u64 start)
326 {
327 	struct btrfs_block_group *bg;
328 
329 	bg = btrfs_lookup_block_group(fs_info, start);
330 	ASSERT(bg);
331 	if (atomic_dec_and_test(&bg->reservations))
332 		wake_up_var(&bg->reservations);
333 	btrfs_put_block_group(bg);
334 }
335 
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 {
338 	struct btrfs_space_info *space_info = bg->space_info;
339 
340 	ASSERT(bg->ro);
341 
342 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 		return;
344 
345 	/*
346 	 * Our block group is read only but before we set it to read only,
347 	 * some task might have had allocated an extent from it already, but it
348 	 * has not yet created a respective ordered extent (and added it to a
349 	 * root's list of ordered extents).
350 	 * Therefore wait for any task currently allocating extents, since the
351 	 * block group's reservations counter is incremented while a read lock
352 	 * on the groups' semaphore is held and decremented after releasing
353 	 * the read access on that semaphore and creating the ordered extent.
354 	 */
355 	down_write(&space_info->groups_sem);
356 	up_write(&space_info->groups_sem);
357 
358 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359 }
360 
btrfs_get_caching_control(struct btrfs_block_group * cache)361 struct btrfs_caching_control *btrfs_get_caching_control(
362 		struct btrfs_block_group *cache)
363 {
364 	struct btrfs_caching_control *ctl;
365 
366 	spin_lock(&cache->lock);
367 	if (!cache->caching_ctl) {
368 		spin_unlock(&cache->lock);
369 		return NULL;
370 	}
371 
372 	ctl = cache->caching_ctl;
373 	refcount_inc(&ctl->count);
374 	spin_unlock(&cache->lock);
375 	return ctl;
376 }
377 
btrfs_put_caching_control(struct btrfs_caching_control * ctl)378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 {
380 	if (refcount_dec_and_test(&ctl->count))
381 		kfree(ctl);
382 }
383 
384 /*
385  * When we wait for progress in the block group caching, its because our
386  * allocation attempt failed at least once.  So, we must sleep and let some
387  * progress happen before we try again.
388  *
389  * This function will sleep at least once waiting for new free space to show
390  * up, and then it will check the block group free space numbers for our min
391  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
392  * a free extent of a given size, but this is a good start.
393  *
394  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395  * any of the information in this block group.
396  */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398 					   u64 num_bytes)
399 {
400 	struct btrfs_caching_control *caching_ctl;
401 
402 	caching_ctl = btrfs_get_caching_control(cache);
403 	if (!caching_ctl)
404 		return;
405 
406 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407 		   (cache->free_space_ctl->free_space >= num_bytes));
408 
409 	btrfs_put_caching_control(caching_ctl);
410 }
411 
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 {
414 	struct btrfs_caching_control *caching_ctl;
415 	int ret = 0;
416 
417 	caching_ctl = btrfs_get_caching_control(cache);
418 	if (!caching_ctl)
419 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420 
421 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422 	if (cache->cached == BTRFS_CACHE_ERROR)
423 		ret = -EIO;
424 	btrfs_put_caching_control(caching_ctl);
425 	return ret;
426 }
427 
space_cache_v1_done(struct btrfs_block_group * cache)428 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 {
430 	bool ret;
431 
432 	spin_lock(&cache->lock);
433 	ret = cache->cached != BTRFS_CACHE_FAST;
434 	spin_unlock(&cache->lock);
435 
436 	return ret;
437 }
438 
btrfs_wait_space_cache_v1_finished(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 				struct btrfs_caching_control *caching_ctl)
441 {
442 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443 }
444 
445 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)446 static void fragment_free_space(struct btrfs_block_group *block_group)
447 {
448 	struct btrfs_fs_info *fs_info = block_group->fs_info;
449 	u64 start = block_group->start;
450 	u64 len = block_group->length;
451 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 		fs_info->nodesize : fs_info->sectorsize;
453 	u64 step = chunk << 1;
454 
455 	while (len > chunk) {
456 		btrfs_remove_free_space(block_group, start, chunk);
457 		start += step;
458 		if (len < step)
459 			len = 0;
460 		else
461 			len -= step;
462 	}
463 }
464 #endif
465 
466 /*
467  * This is only called by btrfs_cache_block_group, since we could have freed
468  * extents we need to check the pinned_extents for any extents that can't be
469  * used yet since their free space will be released as soon as the transaction
470  * commits.
471  */
add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end)472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 {
474 	struct btrfs_fs_info *info = block_group->fs_info;
475 	u64 extent_start, extent_end, size, total_added = 0;
476 	int ret;
477 
478 	while (start < end) {
479 		ret = find_first_extent_bit(&info->excluded_extents, start,
480 					    &extent_start, &extent_end,
481 					    EXTENT_DIRTY | EXTENT_UPTODATE,
482 					    NULL);
483 		if (ret)
484 			break;
485 
486 		if (extent_start <= start) {
487 			start = extent_end + 1;
488 		} else if (extent_start > start && extent_start < end) {
489 			size = extent_start - start;
490 			total_added += size;
491 			ret = btrfs_add_free_space_async_trimmed(block_group,
492 								 start, size);
493 			BUG_ON(ret); /* -ENOMEM or logic error */
494 			start = extent_end + 1;
495 		} else {
496 			break;
497 		}
498 	}
499 
500 	if (start < end) {
501 		size = end - start;
502 		total_added += size;
503 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 							 size);
505 		BUG_ON(ret); /* -ENOMEM or logic error */
506 	}
507 
508 	return total_added;
509 }
510 
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 {
513 	struct btrfs_block_group *block_group = caching_ctl->block_group;
514 	struct btrfs_fs_info *fs_info = block_group->fs_info;
515 	struct btrfs_root *extent_root = fs_info->extent_root;
516 	struct btrfs_path *path;
517 	struct extent_buffer *leaf;
518 	struct btrfs_key key;
519 	u64 total_found = 0;
520 	u64 last = 0;
521 	u32 nritems;
522 	int ret;
523 	bool wakeup = true;
524 
525 	path = btrfs_alloc_path();
526 	if (!path)
527 		return -ENOMEM;
528 
529 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530 
531 #ifdef CONFIG_BTRFS_DEBUG
532 	/*
533 	 * If we're fragmenting we don't want to make anybody think we can
534 	 * allocate from this block group until we've had a chance to fragment
535 	 * the free space.
536 	 */
537 	if (btrfs_should_fragment_free_space(block_group))
538 		wakeup = false;
539 #endif
540 	/*
541 	 * We don't want to deadlock with somebody trying to allocate a new
542 	 * extent for the extent root while also trying to search the extent
543 	 * root to add free space.  So we skip locking and search the commit
544 	 * root, since its read-only
545 	 */
546 	path->skip_locking = 1;
547 	path->search_commit_root = 1;
548 	path->reada = READA_FORWARD;
549 
550 	key.objectid = last;
551 	key.offset = 0;
552 	key.type = BTRFS_EXTENT_ITEM_KEY;
553 
554 next:
555 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 	if (ret < 0)
557 		goto out;
558 
559 	leaf = path->nodes[0];
560 	nritems = btrfs_header_nritems(leaf);
561 
562 	while (1) {
563 		if (btrfs_fs_closing(fs_info) > 1) {
564 			last = (u64)-1;
565 			break;
566 		}
567 
568 		if (path->slots[0] < nritems) {
569 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 		} else {
571 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 			if (ret)
573 				break;
574 
575 			if (need_resched() ||
576 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
577 				if (wakeup)
578 					caching_ctl->progress = last;
579 				btrfs_release_path(path);
580 				up_read(&fs_info->commit_root_sem);
581 				mutex_unlock(&caching_ctl->mutex);
582 				cond_resched();
583 				mutex_lock(&caching_ctl->mutex);
584 				down_read(&fs_info->commit_root_sem);
585 				goto next;
586 			}
587 
588 			ret = btrfs_next_leaf(extent_root, path);
589 			if (ret < 0)
590 				goto out;
591 			if (ret)
592 				break;
593 			leaf = path->nodes[0];
594 			nritems = btrfs_header_nritems(leaf);
595 			continue;
596 		}
597 
598 		if (key.objectid < last) {
599 			key.objectid = last;
600 			key.offset = 0;
601 			key.type = BTRFS_EXTENT_ITEM_KEY;
602 
603 			if (wakeup)
604 				caching_ctl->progress = last;
605 			btrfs_release_path(path);
606 			goto next;
607 		}
608 
609 		if (key.objectid < block_group->start) {
610 			path->slots[0]++;
611 			continue;
612 		}
613 
614 		if (key.objectid >= block_group->start + block_group->length)
615 			break;
616 
617 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 		    key.type == BTRFS_METADATA_ITEM_KEY) {
619 			total_found += add_new_free_space(block_group, last,
620 							  key.objectid);
621 			if (key.type == BTRFS_METADATA_ITEM_KEY)
622 				last = key.objectid +
623 					fs_info->nodesize;
624 			else
625 				last = key.objectid + key.offset;
626 
627 			if (total_found > CACHING_CTL_WAKE_UP) {
628 				total_found = 0;
629 				if (wakeup)
630 					wake_up(&caching_ctl->wait);
631 			}
632 		}
633 		path->slots[0]++;
634 	}
635 	ret = 0;
636 
637 	total_found += add_new_free_space(block_group, last,
638 				block_group->start + block_group->length);
639 	caching_ctl->progress = (u64)-1;
640 
641 out:
642 	btrfs_free_path(path);
643 	return ret;
644 }
645 
caching_thread(struct btrfs_work * work)646 static noinline void caching_thread(struct btrfs_work *work)
647 {
648 	struct btrfs_block_group *block_group;
649 	struct btrfs_fs_info *fs_info;
650 	struct btrfs_caching_control *caching_ctl;
651 	int ret;
652 
653 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 	block_group = caching_ctl->block_group;
655 	fs_info = block_group->fs_info;
656 
657 	mutex_lock(&caching_ctl->mutex);
658 	down_read(&fs_info->commit_root_sem);
659 
660 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 		ret = load_free_space_cache(block_group);
662 		if (ret == 1) {
663 			ret = 0;
664 			goto done;
665 		}
666 
667 		/*
668 		 * We failed to load the space cache, set ourselves to
669 		 * CACHE_STARTED and carry on.
670 		 */
671 		spin_lock(&block_group->lock);
672 		block_group->cached = BTRFS_CACHE_STARTED;
673 		spin_unlock(&block_group->lock);
674 		wake_up(&caching_ctl->wait);
675 	}
676 
677 	/*
678 	 * If we are in the transaction that populated the free space tree we
679 	 * can't actually cache from the free space tree as our commit root and
680 	 * real root are the same, so we could change the contents of the blocks
681 	 * while caching.  Instead do the slow caching in this case, and after
682 	 * the transaction has committed we will be safe.
683 	 */
684 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686 		ret = load_free_space_tree(caching_ctl);
687 	else
688 		ret = load_extent_tree_free(caching_ctl);
689 done:
690 	spin_lock(&block_group->lock);
691 	block_group->caching_ctl = NULL;
692 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 	spin_unlock(&block_group->lock);
694 
695 #ifdef CONFIG_BTRFS_DEBUG
696 	if (btrfs_should_fragment_free_space(block_group)) {
697 		u64 bytes_used;
698 
699 		spin_lock(&block_group->space_info->lock);
700 		spin_lock(&block_group->lock);
701 		bytes_used = block_group->length - block_group->used;
702 		block_group->space_info->bytes_used += bytes_used >> 1;
703 		spin_unlock(&block_group->lock);
704 		spin_unlock(&block_group->space_info->lock);
705 		fragment_free_space(block_group);
706 	}
707 #endif
708 
709 	caching_ctl->progress = (u64)-1;
710 
711 	up_read(&fs_info->commit_root_sem);
712 	btrfs_free_excluded_extents(block_group);
713 	mutex_unlock(&caching_ctl->mutex);
714 
715 	wake_up(&caching_ctl->wait);
716 
717 	btrfs_put_caching_control(caching_ctl);
718 	btrfs_put_block_group(block_group);
719 }
720 
btrfs_cache_block_group(struct btrfs_block_group * cache,int load_cache_only)721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 {
723 	DEFINE_WAIT(wait);
724 	struct btrfs_fs_info *fs_info = cache->fs_info;
725 	struct btrfs_caching_control *caching_ctl = NULL;
726 	int ret = 0;
727 
728 	/* Allocator for zoned filesystems does not use the cache at all */
729 	if (btrfs_is_zoned(fs_info))
730 		return 0;
731 
732 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 	if (!caching_ctl)
734 		return -ENOMEM;
735 
736 	INIT_LIST_HEAD(&caching_ctl->list);
737 	mutex_init(&caching_ctl->mutex);
738 	init_waitqueue_head(&caching_ctl->wait);
739 	caching_ctl->block_group = cache;
740 	caching_ctl->progress = cache->start;
741 	refcount_set(&caching_ctl->count, 2);
742 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743 
744 	spin_lock(&cache->lock);
745 	if (cache->cached != BTRFS_CACHE_NO) {
746 		kfree(caching_ctl);
747 
748 		caching_ctl = cache->caching_ctl;
749 		if (caching_ctl)
750 			refcount_inc(&caching_ctl->count);
751 		spin_unlock(&cache->lock);
752 		goto out;
753 	}
754 	WARN_ON(cache->caching_ctl);
755 	cache->caching_ctl = caching_ctl;
756 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 		cache->cached = BTRFS_CACHE_FAST;
758 	else
759 		cache->cached = BTRFS_CACHE_STARTED;
760 	cache->has_caching_ctl = 1;
761 	spin_unlock(&cache->lock);
762 
763 	spin_lock(&fs_info->block_group_cache_lock);
764 	refcount_inc(&caching_ctl->count);
765 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766 	spin_unlock(&fs_info->block_group_cache_lock);
767 
768 	btrfs_get_block_group(cache);
769 
770 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 out:
772 	if (load_cache_only && caching_ctl)
773 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 	if (caching_ctl)
775 		btrfs_put_caching_control(caching_ctl);
776 
777 	return ret;
778 }
779 
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781 {
782 	u64 extra_flags = chunk_to_extended(flags) &
783 				BTRFS_EXTENDED_PROFILE_MASK;
784 
785 	write_seqlock(&fs_info->profiles_lock);
786 	if (flags & BTRFS_BLOCK_GROUP_DATA)
787 		fs_info->avail_data_alloc_bits &= ~extra_flags;
788 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 		fs_info->avail_system_alloc_bits &= ~extra_flags;
792 	write_sequnlock(&fs_info->profiles_lock);
793 }
794 
795 /*
796  * Clear incompat bits for the following feature(s):
797  *
798  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799  *            in the whole filesystem
800  *
801  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802  */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804 {
805 	bool found_raid56 = false;
806 	bool found_raid1c34 = false;
807 
808 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811 		struct list_head *head = &fs_info->space_info;
812 		struct btrfs_space_info *sinfo;
813 
814 		list_for_each_entry_rcu(sinfo, head, list) {
815 			down_read(&sinfo->groups_sem);
816 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817 				found_raid56 = true;
818 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819 				found_raid56 = true;
820 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 				found_raid1c34 = true;
822 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 				found_raid1c34 = true;
824 			up_read(&sinfo->groups_sem);
825 		}
826 		if (!found_raid56)
827 			btrfs_clear_fs_incompat(fs_info, RAID56);
828 		if (!found_raid1c34)
829 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
830 	}
831 }
832 
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)833 static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 				   struct btrfs_path *path,
835 				   struct btrfs_block_group *block_group)
836 {
837 	struct btrfs_fs_info *fs_info = trans->fs_info;
838 	struct btrfs_root *root;
839 	struct btrfs_key key;
840 	int ret;
841 
842 	root = fs_info->extent_root;
843 	key.objectid = block_group->start;
844 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 	key.offset = block_group->length;
846 
847 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 	if (ret > 0)
849 		ret = -ENOENT;
850 	if (ret < 0)
851 		return ret;
852 
853 	ret = btrfs_del_item(trans, root, path);
854 	return ret;
855 }
856 
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 			     u64 group_start, struct extent_map *em)
859 {
860 	struct btrfs_fs_info *fs_info = trans->fs_info;
861 	struct btrfs_path *path;
862 	struct btrfs_block_group *block_group;
863 	struct btrfs_free_cluster *cluster;
864 	struct inode *inode;
865 	struct kobject *kobj = NULL;
866 	int ret;
867 	int index;
868 	int factor;
869 	struct btrfs_caching_control *caching_ctl = NULL;
870 	bool remove_em;
871 	bool remove_rsv = false;
872 
873 	block_group = btrfs_lookup_block_group(fs_info, group_start);
874 	BUG_ON(!block_group);
875 	BUG_ON(!block_group->ro);
876 
877 	trace_btrfs_remove_block_group(block_group);
878 	/*
879 	 * Free the reserved super bytes from this block group before
880 	 * remove it.
881 	 */
882 	btrfs_free_excluded_extents(block_group);
883 	btrfs_free_ref_tree_range(fs_info, block_group->start,
884 				  block_group->length);
885 
886 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 	factor = btrfs_bg_type_to_factor(block_group->flags);
888 
889 	/* make sure this block group isn't part of an allocation cluster */
890 	cluster = &fs_info->data_alloc_cluster;
891 	spin_lock(&cluster->refill_lock);
892 	btrfs_return_cluster_to_free_space(block_group, cluster);
893 	spin_unlock(&cluster->refill_lock);
894 
895 	/*
896 	 * make sure this block group isn't part of a metadata
897 	 * allocation cluster
898 	 */
899 	cluster = &fs_info->meta_alloc_cluster;
900 	spin_lock(&cluster->refill_lock);
901 	btrfs_return_cluster_to_free_space(block_group, cluster);
902 	spin_unlock(&cluster->refill_lock);
903 
904 	btrfs_clear_treelog_bg(block_group);
905 
906 	path = btrfs_alloc_path();
907 	if (!path) {
908 		ret = -ENOMEM;
909 		goto out;
910 	}
911 
912 	/*
913 	 * get the inode first so any iput calls done for the io_list
914 	 * aren't the final iput (no unlinks allowed now)
915 	 */
916 	inode = lookup_free_space_inode(block_group, path);
917 
918 	mutex_lock(&trans->transaction->cache_write_mutex);
919 	/*
920 	 * Make sure our free space cache IO is done before removing the
921 	 * free space inode
922 	 */
923 	spin_lock(&trans->transaction->dirty_bgs_lock);
924 	if (!list_empty(&block_group->io_list)) {
925 		list_del_init(&block_group->io_list);
926 
927 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928 
929 		spin_unlock(&trans->transaction->dirty_bgs_lock);
930 		btrfs_wait_cache_io(trans, block_group, path);
931 		btrfs_put_block_group(block_group);
932 		spin_lock(&trans->transaction->dirty_bgs_lock);
933 	}
934 
935 	if (!list_empty(&block_group->dirty_list)) {
936 		list_del_init(&block_group->dirty_list);
937 		remove_rsv = true;
938 		btrfs_put_block_group(block_group);
939 	}
940 	spin_unlock(&trans->transaction->dirty_bgs_lock);
941 	mutex_unlock(&trans->transaction->cache_write_mutex);
942 
943 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 	if (ret)
945 		goto out;
946 
947 	spin_lock(&fs_info->block_group_cache_lock);
948 	rb_erase(&block_group->cache_node,
949 		 &fs_info->block_group_cache_tree);
950 	RB_CLEAR_NODE(&block_group->cache_node);
951 
952 	/* Once for the block groups rbtree */
953 	btrfs_put_block_group(block_group);
954 
955 	if (fs_info->first_logical_byte == block_group->start)
956 		fs_info->first_logical_byte = (u64)-1;
957 	spin_unlock(&fs_info->block_group_cache_lock);
958 
959 	down_write(&block_group->space_info->groups_sem);
960 	/*
961 	 * we must use list_del_init so people can check to see if they
962 	 * are still on the list after taking the semaphore
963 	 */
964 	list_del_init(&block_group->list);
965 	if (list_empty(&block_group->space_info->block_groups[index])) {
966 		kobj = block_group->space_info->block_group_kobjs[index];
967 		block_group->space_info->block_group_kobjs[index] = NULL;
968 		clear_avail_alloc_bits(fs_info, block_group->flags);
969 	}
970 	up_write(&block_group->space_info->groups_sem);
971 	clear_incompat_bg_bits(fs_info, block_group->flags);
972 	if (kobj) {
973 		kobject_del(kobj);
974 		kobject_put(kobj);
975 	}
976 
977 	if (block_group->has_caching_ctl)
978 		caching_ctl = btrfs_get_caching_control(block_group);
979 	if (block_group->cached == BTRFS_CACHE_STARTED)
980 		btrfs_wait_block_group_cache_done(block_group);
981 	if (block_group->has_caching_ctl) {
982 		spin_lock(&fs_info->block_group_cache_lock);
983 		if (!caching_ctl) {
984 			struct btrfs_caching_control *ctl;
985 
986 			list_for_each_entry(ctl,
987 				    &fs_info->caching_block_groups, list)
988 				if (ctl->block_group == block_group) {
989 					caching_ctl = ctl;
990 					refcount_inc(&caching_ctl->count);
991 					break;
992 				}
993 		}
994 		if (caching_ctl)
995 			list_del_init(&caching_ctl->list);
996 		spin_unlock(&fs_info->block_group_cache_lock);
997 		if (caching_ctl) {
998 			/* Once for the caching bgs list and once for us. */
999 			btrfs_put_caching_control(caching_ctl);
1000 			btrfs_put_caching_control(caching_ctl);
1001 		}
1002 	}
1003 
1004 	spin_lock(&trans->transaction->dirty_bgs_lock);
1005 	WARN_ON(!list_empty(&block_group->dirty_list));
1006 	WARN_ON(!list_empty(&block_group->io_list));
1007 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1008 
1009 	btrfs_remove_free_space_cache(block_group);
1010 
1011 	spin_lock(&block_group->space_info->lock);
1012 	list_del_init(&block_group->ro_list);
1013 
1014 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 		WARN_ON(block_group->space_info->total_bytes
1016 			< block_group->length);
1017 		WARN_ON(block_group->space_info->bytes_readonly
1018 			< block_group->length - block_group->zone_unusable);
1019 		WARN_ON(block_group->space_info->bytes_zone_unusable
1020 			< block_group->zone_unusable);
1021 		WARN_ON(block_group->space_info->disk_total
1022 			< block_group->length * factor);
1023 	}
1024 	block_group->space_info->total_bytes -= block_group->length;
1025 	block_group->space_info->bytes_readonly -=
1026 		(block_group->length - block_group->zone_unusable);
1027 	block_group->space_info->bytes_zone_unusable -=
1028 		block_group->zone_unusable;
1029 	block_group->space_info->disk_total -= block_group->length * factor;
1030 
1031 	spin_unlock(&block_group->space_info->lock);
1032 
1033 	/*
1034 	 * Remove the free space for the block group from the free space tree
1035 	 * and the block group's item from the extent tree before marking the
1036 	 * block group as removed. This is to prevent races with tasks that
1037 	 * freeze and unfreeze a block group, this task and another task
1038 	 * allocating a new block group - the unfreeze task ends up removing
1039 	 * the block group's extent map before the task calling this function
1040 	 * deletes the block group item from the extent tree, allowing for
1041 	 * another task to attempt to create another block group with the same
1042 	 * item key (and failing with -EEXIST and a transaction abort).
1043 	 */
1044 	ret = remove_block_group_free_space(trans, block_group);
1045 	if (ret)
1046 		goto out;
1047 
1048 	ret = remove_block_group_item(trans, path, block_group);
1049 	if (ret < 0)
1050 		goto out;
1051 
1052 	spin_lock(&block_group->lock);
1053 	block_group->removed = 1;
1054 	/*
1055 	 * At this point trimming or scrub can't start on this block group,
1056 	 * because we removed the block group from the rbtree
1057 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 	 * even if someone already got this block group before we removed it
1059 	 * from the rbtree, they have already incremented block_group->frozen -
1060 	 * if they didn't, for the trimming case they won't find any free space
1061 	 * entries because we already removed them all when we called
1062 	 * btrfs_remove_free_space_cache().
1063 	 *
1064 	 * And we must not remove the extent map from the fs_info->mapping_tree
1065 	 * to prevent the same logical address range and physical device space
1066 	 * ranges from being reused for a new block group. This is needed to
1067 	 * avoid races with trimming and scrub.
1068 	 *
1069 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 	 * completely transactionless, so while it is trimming a range the
1071 	 * currently running transaction might finish and a new one start,
1072 	 * allowing for new block groups to be created that can reuse the same
1073 	 * physical device locations unless we take this special care.
1074 	 *
1075 	 * There may also be an implicit trim operation if the file system
1076 	 * is mounted with -odiscard. The same protections must remain
1077 	 * in place until the extents have been discarded completely when
1078 	 * the transaction commit has completed.
1079 	 */
1080 	remove_em = (atomic_read(&block_group->frozen) == 0);
1081 	spin_unlock(&block_group->lock);
1082 
1083 	if (remove_em) {
1084 		struct extent_map_tree *em_tree;
1085 
1086 		em_tree = &fs_info->mapping_tree;
1087 		write_lock(&em_tree->lock);
1088 		remove_extent_mapping(em_tree, em);
1089 		write_unlock(&em_tree->lock);
1090 		/* once for the tree */
1091 		free_extent_map(em);
1092 	}
1093 
1094 out:
1095 	/* Once for the lookup reference */
1096 	btrfs_put_block_group(block_group);
1097 	if (remove_rsv)
1098 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 	btrfs_free_path(path);
1100 	return ret;
1101 }
1102 
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 	struct extent_map *em;
1108 	struct map_lookup *map;
1109 	unsigned int num_items;
1110 
1111 	read_lock(&em_tree->lock);
1112 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 	read_unlock(&em_tree->lock);
1114 	ASSERT(em && em->start == chunk_offset);
1115 
1116 	/*
1117 	 * We need to reserve 3 + N units from the metadata space info in order
1118 	 * to remove a block group (done at btrfs_remove_chunk() and at
1119 	 * btrfs_remove_block_group()), which are used for:
1120 	 *
1121 	 * 1 unit for adding the free space inode's orphan (located in the tree
1122 	 * of tree roots).
1123 	 * 1 unit for deleting the block group item (located in the extent
1124 	 * tree).
1125 	 * 1 unit for deleting the free space item (located in tree of tree
1126 	 * roots).
1127 	 * N units for deleting N device extent items corresponding to each
1128 	 * stripe (located in the device tree).
1129 	 *
1130 	 * In order to remove a block group we also need to reserve units in the
1131 	 * system space info in order to update the chunk tree (update one or
1132 	 * more device items and remove one chunk item), but this is done at
1133 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 	 */
1135 	map = em->map_lookup;
1136 	num_items = 3 + map->num_stripes;
1137 	free_extent_map(em);
1138 
1139 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140 							   num_items);
1141 }
1142 
1143 /*
1144  * Mark block group @cache read-only, so later write won't happen to block
1145  * group @cache.
1146  *
1147  * If @force is not set, this function will only mark the block group readonly
1148  * if we have enough free space (1M) in other metadata/system block groups.
1149  * If @force is not set, this function will mark the block group readonly
1150  * without checking free space.
1151  *
1152  * NOTE: This function doesn't care if other block groups can contain all the
1153  * data in this block group. That check should be done by relocation routine,
1154  * not this function.
1155  */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158 	struct btrfs_space_info *sinfo = cache->space_info;
1159 	u64 num_bytes;
1160 	int ret = -ENOSPC;
1161 
1162 	spin_lock(&sinfo->lock);
1163 	spin_lock(&cache->lock);
1164 
1165 	if (cache->swap_extents) {
1166 		ret = -ETXTBSY;
1167 		goto out;
1168 	}
1169 
1170 	if (cache->ro) {
1171 		cache->ro++;
1172 		ret = 0;
1173 		goto out;
1174 	}
1175 
1176 	num_bytes = cache->length - cache->reserved - cache->pinned -
1177 		    cache->bytes_super - cache->zone_unusable - cache->used;
1178 
1179 	/*
1180 	 * Data never overcommits, even in mixed mode, so do just the straight
1181 	 * check of left over space in how much we have allocated.
1182 	 */
1183 	if (force) {
1184 		ret = 0;
1185 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187 
1188 		/*
1189 		 * Here we make sure if we mark this bg RO, we still have enough
1190 		 * free space as buffer.
1191 		 */
1192 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 			ret = 0;
1194 	} else {
1195 		/*
1196 		 * We overcommit metadata, so we need to do the
1197 		 * btrfs_can_overcommit check here, and we need to pass in
1198 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 		 * leeway to allow us to mark this block group as read only.
1200 		 */
1201 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 					 BTRFS_RESERVE_NO_FLUSH))
1203 			ret = 0;
1204 	}
1205 
1206 	if (!ret) {
1207 		sinfo->bytes_readonly += num_bytes;
1208 		if (btrfs_is_zoned(cache->fs_info)) {
1209 			/* Migrate zone_unusable bytes to readonly */
1210 			sinfo->bytes_readonly += cache->zone_unusable;
1211 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 			cache->zone_unusable = 0;
1213 		}
1214 		cache->ro++;
1215 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216 	}
1217 out:
1218 	spin_unlock(&cache->lock);
1219 	spin_unlock(&sinfo->lock);
1220 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 		btrfs_info(cache->fs_info,
1222 			"unable to make block group %llu ro", cache->start);
1223 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 	}
1225 	return ret;
1226 }
1227 
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 				 struct btrfs_block_group *bg)
1230 {
1231 	struct btrfs_fs_info *fs_info = bg->fs_info;
1232 	struct btrfs_transaction *prev_trans = NULL;
1233 	const u64 start = bg->start;
1234 	const u64 end = start + bg->length - 1;
1235 	int ret;
1236 
1237 	spin_lock(&fs_info->trans_lock);
1238 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 		prev_trans = list_last_entry(&trans->transaction->list,
1240 					     struct btrfs_transaction, list);
1241 		refcount_inc(&prev_trans->use_count);
1242 	}
1243 	spin_unlock(&fs_info->trans_lock);
1244 
1245 	/*
1246 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 	 * task might be running finish_extent_commit() for the previous
1249 	 * transaction N - 1, and have seen a range belonging to the block
1250 	 * group in pinned_extents before we were able to clear the whole block
1251 	 * group range from pinned_extents. This means that task can lookup for
1252 	 * the block group after we unpinned it from pinned_extents and removed
1253 	 * it, leading to a BUG_ON() at unpin_extent_range().
1254 	 */
1255 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256 	if (prev_trans) {
1257 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 					EXTENT_DIRTY);
1259 		if (ret)
1260 			goto out;
1261 	}
1262 
1263 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264 				EXTENT_DIRTY);
1265 out:
1266 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267 	if (prev_trans)
1268 		btrfs_put_transaction(prev_trans);
1269 
1270 	return ret == 0;
1271 }
1272 
1273 /*
1274  * Process the unused_bgs list and remove any that don't have any allocated
1275  * space inside of them.
1276  */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278 {
1279 	struct btrfs_block_group *block_group;
1280 	struct btrfs_space_info *space_info;
1281 	struct btrfs_trans_handle *trans;
1282 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283 	int ret = 0;
1284 
1285 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 		return;
1287 
1288 	/*
1289 	 * Long running balances can keep us blocked here for eternity, so
1290 	 * simply skip deletion if we're unable to get the mutex.
1291 	 */
1292 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293 		return;
1294 
1295 	spin_lock(&fs_info->unused_bgs_lock);
1296 	while (!list_empty(&fs_info->unused_bgs)) {
1297 		int trimming;
1298 
1299 		block_group = list_first_entry(&fs_info->unused_bgs,
1300 					       struct btrfs_block_group,
1301 					       bg_list);
1302 		list_del_init(&block_group->bg_list);
1303 
1304 		space_info = block_group->space_info;
1305 
1306 		if (ret || btrfs_mixed_space_info(space_info)) {
1307 			btrfs_put_block_group(block_group);
1308 			continue;
1309 		}
1310 		spin_unlock(&fs_info->unused_bgs_lock);
1311 
1312 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313 
1314 		/* Don't want to race with allocators so take the groups_sem */
1315 		down_write(&space_info->groups_sem);
1316 
1317 		/*
1318 		 * Async discard moves the final block group discard to be prior
1319 		 * to the unused_bgs code path.  Therefore, if it's not fully
1320 		 * trimmed, punt it back to the async discard lists.
1321 		 */
1322 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 		    !btrfs_is_free_space_trimmed(block_group)) {
1324 			trace_btrfs_skip_unused_block_group(block_group);
1325 			up_write(&space_info->groups_sem);
1326 			/* Requeue if we failed because of async discard */
1327 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 						 block_group);
1329 			goto next;
1330 		}
1331 
1332 		spin_lock(&block_group->lock);
1333 		if (block_group->reserved || block_group->pinned ||
1334 		    block_group->used || block_group->ro ||
1335 		    list_is_singular(&block_group->list)) {
1336 			/*
1337 			 * We want to bail if we made new allocations or have
1338 			 * outstanding allocations in this block group.  We do
1339 			 * the ro check in case balance is currently acting on
1340 			 * this block group.
1341 			 */
1342 			trace_btrfs_skip_unused_block_group(block_group);
1343 			spin_unlock(&block_group->lock);
1344 			up_write(&space_info->groups_sem);
1345 			goto next;
1346 		}
1347 		spin_unlock(&block_group->lock);
1348 
1349 		/* We don't want to force the issue, only flip if it's ok. */
1350 		ret = inc_block_group_ro(block_group, 0);
1351 		up_write(&space_info->groups_sem);
1352 		if (ret < 0) {
1353 			ret = 0;
1354 			goto next;
1355 		}
1356 
1357 		/*
1358 		 * Want to do this before we do anything else so we can recover
1359 		 * properly if we fail to join the transaction.
1360 		 */
1361 		trans = btrfs_start_trans_remove_block_group(fs_info,
1362 						     block_group->start);
1363 		if (IS_ERR(trans)) {
1364 			btrfs_dec_block_group_ro(block_group);
1365 			ret = PTR_ERR(trans);
1366 			goto next;
1367 		}
1368 
1369 		/*
1370 		 * We could have pending pinned extents for this block group,
1371 		 * just delete them, we don't care about them anymore.
1372 		 */
1373 		if (!clean_pinned_extents(trans, block_group)) {
1374 			btrfs_dec_block_group_ro(block_group);
1375 			goto end_trans;
1376 		}
1377 
1378 		/*
1379 		 * At this point, the block_group is read only and should fail
1380 		 * new allocations.  However, btrfs_finish_extent_commit() can
1381 		 * cause this block_group to be placed back on the discard
1382 		 * lists because now the block_group isn't fully discarded.
1383 		 * Bail here and try again later after discarding everything.
1384 		 */
1385 		spin_lock(&fs_info->discard_ctl.lock);
1386 		if (!list_empty(&block_group->discard_list)) {
1387 			spin_unlock(&fs_info->discard_ctl.lock);
1388 			btrfs_dec_block_group_ro(block_group);
1389 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 						 block_group);
1391 			goto end_trans;
1392 		}
1393 		spin_unlock(&fs_info->discard_ctl.lock);
1394 
1395 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1396 		spin_lock(&space_info->lock);
1397 		spin_lock(&block_group->lock);
1398 
1399 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 						     -block_group->pinned);
1401 		space_info->bytes_readonly += block_group->pinned;
1402 		__btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned);
1403 		block_group->pinned = 0;
1404 
1405 		spin_unlock(&block_group->lock);
1406 		spin_unlock(&space_info->lock);
1407 
1408 		/*
1409 		 * The normal path here is an unused block group is passed here,
1410 		 * then trimming is handled in the transaction commit path.
1411 		 * Async discard interposes before this to do the trimming
1412 		 * before coming down the unused block group path as trimming
1413 		 * will no longer be done later in the transaction commit path.
1414 		 */
1415 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1416 			goto flip_async;
1417 
1418 		/*
1419 		 * DISCARD can flip during remount. On zoned filesystems, we
1420 		 * need to reset sequential-required zones.
1421 		 */
1422 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1423 				btrfs_is_zoned(fs_info);
1424 
1425 		/* Implicit trim during transaction commit. */
1426 		if (trimming)
1427 			btrfs_freeze_block_group(block_group);
1428 
1429 		/*
1430 		 * Btrfs_remove_chunk will abort the transaction if things go
1431 		 * horribly wrong.
1432 		 */
1433 		ret = btrfs_remove_chunk(trans, block_group->start);
1434 
1435 		if (ret) {
1436 			if (trimming)
1437 				btrfs_unfreeze_block_group(block_group);
1438 			goto end_trans;
1439 		}
1440 
1441 		/*
1442 		 * If we're not mounted with -odiscard, we can just forget
1443 		 * about this block group. Otherwise we'll need to wait
1444 		 * until transaction commit to do the actual discard.
1445 		 */
1446 		if (trimming) {
1447 			spin_lock(&fs_info->unused_bgs_lock);
1448 			/*
1449 			 * A concurrent scrub might have added us to the list
1450 			 * fs_info->unused_bgs, so use a list_move operation
1451 			 * to add the block group to the deleted_bgs list.
1452 			 */
1453 			list_move(&block_group->bg_list,
1454 				  &trans->transaction->deleted_bgs);
1455 			spin_unlock(&fs_info->unused_bgs_lock);
1456 			btrfs_get_block_group(block_group);
1457 		}
1458 end_trans:
1459 		btrfs_end_transaction(trans);
1460 next:
1461 		btrfs_put_block_group(block_group);
1462 		spin_lock(&fs_info->unused_bgs_lock);
1463 	}
1464 	spin_unlock(&fs_info->unused_bgs_lock);
1465 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1466 	return;
1467 
1468 flip_async:
1469 	btrfs_end_transaction(trans);
1470 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1471 	btrfs_put_block_group(block_group);
1472 	btrfs_discard_punt_unused_bgs_list(fs_info);
1473 }
1474 
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1475 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1476 {
1477 	struct btrfs_fs_info *fs_info = bg->fs_info;
1478 
1479 	spin_lock(&fs_info->unused_bgs_lock);
1480 	if (list_empty(&bg->bg_list)) {
1481 		btrfs_get_block_group(bg);
1482 		trace_btrfs_add_unused_block_group(bg);
1483 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1484 	}
1485 	spin_unlock(&fs_info->unused_bgs_lock);
1486 }
1487 
btrfs_reclaim_bgs_work(struct work_struct * work)1488 void btrfs_reclaim_bgs_work(struct work_struct *work)
1489 {
1490 	struct btrfs_fs_info *fs_info =
1491 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1492 	struct btrfs_block_group *bg;
1493 	struct btrfs_space_info *space_info;
1494 	int ret;
1495 
1496 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1497 		return;
1498 
1499 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1500 		return;
1501 
1502 	mutex_lock(&fs_info->reclaim_bgs_lock);
1503 	spin_lock(&fs_info->unused_bgs_lock);
1504 	while (!list_empty(&fs_info->reclaim_bgs)) {
1505 		bg = list_first_entry(&fs_info->reclaim_bgs,
1506 				      struct btrfs_block_group,
1507 				      bg_list);
1508 		list_del_init(&bg->bg_list);
1509 
1510 		space_info = bg->space_info;
1511 		spin_unlock(&fs_info->unused_bgs_lock);
1512 
1513 		/* Don't race with allocators so take the groups_sem */
1514 		down_write(&space_info->groups_sem);
1515 
1516 		spin_lock(&bg->lock);
1517 		if (bg->reserved || bg->pinned || bg->ro) {
1518 			/*
1519 			 * We want to bail if we made new allocations or have
1520 			 * outstanding allocations in this block group.  We do
1521 			 * the ro check in case balance is currently acting on
1522 			 * this block group.
1523 			 */
1524 			spin_unlock(&bg->lock);
1525 			up_write(&space_info->groups_sem);
1526 			goto next;
1527 		}
1528 		spin_unlock(&bg->lock);
1529 
1530 		/* Get out fast, in case we're unmounting the filesystem */
1531 		if (btrfs_fs_closing(fs_info)) {
1532 			up_write(&space_info->groups_sem);
1533 			goto next;
1534 		}
1535 
1536 		ret = inc_block_group_ro(bg, 0);
1537 		up_write(&space_info->groups_sem);
1538 		if (ret < 0)
1539 			goto next;
1540 
1541 		btrfs_info(fs_info, "reclaiming chunk %llu with %llu%% used",
1542 				bg->start, div_u64(bg->used * 100, bg->length));
1543 		trace_btrfs_reclaim_block_group(bg);
1544 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1545 		if (ret)
1546 			btrfs_err(fs_info, "error relocating chunk %llu",
1547 				  bg->start);
1548 
1549 next:
1550 		btrfs_put_block_group(bg);
1551 		spin_lock(&fs_info->unused_bgs_lock);
1552 	}
1553 	spin_unlock(&fs_info->unused_bgs_lock);
1554 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1555 	btrfs_exclop_finish(fs_info);
1556 }
1557 
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1558 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1559 {
1560 	spin_lock(&fs_info->unused_bgs_lock);
1561 	if (!list_empty(&fs_info->reclaim_bgs))
1562 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1563 	spin_unlock(&fs_info->unused_bgs_lock);
1564 }
1565 
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1566 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1567 {
1568 	struct btrfs_fs_info *fs_info = bg->fs_info;
1569 
1570 	spin_lock(&fs_info->unused_bgs_lock);
1571 	if (list_empty(&bg->bg_list)) {
1572 		btrfs_get_block_group(bg);
1573 		trace_btrfs_add_reclaim_block_group(bg);
1574 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1575 	}
1576 	spin_unlock(&fs_info->unused_bgs_lock);
1577 }
1578 
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1579 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1580 			   struct btrfs_path *path)
1581 {
1582 	struct extent_map_tree *em_tree;
1583 	struct extent_map *em;
1584 	struct btrfs_block_group_item bg;
1585 	struct extent_buffer *leaf;
1586 	int slot;
1587 	u64 flags;
1588 	int ret = 0;
1589 
1590 	slot = path->slots[0];
1591 	leaf = path->nodes[0];
1592 
1593 	em_tree = &fs_info->mapping_tree;
1594 	read_lock(&em_tree->lock);
1595 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1596 	read_unlock(&em_tree->lock);
1597 	if (!em) {
1598 		btrfs_err(fs_info,
1599 			  "logical %llu len %llu found bg but no related chunk",
1600 			  key->objectid, key->offset);
1601 		return -ENOENT;
1602 	}
1603 
1604 	if (em->start != key->objectid || em->len != key->offset) {
1605 		btrfs_err(fs_info,
1606 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1607 			key->objectid, key->offset, em->start, em->len);
1608 		ret = -EUCLEAN;
1609 		goto out_free_em;
1610 	}
1611 
1612 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1613 			   sizeof(bg));
1614 	flags = btrfs_stack_block_group_flags(&bg) &
1615 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1616 
1617 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1618 		btrfs_err(fs_info,
1619 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1620 			  key->objectid, key->offset, flags,
1621 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1622 		ret = -EUCLEAN;
1623 	}
1624 
1625 out_free_em:
1626 	free_extent_map(em);
1627 	return ret;
1628 }
1629 
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1630 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1631 				  struct btrfs_path *path,
1632 				  struct btrfs_key *key)
1633 {
1634 	struct btrfs_root *root = fs_info->extent_root;
1635 	int ret;
1636 	struct btrfs_key found_key;
1637 	struct extent_buffer *leaf;
1638 	int slot;
1639 
1640 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1641 	if (ret < 0)
1642 		return ret;
1643 
1644 	while (1) {
1645 		slot = path->slots[0];
1646 		leaf = path->nodes[0];
1647 		if (slot >= btrfs_header_nritems(leaf)) {
1648 			ret = btrfs_next_leaf(root, path);
1649 			if (ret == 0)
1650 				continue;
1651 			if (ret < 0)
1652 				goto out;
1653 			break;
1654 		}
1655 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1656 
1657 		if (found_key.objectid >= key->objectid &&
1658 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1659 			ret = read_bg_from_eb(fs_info, &found_key, path);
1660 			break;
1661 		}
1662 
1663 		path->slots[0]++;
1664 	}
1665 out:
1666 	return ret;
1667 }
1668 
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1669 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1670 {
1671 	u64 extra_flags = chunk_to_extended(flags) &
1672 				BTRFS_EXTENDED_PROFILE_MASK;
1673 
1674 	write_seqlock(&fs_info->profiles_lock);
1675 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1676 		fs_info->avail_data_alloc_bits |= extra_flags;
1677 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1678 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1679 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1680 		fs_info->avail_system_alloc_bits |= extra_flags;
1681 	write_sequnlock(&fs_info->profiles_lock);
1682 }
1683 
1684 /**
1685  * Map a physical disk address to a list of logical addresses
1686  *
1687  * @fs_info:       the filesystem
1688  * @chunk_start:   logical address of block group
1689  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1690  * @physical:	   physical address to map to logical addresses
1691  * @logical:	   return array of logical addresses which map to @physical
1692  * @naddrs:	   length of @logical
1693  * @stripe_len:    size of IO stripe for the given block group
1694  *
1695  * Maps a particular @physical disk address to a list of @logical addresses.
1696  * Used primarily to exclude those portions of a block group that contain super
1697  * block copies.
1698  */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,struct block_device * bdev,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)1699 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1700 		     struct block_device *bdev, u64 physical, u64 **logical,
1701 		     int *naddrs, int *stripe_len)
1702 {
1703 	struct extent_map *em;
1704 	struct map_lookup *map;
1705 	u64 *buf;
1706 	u64 bytenr;
1707 	u64 data_stripe_length;
1708 	u64 io_stripe_size;
1709 	int i, nr = 0;
1710 	int ret = 0;
1711 
1712 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1713 	if (IS_ERR(em))
1714 		return -EIO;
1715 
1716 	map = em->map_lookup;
1717 	data_stripe_length = em->orig_block_len;
1718 	io_stripe_size = map->stripe_len;
1719 	chunk_start = em->start;
1720 
1721 	/* For RAID5/6 adjust to a full IO stripe length */
1722 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1723 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1724 
1725 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1726 	if (!buf) {
1727 		ret = -ENOMEM;
1728 		goto out;
1729 	}
1730 
1731 	for (i = 0; i < map->num_stripes; i++) {
1732 		bool already_inserted = false;
1733 		u64 stripe_nr;
1734 		u64 offset;
1735 		int j;
1736 
1737 		if (!in_range(physical, map->stripes[i].physical,
1738 			      data_stripe_length))
1739 			continue;
1740 
1741 		if (bdev && map->stripes[i].dev->bdev != bdev)
1742 			continue;
1743 
1744 		stripe_nr = physical - map->stripes[i].physical;
1745 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1746 
1747 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1748 			stripe_nr = stripe_nr * map->num_stripes + i;
1749 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1750 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1751 			stripe_nr = stripe_nr * map->num_stripes + i;
1752 		}
1753 		/*
1754 		 * The remaining case would be for RAID56, multiply by
1755 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1756 		 * instead of map->stripe_len
1757 		 */
1758 
1759 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1760 
1761 		/* Ensure we don't add duplicate addresses */
1762 		for (j = 0; j < nr; j++) {
1763 			if (buf[j] == bytenr) {
1764 				already_inserted = true;
1765 				break;
1766 			}
1767 		}
1768 
1769 		if (!already_inserted)
1770 			buf[nr++] = bytenr;
1771 	}
1772 
1773 	*logical = buf;
1774 	*naddrs = nr;
1775 	*stripe_len = io_stripe_size;
1776 out:
1777 	free_extent_map(em);
1778 	return ret;
1779 }
1780 
exclude_super_stripes(struct btrfs_block_group * cache)1781 static int exclude_super_stripes(struct btrfs_block_group *cache)
1782 {
1783 	struct btrfs_fs_info *fs_info = cache->fs_info;
1784 	const bool zoned = btrfs_is_zoned(fs_info);
1785 	u64 bytenr;
1786 	u64 *logical;
1787 	int stripe_len;
1788 	int i, nr, ret;
1789 
1790 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1791 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1792 		cache->bytes_super += stripe_len;
1793 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1794 						stripe_len);
1795 		if (ret)
1796 			return ret;
1797 	}
1798 
1799 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1800 		bytenr = btrfs_sb_offset(i);
1801 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1802 				       bytenr, &logical, &nr, &stripe_len);
1803 		if (ret)
1804 			return ret;
1805 
1806 		/* Shouldn't have super stripes in sequential zones */
1807 		if (zoned && nr) {
1808 			btrfs_err(fs_info,
1809 			"zoned: block group %llu must not contain super block",
1810 				  cache->start);
1811 			return -EUCLEAN;
1812 		}
1813 
1814 		while (nr--) {
1815 			u64 len = min_t(u64, stripe_len,
1816 				cache->start + cache->length - logical[nr]);
1817 
1818 			cache->bytes_super += len;
1819 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1820 							len);
1821 			if (ret) {
1822 				kfree(logical);
1823 				return ret;
1824 			}
1825 		}
1826 
1827 		kfree(logical);
1828 	}
1829 	return 0;
1830 }
1831 
link_block_group(struct btrfs_block_group * cache)1832 static void link_block_group(struct btrfs_block_group *cache)
1833 {
1834 	struct btrfs_space_info *space_info = cache->space_info;
1835 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1836 
1837 	down_write(&space_info->groups_sem);
1838 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1839 	up_write(&space_info->groups_sem);
1840 }
1841 
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)1842 static struct btrfs_block_group *btrfs_create_block_group_cache(
1843 		struct btrfs_fs_info *fs_info, u64 start)
1844 {
1845 	struct btrfs_block_group *cache;
1846 
1847 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1848 	if (!cache)
1849 		return NULL;
1850 
1851 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1852 					GFP_NOFS);
1853 	if (!cache->free_space_ctl) {
1854 		kfree(cache);
1855 		return NULL;
1856 	}
1857 
1858 	cache->start = start;
1859 
1860 	cache->fs_info = fs_info;
1861 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1862 
1863 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1864 
1865 	refcount_set(&cache->refs, 1);
1866 	spin_lock_init(&cache->lock);
1867 	init_rwsem(&cache->data_rwsem);
1868 	INIT_LIST_HEAD(&cache->list);
1869 	INIT_LIST_HEAD(&cache->cluster_list);
1870 	INIT_LIST_HEAD(&cache->bg_list);
1871 	INIT_LIST_HEAD(&cache->ro_list);
1872 	INIT_LIST_HEAD(&cache->discard_list);
1873 	INIT_LIST_HEAD(&cache->dirty_list);
1874 	INIT_LIST_HEAD(&cache->io_list);
1875 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1876 	atomic_set(&cache->frozen, 0);
1877 	mutex_init(&cache->free_space_lock);
1878 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1879 
1880 	return cache;
1881 }
1882 
1883 /*
1884  * Iterate all chunks and verify that each of them has the corresponding block
1885  * group
1886  */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1887 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1888 {
1889 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1890 	struct extent_map *em;
1891 	struct btrfs_block_group *bg;
1892 	u64 start = 0;
1893 	int ret = 0;
1894 
1895 	while (1) {
1896 		read_lock(&map_tree->lock);
1897 		/*
1898 		 * lookup_extent_mapping will return the first extent map
1899 		 * intersecting the range, so setting @len to 1 is enough to
1900 		 * get the first chunk.
1901 		 */
1902 		em = lookup_extent_mapping(map_tree, start, 1);
1903 		read_unlock(&map_tree->lock);
1904 		if (!em)
1905 			break;
1906 
1907 		bg = btrfs_lookup_block_group(fs_info, em->start);
1908 		if (!bg) {
1909 			btrfs_err(fs_info,
1910 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1911 				     em->start, em->len);
1912 			ret = -EUCLEAN;
1913 			free_extent_map(em);
1914 			break;
1915 		}
1916 		if (bg->start != em->start || bg->length != em->len ||
1917 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1918 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1919 			btrfs_err(fs_info,
1920 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1921 				em->start, em->len,
1922 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1923 				bg->start, bg->length,
1924 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1925 			ret = -EUCLEAN;
1926 			free_extent_map(em);
1927 			btrfs_put_block_group(bg);
1928 			break;
1929 		}
1930 		start = em->start + em->len;
1931 		free_extent_map(em);
1932 		btrfs_put_block_group(bg);
1933 	}
1934 	return ret;
1935 }
1936 
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)1937 static int read_one_block_group(struct btrfs_fs_info *info,
1938 				struct btrfs_block_group_item *bgi,
1939 				const struct btrfs_key *key,
1940 				int need_clear)
1941 {
1942 	struct btrfs_block_group *cache;
1943 	struct btrfs_space_info *space_info;
1944 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1945 	int ret;
1946 
1947 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1948 
1949 	cache = btrfs_create_block_group_cache(info, key->objectid);
1950 	if (!cache)
1951 		return -ENOMEM;
1952 
1953 	cache->length = key->offset;
1954 	cache->used = btrfs_stack_block_group_used(bgi);
1955 	cache->flags = btrfs_stack_block_group_flags(bgi);
1956 
1957 	set_free_space_tree_thresholds(cache);
1958 
1959 	if (need_clear) {
1960 		/*
1961 		 * When we mount with old space cache, we need to
1962 		 * set BTRFS_DC_CLEAR and set dirty flag.
1963 		 *
1964 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1965 		 *    truncate the old free space cache inode and
1966 		 *    setup a new one.
1967 		 * b) Setting 'dirty flag' makes sure that we flush
1968 		 *    the new space cache info onto disk.
1969 		 */
1970 		if (btrfs_test_opt(info, SPACE_CACHE))
1971 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1972 	}
1973 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1974 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1975 			btrfs_err(info,
1976 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1977 				  cache->start);
1978 			ret = -EINVAL;
1979 			goto error;
1980 	}
1981 
1982 	ret = btrfs_load_block_group_zone_info(cache, false);
1983 	if (ret) {
1984 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
1985 			  cache->start);
1986 		goto error;
1987 	}
1988 
1989 	/*
1990 	 * We need to exclude the super stripes now so that the space info has
1991 	 * super bytes accounted for, otherwise we'll think we have more space
1992 	 * than we actually do.
1993 	 */
1994 	ret = exclude_super_stripes(cache);
1995 	if (ret) {
1996 		/* We may have excluded something, so call this just in case. */
1997 		btrfs_free_excluded_extents(cache);
1998 		goto error;
1999 	}
2000 
2001 	/*
2002 	 * For zoned filesystem, space after the allocation offset is the only
2003 	 * free space for a block group. So, we don't need any caching work.
2004 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2005 	 * zone_unusable space.
2006 	 *
2007 	 * For regular filesystem, check for two cases, either we are full, and
2008 	 * therefore don't need to bother with the caching work since we won't
2009 	 * find any space, or we are empty, and we can just add all the space
2010 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2011 	 * in the full case.
2012 	 */
2013 	if (btrfs_is_zoned(info)) {
2014 		btrfs_calc_zone_unusable(cache);
2015 	} else if (cache->length == cache->used) {
2016 		cache->last_byte_to_unpin = (u64)-1;
2017 		cache->cached = BTRFS_CACHE_FINISHED;
2018 		btrfs_free_excluded_extents(cache);
2019 	} else if (cache->used == 0) {
2020 		cache->last_byte_to_unpin = (u64)-1;
2021 		cache->cached = BTRFS_CACHE_FINISHED;
2022 		add_new_free_space(cache, cache->start,
2023 				   cache->start + cache->length);
2024 		btrfs_free_excluded_extents(cache);
2025 	}
2026 
2027 	ret = btrfs_add_block_group_cache(info, cache);
2028 	if (ret) {
2029 		btrfs_remove_free_space_cache(cache);
2030 		goto error;
2031 	}
2032 	trace_btrfs_add_block_group(info, cache, 0);
2033 	btrfs_update_space_info(info, cache->flags, cache->length,
2034 				cache->used, cache->bytes_super,
2035 				cache->zone_unusable, &space_info);
2036 
2037 	cache->space_info = space_info;
2038 
2039 	link_block_group(cache);
2040 
2041 	set_avail_alloc_bits(info, cache->flags);
2042 	if (btrfs_chunk_readonly(info, cache->start)) {
2043 		inc_block_group_ro(cache, 1);
2044 	} else if (cache->used == 0) {
2045 		ASSERT(list_empty(&cache->bg_list));
2046 		if (btrfs_test_opt(info, DISCARD_ASYNC))
2047 			btrfs_discard_queue_work(&info->discard_ctl, cache);
2048 		else
2049 			btrfs_mark_bg_unused(cache);
2050 	}
2051 	return 0;
2052 error:
2053 	btrfs_put_block_group(cache);
2054 	return ret;
2055 }
2056 
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2057 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2058 {
2059 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2060 	struct btrfs_space_info *space_info;
2061 	struct rb_node *node;
2062 	int ret = 0;
2063 
2064 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2065 		struct extent_map *em;
2066 		struct map_lookup *map;
2067 		struct btrfs_block_group *bg;
2068 
2069 		em = rb_entry(node, struct extent_map, rb_node);
2070 		map = em->map_lookup;
2071 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2072 		if (!bg) {
2073 			ret = -ENOMEM;
2074 			break;
2075 		}
2076 
2077 		/* Fill dummy cache as FULL */
2078 		bg->length = em->len;
2079 		bg->flags = map->type;
2080 		bg->last_byte_to_unpin = (u64)-1;
2081 		bg->cached = BTRFS_CACHE_FINISHED;
2082 		bg->used = em->len;
2083 		bg->flags = map->type;
2084 		ret = btrfs_add_block_group_cache(fs_info, bg);
2085 		if (ret) {
2086 			btrfs_remove_free_space_cache(bg);
2087 			btrfs_put_block_group(bg);
2088 			break;
2089 		}
2090 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2091 					0, 0, &space_info);
2092 		bg->space_info = space_info;
2093 		link_block_group(bg);
2094 
2095 		set_avail_alloc_bits(fs_info, bg->flags);
2096 	}
2097 	if (!ret)
2098 		btrfs_init_global_block_rsv(fs_info);
2099 	return ret;
2100 }
2101 
btrfs_read_block_groups(struct btrfs_fs_info * info)2102 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2103 {
2104 	struct btrfs_path *path;
2105 	int ret;
2106 	struct btrfs_block_group *cache;
2107 	struct btrfs_space_info *space_info;
2108 	struct btrfs_key key;
2109 	int need_clear = 0;
2110 	u64 cache_gen;
2111 
2112 	if (!info->extent_root)
2113 		return fill_dummy_bgs(info);
2114 
2115 	key.objectid = 0;
2116 	key.offset = 0;
2117 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2118 	path = btrfs_alloc_path();
2119 	if (!path)
2120 		return -ENOMEM;
2121 
2122 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2123 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2124 	    btrfs_super_generation(info->super_copy) != cache_gen)
2125 		need_clear = 1;
2126 	if (btrfs_test_opt(info, CLEAR_CACHE))
2127 		need_clear = 1;
2128 
2129 	while (1) {
2130 		struct btrfs_block_group_item bgi;
2131 		struct extent_buffer *leaf;
2132 		int slot;
2133 
2134 		ret = find_first_block_group(info, path, &key);
2135 		if (ret > 0)
2136 			break;
2137 		if (ret != 0)
2138 			goto error;
2139 
2140 		leaf = path->nodes[0];
2141 		slot = path->slots[0];
2142 
2143 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2144 				   sizeof(bgi));
2145 
2146 		btrfs_item_key_to_cpu(leaf, &key, slot);
2147 		btrfs_release_path(path);
2148 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2149 		if (ret < 0)
2150 			goto error;
2151 		key.objectid += key.offset;
2152 		key.offset = 0;
2153 	}
2154 	btrfs_release_path(path);
2155 
2156 	list_for_each_entry(space_info, &info->space_info, list) {
2157 		int i;
2158 
2159 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2160 			if (list_empty(&space_info->block_groups[i]))
2161 				continue;
2162 			cache = list_first_entry(&space_info->block_groups[i],
2163 						 struct btrfs_block_group,
2164 						 list);
2165 			btrfs_sysfs_add_block_group_type(cache);
2166 		}
2167 
2168 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2169 		      (BTRFS_BLOCK_GROUP_RAID10 |
2170 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2171 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2172 		       BTRFS_BLOCK_GROUP_DUP)))
2173 			continue;
2174 		/*
2175 		 * Avoid allocating from un-mirrored block group if there are
2176 		 * mirrored block groups.
2177 		 */
2178 		list_for_each_entry(cache,
2179 				&space_info->block_groups[BTRFS_RAID_RAID0],
2180 				list)
2181 			inc_block_group_ro(cache, 1);
2182 		list_for_each_entry(cache,
2183 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2184 				list)
2185 			inc_block_group_ro(cache, 1);
2186 	}
2187 
2188 	btrfs_init_global_block_rsv(info);
2189 	ret = check_chunk_block_group_mappings(info);
2190 error:
2191 	btrfs_free_path(path);
2192 	return ret;
2193 }
2194 
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2195 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2196 				   struct btrfs_block_group *block_group)
2197 {
2198 	struct btrfs_fs_info *fs_info = trans->fs_info;
2199 	struct btrfs_block_group_item bgi;
2200 	struct btrfs_root *root;
2201 	struct btrfs_key key;
2202 
2203 	spin_lock(&block_group->lock);
2204 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2205 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2206 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2207 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2208 	key.objectid = block_group->start;
2209 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2210 	key.offset = block_group->length;
2211 	spin_unlock(&block_group->lock);
2212 
2213 	root = fs_info->extent_root;
2214 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2215 }
2216 
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2217 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2218 {
2219 	struct btrfs_fs_info *fs_info = trans->fs_info;
2220 	struct btrfs_block_group *block_group;
2221 	int ret = 0;
2222 
2223 	if (!trans->can_flush_pending_bgs)
2224 		return;
2225 
2226 	while (!list_empty(&trans->new_bgs)) {
2227 		int index;
2228 
2229 		block_group = list_first_entry(&trans->new_bgs,
2230 					       struct btrfs_block_group,
2231 					       bg_list);
2232 		if (ret)
2233 			goto next;
2234 
2235 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2236 
2237 		ret = insert_block_group_item(trans, block_group);
2238 		if (ret)
2239 			btrfs_abort_transaction(trans, ret);
2240 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2241 					block_group->length);
2242 		if (ret)
2243 			btrfs_abort_transaction(trans, ret);
2244 		add_block_group_free_space(trans, block_group);
2245 
2246 		/*
2247 		 * If we restriped during balance, we may have added a new raid
2248 		 * type, so now add the sysfs entries when it is safe to do so.
2249 		 * We don't have to worry about locking here as it's handled in
2250 		 * btrfs_sysfs_add_block_group_type.
2251 		 */
2252 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2253 			btrfs_sysfs_add_block_group_type(block_group);
2254 
2255 		/* Already aborted the transaction if it failed. */
2256 next:
2257 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2258 		list_del_init(&block_group->bg_list);
2259 	}
2260 	btrfs_trans_release_chunk_metadata(trans);
2261 }
2262 
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)2263 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2264 			   u64 type, u64 chunk_offset, u64 size)
2265 {
2266 	struct btrfs_fs_info *fs_info = trans->fs_info;
2267 	struct btrfs_block_group *cache;
2268 	int ret;
2269 
2270 	btrfs_set_log_full_commit(trans);
2271 
2272 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2273 	if (!cache)
2274 		return -ENOMEM;
2275 
2276 	cache->length = size;
2277 	set_free_space_tree_thresholds(cache);
2278 	cache->used = bytes_used;
2279 	cache->flags = type;
2280 	cache->last_byte_to_unpin = (u64)-1;
2281 	cache->cached = BTRFS_CACHE_FINISHED;
2282 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2283 		cache->needs_free_space = 1;
2284 
2285 	ret = btrfs_load_block_group_zone_info(cache, true);
2286 	if (ret) {
2287 		btrfs_put_block_group(cache);
2288 		return ret;
2289 	}
2290 
2291 	ret = exclude_super_stripes(cache);
2292 	if (ret) {
2293 		/* We may have excluded something, so call this just in case */
2294 		btrfs_free_excluded_extents(cache);
2295 		btrfs_put_block_group(cache);
2296 		return ret;
2297 	}
2298 
2299 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2300 
2301 	btrfs_free_excluded_extents(cache);
2302 
2303 #ifdef CONFIG_BTRFS_DEBUG
2304 	if (btrfs_should_fragment_free_space(cache)) {
2305 		u64 new_bytes_used = size - bytes_used;
2306 
2307 		bytes_used += new_bytes_used >> 1;
2308 		fragment_free_space(cache);
2309 	}
2310 #endif
2311 	/*
2312 	 * Ensure the corresponding space_info object is created and
2313 	 * assigned to our block group. We want our bg to be added to the rbtree
2314 	 * with its ->space_info set.
2315 	 */
2316 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2317 	ASSERT(cache->space_info);
2318 
2319 	ret = btrfs_add_block_group_cache(fs_info, cache);
2320 	if (ret) {
2321 		btrfs_remove_free_space_cache(cache);
2322 		btrfs_put_block_group(cache);
2323 		return ret;
2324 	}
2325 
2326 	/*
2327 	 * Now that our block group has its ->space_info set and is inserted in
2328 	 * the rbtree, update the space info's counters.
2329 	 */
2330 	trace_btrfs_add_block_group(fs_info, cache, 1);
2331 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2332 				cache->bytes_super, 0, &cache->space_info);
2333 	btrfs_update_global_block_rsv(fs_info);
2334 
2335 	link_block_group(cache);
2336 
2337 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2338 	trans->delayed_ref_updates++;
2339 	btrfs_update_delayed_refs_rsv(trans);
2340 
2341 	set_avail_alloc_bits(fs_info, type);
2342 	return 0;
2343 }
2344 
2345 /*
2346  * Mark one block group RO, can be called several times for the same block
2347  * group.
2348  *
2349  * @cache:		the destination block group
2350  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2351  * 			ensure we still have some free space after marking this
2352  * 			block group RO.
2353  */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2354 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2355 			     bool do_chunk_alloc)
2356 {
2357 	struct btrfs_fs_info *fs_info = cache->fs_info;
2358 	struct btrfs_trans_handle *trans;
2359 	u64 alloc_flags;
2360 	int ret;
2361 	bool dirty_bg_running;
2362 
2363 	do {
2364 		trans = btrfs_join_transaction(fs_info->extent_root);
2365 		if (IS_ERR(trans))
2366 			return PTR_ERR(trans);
2367 
2368 		dirty_bg_running = false;
2369 
2370 		/*
2371 		 * We're not allowed to set block groups readonly after the dirty
2372 		 * block group cache has started writing.  If it already started,
2373 		 * back off and let this transaction commit.
2374 		 */
2375 		mutex_lock(&fs_info->ro_block_group_mutex);
2376 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2377 			u64 transid = trans->transid;
2378 
2379 			mutex_unlock(&fs_info->ro_block_group_mutex);
2380 			btrfs_end_transaction(trans);
2381 
2382 			ret = btrfs_wait_for_commit(fs_info, transid);
2383 			if (ret)
2384 				return ret;
2385 			dirty_bg_running = true;
2386 		}
2387 	} while (dirty_bg_running);
2388 
2389 	if (do_chunk_alloc) {
2390 		/*
2391 		 * If we are changing raid levels, try to allocate a
2392 		 * corresponding block group with the new raid level.
2393 		 */
2394 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2395 		if (alloc_flags != cache->flags) {
2396 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2397 						CHUNK_ALLOC_FORCE);
2398 			/*
2399 			 * ENOSPC is allowed here, we may have enough space
2400 			 * already allocated at the new raid level to carry on
2401 			 */
2402 			if (ret == -ENOSPC)
2403 				ret = 0;
2404 			if (ret < 0)
2405 				goto out;
2406 		}
2407 	}
2408 
2409 	ret = inc_block_group_ro(cache, 0);
2410 	if (!do_chunk_alloc || ret == -ETXTBSY)
2411 		goto unlock_out;
2412 	if (!ret)
2413 		goto out;
2414 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2415 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2416 	if (ret < 0)
2417 		goto out;
2418 	ret = inc_block_group_ro(cache, 0);
2419 	if (ret == -ETXTBSY)
2420 		goto unlock_out;
2421 out:
2422 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2423 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2424 		mutex_lock(&fs_info->chunk_mutex);
2425 		check_system_chunk(trans, alloc_flags);
2426 		mutex_unlock(&fs_info->chunk_mutex);
2427 	}
2428 unlock_out:
2429 	mutex_unlock(&fs_info->ro_block_group_mutex);
2430 
2431 	btrfs_end_transaction(trans);
2432 	return ret;
2433 }
2434 
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2435 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2436 {
2437 	struct btrfs_space_info *sinfo = cache->space_info;
2438 	u64 num_bytes;
2439 
2440 	BUG_ON(!cache->ro);
2441 
2442 	spin_lock(&sinfo->lock);
2443 	spin_lock(&cache->lock);
2444 	if (!--cache->ro) {
2445 		num_bytes = cache->length - cache->reserved -
2446 			    cache->pinned - cache->bytes_super -
2447 			    cache->zone_unusable - cache->used;
2448 		sinfo->bytes_readonly -= num_bytes;
2449 		if (btrfs_is_zoned(cache->fs_info)) {
2450 			/* Migrate zone_unusable bytes back */
2451 			cache->zone_unusable = cache->alloc_offset - cache->used;
2452 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2453 			sinfo->bytes_readonly -= cache->zone_unusable;
2454 		}
2455 		list_del_init(&cache->ro_list);
2456 	}
2457 	spin_unlock(&cache->lock);
2458 	spin_unlock(&sinfo->lock);
2459 }
2460 
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)2461 static int update_block_group_item(struct btrfs_trans_handle *trans,
2462 				   struct btrfs_path *path,
2463 				   struct btrfs_block_group *cache)
2464 {
2465 	struct btrfs_fs_info *fs_info = trans->fs_info;
2466 	int ret;
2467 	struct btrfs_root *root = fs_info->extent_root;
2468 	unsigned long bi;
2469 	struct extent_buffer *leaf;
2470 	struct btrfs_block_group_item bgi;
2471 	struct btrfs_key key;
2472 
2473 	key.objectid = cache->start;
2474 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2475 	key.offset = cache->length;
2476 
2477 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2478 	if (ret) {
2479 		if (ret > 0)
2480 			ret = -ENOENT;
2481 		goto fail;
2482 	}
2483 
2484 	leaf = path->nodes[0];
2485 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2486 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2487 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2488 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2489 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2490 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2491 	btrfs_mark_buffer_dirty(leaf);
2492 fail:
2493 	btrfs_release_path(path);
2494 	return ret;
2495 
2496 }
2497 
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2498 static int cache_save_setup(struct btrfs_block_group *block_group,
2499 			    struct btrfs_trans_handle *trans,
2500 			    struct btrfs_path *path)
2501 {
2502 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2503 	struct btrfs_root *root = fs_info->tree_root;
2504 	struct inode *inode = NULL;
2505 	struct extent_changeset *data_reserved = NULL;
2506 	u64 alloc_hint = 0;
2507 	int dcs = BTRFS_DC_ERROR;
2508 	u64 num_pages = 0;
2509 	int retries = 0;
2510 	int ret = 0;
2511 
2512 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2513 		return 0;
2514 
2515 	/*
2516 	 * If this block group is smaller than 100 megs don't bother caching the
2517 	 * block group.
2518 	 */
2519 	if (block_group->length < (100 * SZ_1M)) {
2520 		spin_lock(&block_group->lock);
2521 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2522 		spin_unlock(&block_group->lock);
2523 		return 0;
2524 	}
2525 
2526 	if (TRANS_ABORTED(trans))
2527 		return 0;
2528 again:
2529 	inode = lookup_free_space_inode(block_group, path);
2530 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2531 		ret = PTR_ERR(inode);
2532 		btrfs_release_path(path);
2533 		goto out;
2534 	}
2535 
2536 	if (IS_ERR(inode)) {
2537 		BUG_ON(retries);
2538 		retries++;
2539 
2540 		if (block_group->ro)
2541 			goto out_free;
2542 
2543 		ret = create_free_space_inode(trans, block_group, path);
2544 		if (ret)
2545 			goto out_free;
2546 		goto again;
2547 	}
2548 
2549 	/*
2550 	 * We want to set the generation to 0, that way if anything goes wrong
2551 	 * from here on out we know not to trust this cache when we load up next
2552 	 * time.
2553 	 */
2554 	BTRFS_I(inode)->generation = 0;
2555 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2556 	if (ret) {
2557 		/*
2558 		 * So theoretically we could recover from this, simply set the
2559 		 * super cache generation to 0 so we know to invalidate the
2560 		 * cache, but then we'd have to keep track of the block groups
2561 		 * that fail this way so we know we _have_ to reset this cache
2562 		 * before the next commit or risk reading stale cache.  So to
2563 		 * limit our exposure to horrible edge cases lets just abort the
2564 		 * transaction, this only happens in really bad situations
2565 		 * anyway.
2566 		 */
2567 		btrfs_abort_transaction(trans, ret);
2568 		goto out_put;
2569 	}
2570 	WARN_ON(ret);
2571 
2572 	/* We've already setup this transaction, go ahead and exit */
2573 	if (block_group->cache_generation == trans->transid &&
2574 	    i_size_read(inode)) {
2575 		dcs = BTRFS_DC_SETUP;
2576 		goto out_put;
2577 	}
2578 
2579 	if (i_size_read(inode) > 0) {
2580 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2581 					&fs_info->global_block_rsv);
2582 		if (ret)
2583 			goto out_put;
2584 
2585 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2586 		if (ret)
2587 			goto out_put;
2588 	}
2589 
2590 	spin_lock(&block_group->lock);
2591 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2592 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2593 		/*
2594 		 * don't bother trying to write stuff out _if_
2595 		 * a) we're not cached,
2596 		 * b) we're with nospace_cache mount option,
2597 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2598 		 */
2599 		dcs = BTRFS_DC_WRITTEN;
2600 		spin_unlock(&block_group->lock);
2601 		goto out_put;
2602 	}
2603 	spin_unlock(&block_group->lock);
2604 
2605 	/*
2606 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2607 	 * skip doing the setup, we've already cleared the cache so we're safe.
2608 	 */
2609 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2610 		ret = -ENOSPC;
2611 		goto out_put;
2612 	}
2613 
2614 	/*
2615 	 * Try to preallocate enough space based on how big the block group is.
2616 	 * Keep in mind this has to include any pinned space which could end up
2617 	 * taking up quite a bit since it's not folded into the other space
2618 	 * cache.
2619 	 */
2620 	num_pages = div_u64(block_group->length, SZ_256M);
2621 	if (!num_pages)
2622 		num_pages = 1;
2623 
2624 	num_pages *= 16;
2625 	num_pages *= PAGE_SIZE;
2626 
2627 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2628 					  num_pages);
2629 	if (ret)
2630 		goto out_put;
2631 
2632 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2633 					      num_pages, num_pages,
2634 					      &alloc_hint);
2635 	/*
2636 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2637 	 * of metadata or split extents when writing the cache out, which means
2638 	 * we can enospc if we are heavily fragmented in addition to just normal
2639 	 * out of space conditions.  So if we hit this just skip setting up any
2640 	 * other block groups for this transaction, maybe we'll unpin enough
2641 	 * space the next time around.
2642 	 */
2643 	if (!ret)
2644 		dcs = BTRFS_DC_SETUP;
2645 	else if (ret == -ENOSPC)
2646 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2647 
2648 out_put:
2649 	iput(inode);
2650 out_free:
2651 	btrfs_release_path(path);
2652 out:
2653 	spin_lock(&block_group->lock);
2654 	if (!ret && dcs == BTRFS_DC_SETUP)
2655 		block_group->cache_generation = trans->transid;
2656 	block_group->disk_cache_state = dcs;
2657 	spin_unlock(&block_group->lock);
2658 
2659 	extent_changeset_free(data_reserved);
2660 	return ret;
2661 }
2662 
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2663 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2664 {
2665 	struct btrfs_fs_info *fs_info = trans->fs_info;
2666 	struct btrfs_block_group *cache, *tmp;
2667 	struct btrfs_transaction *cur_trans = trans->transaction;
2668 	struct btrfs_path *path;
2669 
2670 	if (list_empty(&cur_trans->dirty_bgs) ||
2671 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2672 		return 0;
2673 
2674 	path = btrfs_alloc_path();
2675 	if (!path)
2676 		return -ENOMEM;
2677 
2678 	/* Could add new block groups, use _safe just in case */
2679 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2680 				 dirty_list) {
2681 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2682 			cache_save_setup(cache, trans, path);
2683 	}
2684 
2685 	btrfs_free_path(path);
2686 	return 0;
2687 }
2688 
2689 /*
2690  * Transaction commit does final block group cache writeback during a critical
2691  * section where nothing is allowed to change the FS.  This is required in
2692  * order for the cache to actually match the block group, but can introduce a
2693  * lot of latency into the commit.
2694  *
2695  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2696  * There's a chance we'll have to redo some of it if the block group changes
2697  * again during the commit, but it greatly reduces the commit latency by
2698  * getting rid of the easy block groups while we're still allowing others to
2699  * join the commit.
2700  */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2701 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2702 {
2703 	struct btrfs_fs_info *fs_info = trans->fs_info;
2704 	struct btrfs_block_group *cache;
2705 	struct btrfs_transaction *cur_trans = trans->transaction;
2706 	int ret = 0;
2707 	int should_put;
2708 	struct btrfs_path *path = NULL;
2709 	LIST_HEAD(dirty);
2710 	struct list_head *io = &cur_trans->io_bgs;
2711 	int num_started = 0;
2712 	int loops = 0;
2713 
2714 	spin_lock(&cur_trans->dirty_bgs_lock);
2715 	if (list_empty(&cur_trans->dirty_bgs)) {
2716 		spin_unlock(&cur_trans->dirty_bgs_lock);
2717 		return 0;
2718 	}
2719 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2720 	spin_unlock(&cur_trans->dirty_bgs_lock);
2721 
2722 again:
2723 	/* Make sure all the block groups on our dirty list actually exist */
2724 	btrfs_create_pending_block_groups(trans);
2725 
2726 	if (!path) {
2727 		path = btrfs_alloc_path();
2728 		if (!path) {
2729 			ret = -ENOMEM;
2730 			goto out;
2731 		}
2732 	}
2733 
2734 	/*
2735 	 * cache_write_mutex is here only to save us from balance or automatic
2736 	 * removal of empty block groups deleting this block group while we are
2737 	 * writing out the cache
2738 	 */
2739 	mutex_lock(&trans->transaction->cache_write_mutex);
2740 	while (!list_empty(&dirty)) {
2741 		bool drop_reserve = true;
2742 
2743 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2744 					 dirty_list);
2745 		/*
2746 		 * This can happen if something re-dirties a block group that
2747 		 * is already under IO.  Just wait for it to finish and then do
2748 		 * it all again
2749 		 */
2750 		if (!list_empty(&cache->io_list)) {
2751 			list_del_init(&cache->io_list);
2752 			btrfs_wait_cache_io(trans, cache, path);
2753 			btrfs_put_block_group(cache);
2754 		}
2755 
2756 
2757 		/*
2758 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2759 		 * it should update the cache_state.  Don't delete until after
2760 		 * we wait.
2761 		 *
2762 		 * Since we're not running in the commit critical section
2763 		 * we need the dirty_bgs_lock to protect from update_block_group
2764 		 */
2765 		spin_lock(&cur_trans->dirty_bgs_lock);
2766 		list_del_init(&cache->dirty_list);
2767 		spin_unlock(&cur_trans->dirty_bgs_lock);
2768 
2769 		should_put = 1;
2770 
2771 		cache_save_setup(cache, trans, path);
2772 
2773 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2774 			cache->io_ctl.inode = NULL;
2775 			ret = btrfs_write_out_cache(trans, cache, path);
2776 			if (ret == 0 && cache->io_ctl.inode) {
2777 				num_started++;
2778 				should_put = 0;
2779 
2780 				/*
2781 				 * The cache_write_mutex is protecting the
2782 				 * io_list, also refer to the definition of
2783 				 * btrfs_transaction::io_bgs for more details
2784 				 */
2785 				list_add_tail(&cache->io_list, io);
2786 			} else {
2787 				/*
2788 				 * If we failed to write the cache, the
2789 				 * generation will be bad and life goes on
2790 				 */
2791 				ret = 0;
2792 			}
2793 		}
2794 		if (!ret) {
2795 			ret = update_block_group_item(trans, path, cache);
2796 			/*
2797 			 * Our block group might still be attached to the list
2798 			 * of new block groups in the transaction handle of some
2799 			 * other task (struct btrfs_trans_handle->new_bgs). This
2800 			 * means its block group item isn't yet in the extent
2801 			 * tree. If this happens ignore the error, as we will
2802 			 * try again later in the critical section of the
2803 			 * transaction commit.
2804 			 */
2805 			if (ret == -ENOENT) {
2806 				ret = 0;
2807 				spin_lock(&cur_trans->dirty_bgs_lock);
2808 				if (list_empty(&cache->dirty_list)) {
2809 					list_add_tail(&cache->dirty_list,
2810 						      &cur_trans->dirty_bgs);
2811 					btrfs_get_block_group(cache);
2812 					drop_reserve = false;
2813 				}
2814 				spin_unlock(&cur_trans->dirty_bgs_lock);
2815 			} else if (ret) {
2816 				btrfs_abort_transaction(trans, ret);
2817 			}
2818 		}
2819 
2820 		/* If it's not on the io list, we need to put the block group */
2821 		if (should_put)
2822 			btrfs_put_block_group(cache);
2823 		if (drop_reserve)
2824 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2825 		/*
2826 		 * Avoid blocking other tasks for too long. It might even save
2827 		 * us from writing caches for block groups that are going to be
2828 		 * removed.
2829 		 */
2830 		mutex_unlock(&trans->transaction->cache_write_mutex);
2831 		if (ret)
2832 			goto out;
2833 		mutex_lock(&trans->transaction->cache_write_mutex);
2834 	}
2835 	mutex_unlock(&trans->transaction->cache_write_mutex);
2836 
2837 	/*
2838 	 * Go through delayed refs for all the stuff we've just kicked off
2839 	 * and then loop back (just once)
2840 	 */
2841 	if (!ret)
2842 		ret = btrfs_run_delayed_refs(trans, 0);
2843 	if (!ret && loops == 0) {
2844 		loops++;
2845 		spin_lock(&cur_trans->dirty_bgs_lock);
2846 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2847 		/*
2848 		 * dirty_bgs_lock protects us from concurrent block group
2849 		 * deletes too (not just cache_write_mutex).
2850 		 */
2851 		if (!list_empty(&dirty)) {
2852 			spin_unlock(&cur_trans->dirty_bgs_lock);
2853 			goto again;
2854 		}
2855 		spin_unlock(&cur_trans->dirty_bgs_lock);
2856 	}
2857 out:
2858 	if (ret < 0) {
2859 		spin_lock(&cur_trans->dirty_bgs_lock);
2860 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2861 		spin_unlock(&cur_trans->dirty_bgs_lock);
2862 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2863 	}
2864 
2865 	btrfs_free_path(path);
2866 	return ret;
2867 }
2868 
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)2869 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2870 {
2871 	struct btrfs_fs_info *fs_info = trans->fs_info;
2872 	struct btrfs_block_group *cache;
2873 	struct btrfs_transaction *cur_trans = trans->transaction;
2874 	int ret = 0;
2875 	int should_put;
2876 	struct btrfs_path *path;
2877 	struct list_head *io = &cur_trans->io_bgs;
2878 	int num_started = 0;
2879 
2880 	path = btrfs_alloc_path();
2881 	if (!path)
2882 		return -ENOMEM;
2883 
2884 	/*
2885 	 * Even though we are in the critical section of the transaction commit,
2886 	 * we can still have concurrent tasks adding elements to this
2887 	 * transaction's list of dirty block groups. These tasks correspond to
2888 	 * endio free space workers started when writeback finishes for a
2889 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2890 	 * allocate new block groups as a result of COWing nodes of the root
2891 	 * tree when updating the free space inode. The writeback for the space
2892 	 * caches is triggered by an earlier call to
2893 	 * btrfs_start_dirty_block_groups() and iterations of the following
2894 	 * loop.
2895 	 * Also we want to do the cache_save_setup first and then run the
2896 	 * delayed refs to make sure we have the best chance at doing this all
2897 	 * in one shot.
2898 	 */
2899 	spin_lock(&cur_trans->dirty_bgs_lock);
2900 	while (!list_empty(&cur_trans->dirty_bgs)) {
2901 		cache = list_first_entry(&cur_trans->dirty_bgs,
2902 					 struct btrfs_block_group,
2903 					 dirty_list);
2904 
2905 		/*
2906 		 * This can happen if cache_save_setup re-dirties a block group
2907 		 * that is already under IO.  Just wait for it to finish and
2908 		 * then do it all again
2909 		 */
2910 		if (!list_empty(&cache->io_list)) {
2911 			spin_unlock(&cur_trans->dirty_bgs_lock);
2912 			list_del_init(&cache->io_list);
2913 			btrfs_wait_cache_io(trans, cache, path);
2914 			btrfs_put_block_group(cache);
2915 			spin_lock(&cur_trans->dirty_bgs_lock);
2916 		}
2917 
2918 		/*
2919 		 * Don't remove from the dirty list until after we've waited on
2920 		 * any pending IO
2921 		 */
2922 		list_del_init(&cache->dirty_list);
2923 		spin_unlock(&cur_trans->dirty_bgs_lock);
2924 		should_put = 1;
2925 
2926 		cache_save_setup(cache, trans, path);
2927 
2928 		if (!ret)
2929 			ret = btrfs_run_delayed_refs(trans,
2930 						     (unsigned long) -1);
2931 
2932 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2933 			cache->io_ctl.inode = NULL;
2934 			ret = btrfs_write_out_cache(trans, cache, path);
2935 			if (ret == 0 && cache->io_ctl.inode) {
2936 				num_started++;
2937 				should_put = 0;
2938 				list_add_tail(&cache->io_list, io);
2939 			} else {
2940 				/*
2941 				 * If we failed to write the cache, the
2942 				 * generation will be bad and life goes on
2943 				 */
2944 				ret = 0;
2945 			}
2946 		}
2947 		if (!ret) {
2948 			ret = update_block_group_item(trans, path, cache);
2949 			/*
2950 			 * One of the free space endio workers might have
2951 			 * created a new block group while updating a free space
2952 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2953 			 * and hasn't released its transaction handle yet, in
2954 			 * which case the new block group is still attached to
2955 			 * its transaction handle and its creation has not
2956 			 * finished yet (no block group item in the extent tree
2957 			 * yet, etc). If this is the case, wait for all free
2958 			 * space endio workers to finish and retry. This is a
2959 			 * very rare case so no need for a more efficient and
2960 			 * complex approach.
2961 			 */
2962 			if (ret == -ENOENT) {
2963 				wait_event(cur_trans->writer_wait,
2964 				   atomic_read(&cur_trans->num_writers) == 1);
2965 				ret = update_block_group_item(trans, path, cache);
2966 			}
2967 			if (ret)
2968 				btrfs_abort_transaction(trans, ret);
2969 		}
2970 
2971 		/* If its not on the io list, we need to put the block group */
2972 		if (should_put)
2973 			btrfs_put_block_group(cache);
2974 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2975 		spin_lock(&cur_trans->dirty_bgs_lock);
2976 	}
2977 	spin_unlock(&cur_trans->dirty_bgs_lock);
2978 
2979 	/*
2980 	 * Refer to the definition of io_bgs member for details why it's safe
2981 	 * to use it without any locking
2982 	 */
2983 	while (!list_empty(io)) {
2984 		cache = list_first_entry(io, struct btrfs_block_group,
2985 					 io_list);
2986 		list_del_init(&cache->io_list);
2987 		btrfs_wait_cache_io(trans, cache, path);
2988 		btrfs_put_block_group(cache);
2989 	}
2990 
2991 	btrfs_free_path(path);
2992 	return ret;
2993 }
2994 
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int alloc)2995 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2996 			     u64 bytenr, u64 num_bytes, int alloc)
2997 {
2998 	struct btrfs_fs_info *info = trans->fs_info;
2999 	struct btrfs_block_group *cache = NULL;
3000 	u64 total = num_bytes;
3001 	u64 old_val;
3002 	u64 byte_in_group;
3003 	int factor;
3004 	int ret = 0;
3005 
3006 	/* Block accounting for super block */
3007 	spin_lock(&info->delalloc_root_lock);
3008 	old_val = btrfs_super_bytes_used(info->super_copy);
3009 	if (alloc)
3010 		old_val += num_bytes;
3011 	else
3012 		old_val -= num_bytes;
3013 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3014 	spin_unlock(&info->delalloc_root_lock);
3015 
3016 	while (total) {
3017 		cache = btrfs_lookup_block_group(info, bytenr);
3018 		if (!cache) {
3019 			ret = -ENOENT;
3020 			break;
3021 		}
3022 		factor = btrfs_bg_type_to_factor(cache->flags);
3023 
3024 		/*
3025 		 * If this block group has free space cache written out, we
3026 		 * need to make sure to load it if we are removing space.  This
3027 		 * is because we need the unpinning stage to actually add the
3028 		 * space back to the block group, otherwise we will leak space.
3029 		 */
3030 		if (!alloc && !btrfs_block_group_done(cache))
3031 			btrfs_cache_block_group(cache, 1);
3032 
3033 		byte_in_group = bytenr - cache->start;
3034 		WARN_ON(byte_in_group > cache->length);
3035 
3036 		spin_lock(&cache->space_info->lock);
3037 		spin_lock(&cache->lock);
3038 
3039 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3040 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3041 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3042 
3043 		old_val = cache->used;
3044 		num_bytes = min(total, cache->length - byte_in_group);
3045 		if (alloc) {
3046 			old_val += num_bytes;
3047 			cache->used = old_val;
3048 			cache->reserved -= num_bytes;
3049 			cache->space_info->bytes_reserved -= num_bytes;
3050 			cache->space_info->bytes_used += num_bytes;
3051 			cache->space_info->disk_used += num_bytes * factor;
3052 			spin_unlock(&cache->lock);
3053 			spin_unlock(&cache->space_info->lock);
3054 		} else {
3055 			old_val -= num_bytes;
3056 			cache->used = old_val;
3057 			cache->pinned += num_bytes;
3058 			btrfs_space_info_update_bytes_pinned(info,
3059 					cache->space_info, num_bytes);
3060 			cache->space_info->bytes_used -= num_bytes;
3061 			cache->space_info->disk_used -= num_bytes * factor;
3062 			spin_unlock(&cache->lock);
3063 			spin_unlock(&cache->space_info->lock);
3064 
3065 			__btrfs_mod_total_bytes_pinned(cache->space_info,
3066 						       num_bytes);
3067 			set_extent_dirty(&trans->transaction->pinned_extents,
3068 					 bytenr, bytenr + num_bytes - 1,
3069 					 GFP_NOFS | __GFP_NOFAIL);
3070 		}
3071 
3072 		spin_lock(&trans->transaction->dirty_bgs_lock);
3073 		if (list_empty(&cache->dirty_list)) {
3074 			list_add_tail(&cache->dirty_list,
3075 				      &trans->transaction->dirty_bgs);
3076 			trans->delayed_ref_updates++;
3077 			btrfs_get_block_group(cache);
3078 		}
3079 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3080 
3081 		/*
3082 		 * No longer have used bytes in this block group, queue it for
3083 		 * deletion. We do this after adding the block group to the
3084 		 * dirty list to avoid races between cleaner kthread and space
3085 		 * cache writeout.
3086 		 */
3087 		if (!alloc && old_val == 0) {
3088 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3089 				btrfs_mark_bg_unused(cache);
3090 		}
3091 
3092 		btrfs_put_block_group(cache);
3093 		total -= num_bytes;
3094 		bytenr += num_bytes;
3095 	}
3096 
3097 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3098 	btrfs_update_delayed_refs_rsv(trans);
3099 	return ret;
3100 }
3101 
3102 /**
3103  * btrfs_add_reserved_bytes - update the block_group and space info counters
3104  * @cache:	The cache we are manipulating
3105  * @ram_bytes:  The number of bytes of file content, and will be same to
3106  *              @num_bytes except for the compress path.
3107  * @num_bytes:	The number of bytes in question
3108  * @delalloc:   The blocks are allocated for the delalloc write
3109  *
3110  * This is called by the allocator when it reserves space. If this is a
3111  * reservation and the block group has become read only we cannot make the
3112  * reservation and return -EAGAIN, otherwise this function always succeeds.
3113  */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc)3114 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3115 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3116 {
3117 	struct btrfs_space_info *space_info = cache->space_info;
3118 	int ret = 0;
3119 
3120 	spin_lock(&space_info->lock);
3121 	spin_lock(&cache->lock);
3122 	if (cache->ro) {
3123 		ret = -EAGAIN;
3124 	} else {
3125 		cache->reserved += num_bytes;
3126 		space_info->bytes_reserved += num_bytes;
3127 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3128 					      space_info->flags, num_bytes, 1);
3129 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3130 						      space_info, -ram_bytes);
3131 		if (delalloc)
3132 			cache->delalloc_bytes += num_bytes;
3133 
3134 		/*
3135 		 * Compression can use less space than we reserved, so wake
3136 		 * tickets if that happens
3137 		 */
3138 		if (num_bytes < ram_bytes)
3139 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3140 	}
3141 	spin_unlock(&cache->lock);
3142 	spin_unlock(&space_info->lock);
3143 	return ret;
3144 }
3145 
3146 /**
3147  * btrfs_free_reserved_bytes - update the block_group and space info counters
3148  * @cache:      The cache we are manipulating
3149  * @num_bytes:  The number of bytes in question
3150  * @delalloc:   The blocks are allocated for the delalloc write
3151  *
3152  * This is called by somebody who is freeing space that was never actually used
3153  * on disk.  For example if you reserve some space for a new leaf in transaction
3154  * A and before transaction A commits you free that leaf, you call this with
3155  * reserve set to 0 in order to clear the reservation.
3156  */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3157 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3158 			       u64 num_bytes, int delalloc)
3159 {
3160 	struct btrfs_space_info *space_info = cache->space_info;
3161 
3162 	spin_lock(&space_info->lock);
3163 	spin_lock(&cache->lock);
3164 	if (cache->ro)
3165 		space_info->bytes_readonly += num_bytes;
3166 	cache->reserved -= num_bytes;
3167 	space_info->bytes_reserved -= num_bytes;
3168 	space_info->max_extent_size = 0;
3169 
3170 	if (delalloc)
3171 		cache->delalloc_bytes -= num_bytes;
3172 	spin_unlock(&cache->lock);
3173 
3174 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3175 	spin_unlock(&space_info->lock);
3176 }
3177 
force_metadata_allocation(struct btrfs_fs_info * info)3178 static void force_metadata_allocation(struct btrfs_fs_info *info)
3179 {
3180 	struct list_head *head = &info->space_info;
3181 	struct btrfs_space_info *found;
3182 
3183 	list_for_each_entry(found, head, list) {
3184 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3185 			found->force_alloc = CHUNK_ALLOC_FORCE;
3186 	}
3187 }
3188 
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3189 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3190 			      struct btrfs_space_info *sinfo, int force)
3191 {
3192 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3193 	u64 thresh;
3194 
3195 	if (force == CHUNK_ALLOC_FORCE)
3196 		return 1;
3197 
3198 	/*
3199 	 * in limited mode, we want to have some free space up to
3200 	 * about 1% of the FS size.
3201 	 */
3202 	if (force == CHUNK_ALLOC_LIMITED) {
3203 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3204 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3205 
3206 		if (sinfo->total_bytes - bytes_used < thresh)
3207 			return 1;
3208 	}
3209 
3210 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3211 		return 0;
3212 	return 1;
3213 }
3214 
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3215 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3216 {
3217 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3218 
3219 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3220 }
3221 
3222 /*
3223  * If force is CHUNK_ALLOC_FORCE:
3224  *    - return 1 if it successfully allocates a chunk,
3225  *    - return errors including -ENOSPC otherwise.
3226  * If force is NOT CHUNK_ALLOC_FORCE:
3227  *    - return 0 if it doesn't need to allocate a new chunk,
3228  *    - return 1 if it successfully allocates a chunk,
3229  *    - return errors including -ENOSPC otherwise.
3230  */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)3231 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3232 		      enum btrfs_chunk_alloc_enum force)
3233 {
3234 	struct btrfs_fs_info *fs_info = trans->fs_info;
3235 	struct btrfs_space_info *space_info;
3236 	bool wait_for_alloc = false;
3237 	bool should_alloc = false;
3238 	int ret = 0;
3239 
3240 	/* Don't re-enter if we're already allocating a chunk */
3241 	if (trans->allocating_chunk)
3242 		return -ENOSPC;
3243 
3244 	space_info = btrfs_find_space_info(fs_info, flags);
3245 	ASSERT(space_info);
3246 
3247 	do {
3248 		spin_lock(&space_info->lock);
3249 		if (force < space_info->force_alloc)
3250 			force = space_info->force_alloc;
3251 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3252 		if (space_info->full) {
3253 			/* No more free physical space */
3254 			if (should_alloc)
3255 				ret = -ENOSPC;
3256 			else
3257 				ret = 0;
3258 			spin_unlock(&space_info->lock);
3259 			return ret;
3260 		} else if (!should_alloc) {
3261 			spin_unlock(&space_info->lock);
3262 			return 0;
3263 		} else if (space_info->chunk_alloc) {
3264 			/*
3265 			 * Someone is already allocating, so we need to block
3266 			 * until this someone is finished and then loop to
3267 			 * recheck if we should continue with our allocation
3268 			 * attempt.
3269 			 */
3270 			wait_for_alloc = true;
3271 			spin_unlock(&space_info->lock);
3272 			mutex_lock(&fs_info->chunk_mutex);
3273 			mutex_unlock(&fs_info->chunk_mutex);
3274 		} else {
3275 			/* Proceed with allocation */
3276 			space_info->chunk_alloc = 1;
3277 			wait_for_alloc = false;
3278 			spin_unlock(&space_info->lock);
3279 		}
3280 
3281 		cond_resched();
3282 	} while (wait_for_alloc);
3283 
3284 	mutex_lock(&fs_info->chunk_mutex);
3285 	trans->allocating_chunk = true;
3286 
3287 	/*
3288 	 * If we have mixed data/metadata chunks we want to make sure we keep
3289 	 * allocating mixed chunks instead of individual chunks.
3290 	 */
3291 	if (btrfs_mixed_space_info(space_info))
3292 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3293 
3294 	/*
3295 	 * if we're doing a data chunk, go ahead and make sure that
3296 	 * we keep a reasonable number of metadata chunks allocated in the
3297 	 * FS as well.
3298 	 */
3299 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3300 		fs_info->data_chunk_allocations++;
3301 		if (!(fs_info->data_chunk_allocations %
3302 		      fs_info->metadata_ratio))
3303 			force_metadata_allocation(fs_info);
3304 	}
3305 
3306 	/*
3307 	 * Check if we have enough space in SYSTEM chunk because we may need
3308 	 * to update devices.
3309 	 */
3310 	check_system_chunk(trans, flags);
3311 
3312 	ret = btrfs_alloc_chunk(trans, flags);
3313 	trans->allocating_chunk = false;
3314 
3315 	spin_lock(&space_info->lock);
3316 	if (ret < 0) {
3317 		if (ret == -ENOSPC)
3318 			space_info->full = 1;
3319 		else
3320 			goto out;
3321 	} else {
3322 		ret = 1;
3323 		space_info->max_extent_size = 0;
3324 	}
3325 
3326 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3327 out:
3328 	space_info->chunk_alloc = 0;
3329 	spin_unlock(&space_info->lock);
3330 	mutex_unlock(&fs_info->chunk_mutex);
3331 	/*
3332 	 * When we allocate a new chunk we reserve space in the chunk block
3333 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3334 	 * add new nodes/leafs to it if we end up needing to do it when
3335 	 * inserting the chunk item and updating device items as part of the
3336 	 * second phase of chunk allocation, performed by
3337 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3338 	 * large number of new block groups to create in our transaction
3339 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3340 	 * in extreme cases - like having a single transaction create many new
3341 	 * block groups when starting to write out the free space caches of all
3342 	 * the block groups that were made dirty during the lifetime of the
3343 	 * transaction.
3344 	 */
3345 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3346 		btrfs_create_pending_block_groups(trans);
3347 
3348 	return ret;
3349 }
3350 
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)3351 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3352 {
3353 	u64 num_dev;
3354 
3355 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3356 	if (!num_dev)
3357 		num_dev = fs_info->fs_devices->rw_devices;
3358 
3359 	return num_dev;
3360 }
3361 
3362 /*
3363  * Reserve space in the system space for allocating or removing a chunk
3364  */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)3365 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3366 {
3367 	struct btrfs_transaction *cur_trans = trans->transaction;
3368 	struct btrfs_fs_info *fs_info = trans->fs_info;
3369 	struct btrfs_space_info *info;
3370 	u64 left;
3371 	u64 thresh;
3372 	int ret = 0;
3373 	u64 num_devs;
3374 
3375 	/*
3376 	 * Needed because we can end up allocating a system chunk and for an
3377 	 * atomic and race free space reservation in the chunk block reserve.
3378 	 */
3379 	lockdep_assert_held(&fs_info->chunk_mutex);
3380 
3381 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3382 again:
3383 	spin_lock(&info->lock);
3384 	left = info->total_bytes - btrfs_space_info_used(info, true);
3385 	spin_unlock(&info->lock);
3386 
3387 	num_devs = get_profile_num_devs(fs_info, type);
3388 
3389 	/* num_devs device items to update and 1 chunk item to add or remove */
3390 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3391 		btrfs_calc_insert_metadata_size(fs_info, 1);
3392 
3393 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3394 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3395 			   left, thresh, type);
3396 		btrfs_dump_space_info(fs_info, info, 0, 0);
3397 	}
3398 
3399 	if (left < thresh) {
3400 		u64 flags = btrfs_system_alloc_profile(fs_info);
3401 		u64 reserved = atomic64_read(&cur_trans->chunk_bytes_reserved);
3402 
3403 		/*
3404 		 * If there's not available space for the chunk tree (system
3405 		 * space) and there are other tasks that reserved space for
3406 		 * creating a new system block group, wait for them to complete
3407 		 * the creation of their system block group and release excess
3408 		 * reserved space. We do this because:
3409 		 *
3410 		 * *) We can end up allocating more system chunks than necessary
3411 		 *    when there are multiple tasks that are concurrently
3412 		 *    allocating block groups, which can lead to exhaustion of
3413 		 *    the system array in the superblock;
3414 		 *
3415 		 * *) If we allocate extra and unnecessary system block groups,
3416 		 *    despite being empty for a long time, and possibly forever,
3417 		 *    they end not being added to the list of unused block groups
3418 		 *    because that typically happens only when deallocating the
3419 		 *    last extent from a block group - which never happens since
3420 		 *    we never allocate from them in the first place. The few
3421 		 *    exceptions are when mounting a filesystem or running scrub,
3422 		 *    which add unused block groups to the list of unused block
3423 		 *    groups, to be deleted by the cleaner kthread.
3424 		 *    And even when they are added to the list of unused block
3425 		 *    groups, it can take a long time until they get deleted,
3426 		 *    since the cleaner kthread might be sleeping or busy with
3427 		 *    other work (deleting subvolumes, running delayed iputs,
3428 		 *    defrag scheduling, etc);
3429 		 *
3430 		 * This is rare in practice, but can happen when too many tasks
3431 		 * are allocating blocks groups in parallel (via fallocate())
3432 		 * and before the one that reserved space for a new system block
3433 		 * group finishes the block group creation and releases the space
3434 		 * reserved in excess (at btrfs_create_pending_block_groups()),
3435 		 * other tasks end up here and see free system space temporarily
3436 		 * not enough for updating the chunk tree.
3437 		 *
3438 		 * We unlock the chunk mutex before waiting for such tasks and
3439 		 * lock it again after the wait, otherwise we would deadlock.
3440 		 * It is safe to do so because allocating a system chunk is the
3441 		 * first thing done while allocating a new block group.
3442 		 */
3443 		if (reserved > trans->chunk_bytes_reserved) {
3444 			const u64 min_needed = reserved - thresh;
3445 
3446 			mutex_unlock(&fs_info->chunk_mutex);
3447 			wait_event(cur_trans->chunk_reserve_wait,
3448 			   atomic64_read(&cur_trans->chunk_bytes_reserved) <=
3449 			   min_needed);
3450 			mutex_lock(&fs_info->chunk_mutex);
3451 			goto again;
3452 		}
3453 
3454 		/*
3455 		 * Ignore failure to create system chunk. We might end up not
3456 		 * needing it, as we might not need to COW all nodes/leafs from
3457 		 * the paths we visit in the chunk tree (they were already COWed
3458 		 * or created in the current transaction for example).
3459 		 */
3460 		ret = btrfs_alloc_chunk(trans, flags);
3461 	}
3462 
3463 	if (!ret) {
3464 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3465 					  &fs_info->chunk_block_rsv,
3466 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3467 		if (!ret) {
3468 			atomic64_add(thresh, &cur_trans->chunk_bytes_reserved);
3469 			trans->chunk_bytes_reserved += thresh;
3470 		}
3471 	}
3472 }
3473 
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3474 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3475 {
3476 	struct btrfs_block_group *block_group;
3477 	u64 last = 0;
3478 
3479 	while (1) {
3480 		struct inode *inode;
3481 
3482 		block_group = btrfs_lookup_first_block_group(info, last);
3483 		while (block_group) {
3484 			btrfs_wait_block_group_cache_done(block_group);
3485 			spin_lock(&block_group->lock);
3486 			if (block_group->iref)
3487 				break;
3488 			spin_unlock(&block_group->lock);
3489 			block_group = btrfs_next_block_group(block_group);
3490 		}
3491 		if (!block_group) {
3492 			if (last == 0)
3493 				break;
3494 			last = 0;
3495 			continue;
3496 		}
3497 
3498 		inode = block_group->inode;
3499 		block_group->iref = 0;
3500 		block_group->inode = NULL;
3501 		spin_unlock(&block_group->lock);
3502 		ASSERT(block_group->io_ctl.inode == NULL);
3503 		iput(inode);
3504 		last = block_group->start + block_group->length;
3505 		btrfs_put_block_group(block_group);
3506 	}
3507 }
3508 
3509 /*
3510  * Must be called only after stopping all workers, since we could have block
3511  * group caching kthreads running, and therefore they could race with us if we
3512  * freed the block groups before stopping them.
3513  */
btrfs_free_block_groups(struct btrfs_fs_info * info)3514 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3515 {
3516 	struct btrfs_block_group *block_group;
3517 	struct btrfs_space_info *space_info;
3518 	struct btrfs_caching_control *caching_ctl;
3519 	struct rb_node *n;
3520 
3521 	spin_lock(&info->block_group_cache_lock);
3522 	while (!list_empty(&info->caching_block_groups)) {
3523 		caching_ctl = list_entry(info->caching_block_groups.next,
3524 					 struct btrfs_caching_control, list);
3525 		list_del(&caching_ctl->list);
3526 		btrfs_put_caching_control(caching_ctl);
3527 	}
3528 	spin_unlock(&info->block_group_cache_lock);
3529 
3530 	spin_lock(&info->unused_bgs_lock);
3531 	while (!list_empty(&info->unused_bgs)) {
3532 		block_group = list_first_entry(&info->unused_bgs,
3533 					       struct btrfs_block_group,
3534 					       bg_list);
3535 		list_del_init(&block_group->bg_list);
3536 		btrfs_put_block_group(block_group);
3537 	}
3538 	spin_unlock(&info->unused_bgs_lock);
3539 
3540 	spin_lock(&info->unused_bgs_lock);
3541 	while (!list_empty(&info->reclaim_bgs)) {
3542 		block_group = list_first_entry(&info->reclaim_bgs,
3543 					       struct btrfs_block_group,
3544 					       bg_list);
3545 		list_del_init(&block_group->bg_list);
3546 		btrfs_put_block_group(block_group);
3547 	}
3548 	spin_unlock(&info->unused_bgs_lock);
3549 
3550 	spin_lock(&info->block_group_cache_lock);
3551 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3552 		block_group = rb_entry(n, struct btrfs_block_group,
3553 				       cache_node);
3554 		rb_erase(&block_group->cache_node,
3555 			 &info->block_group_cache_tree);
3556 		RB_CLEAR_NODE(&block_group->cache_node);
3557 		spin_unlock(&info->block_group_cache_lock);
3558 
3559 		down_write(&block_group->space_info->groups_sem);
3560 		list_del(&block_group->list);
3561 		up_write(&block_group->space_info->groups_sem);
3562 
3563 		/*
3564 		 * We haven't cached this block group, which means we could
3565 		 * possibly have excluded extents on this block group.
3566 		 */
3567 		if (block_group->cached == BTRFS_CACHE_NO ||
3568 		    block_group->cached == BTRFS_CACHE_ERROR)
3569 			btrfs_free_excluded_extents(block_group);
3570 
3571 		btrfs_remove_free_space_cache(block_group);
3572 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3573 		ASSERT(list_empty(&block_group->dirty_list));
3574 		ASSERT(list_empty(&block_group->io_list));
3575 		ASSERT(list_empty(&block_group->bg_list));
3576 		ASSERT(refcount_read(&block_group->refs) == 1);
3577 		ASSERT(block_group->swap_extents == 0);
3578 		btrfs_put_block_group(block_group);
3579 
3580 		spin_lock(&info->block_group_cache_lock);
3581 	}
3582 	spin_unlock(&info->block_group_cache_lock);
3583 
3584 	btrfs_release_global_block_rsv(info);
3585 
3586 	while (!list_empty(&info->space_info)) {
3587 		space_info = list_entry(info->space_info.next,
3588 					struct btrfs_space_info,
3589 					list);
3590 
3591 		/*
3592 		 * Do not hide this behind enospc_debug, this is actually
3593 		 * important and indicates a real bug if this happens.
3594 		 */
3595 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3596 			    space_info->bytes_reserved > 0 ||
3597 			    space_info->bytes_may_use > 0))
3598 			btrfs_dump_space_info(info, space_info, 0, 0);
3599 		WARN_ON(space_info->reclaim_size > 0);
3600 		list_del(&space_info->list);
3601 		btrfs_sysfs_remove_space_info(space_info);
3602 	}
3603 	return 0;
3604 }
3605 
btrfs_freeze_block_group(struct btrfs_block_group * cache)3606 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3607 {
3608 	atomic_inc(&cache->frozen);
3609 }
3610 
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)3611 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3612 {
3613 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3614 	struct extent_map_tree *em_tree;
3615 	struct extent_map *em;
3616 	bool cleanup;
3617 
3618 	spin_lock(&block_group->lock);
3619 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3620 		   block_group->removed);
3621 	spin_unlock(&block_group->lock);
3622 
3623 	if (cleanup) {
3624 		em_tree = &fs_info->mapping_tree;
3625 		write_lock(&em_tree->lock);
3626 		em = lookup_extent_mapping(em_tree, block_group->start,
3627 					   1);
3628 		BUG_ON(!em); /* logic error, can't happen */
3629 		remove_extent_mapping(em_tree, em);
3630 		write_unlock(&em_tree->lock);
3631 
3632 		/* once for us and once for the tree */
3633 		free_extent_map(em);
3634 		free_extent_map(em);
3635 
3636 		/*
3637 		 * We may have left one free space entry and other possible
3638 		 * tasks trimming this block group have left 1 entry each one.
3639 		 * Free them if any.
3640 		 */
3641 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3642 	}
3643 }
3644 
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)3645 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3646 {
3647 	bool ret = true;
3648 
3649 	spin_lock(&bg->lock);
3650 	if (bg->ro)
3651 		ret = false;
3652 	else
3653 		bg->swap_extents++;
3654 	spin_unlock(&bg->lock);
3655 
3656 	return ret;
3657 }
3658 
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)3659 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3660 {
3661 	spin_lock(&bg->lock);
3662 	ASSERT(!bg->ro);
3663 	ASSERT(bg->swap_extents >= amount);
3664 	bg->swap_extents -= amount;
3665 	spin_unlock(&bg->lock);
3666 }
3667